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Outline of the lectures

1. Introduction
2. Parton showering
3. Improving parton showers with fixed-order matrix elements
4. Soft physics, multiparton interactions and hadronisation.

Many previous lectures can be found at
http://users.phys.psu.edu/∼cteq and montecarlonet.org.
Further references at the end of the slides.
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Part 1: Introduction

a) Why do we need Event Generators?
b) Event generation at hadron colliders.
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How will we find what is out there?

Know what we want to look for…

Missing ET and jets (a.k.a. classical SUSY)?
Compressed masses?

Dark sectors? New bound states?

Know what we’re facing…

QCD,
QCD,

QCD.

Assess if there is a realistic chance with our current experiments
…and check before building a new experiment.

We need an accurate representation of ”known” and ”unknown”
physics that feels like data!
=⇒ Event generators
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New physics signals
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Event generation: Start from hard process
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…and emit gluons from incoming partons
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…or outgoing partons
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…or split gluons into quarks
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…and how to do this arbitrarily often

e
+

e
−

q

q̄

10 / 81



…and emit photons from charged fermions
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…and include multiple interactions between composite protons
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…which again produce more radiation
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…and add beam remnants to form a colourless state
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…and form strings (colour flux tubes)

e
+

e
−

q

q̄

15 / 81



…and produce hadrons from strings and remnants
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…and decay the excited hadrons
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…which can again involve photons
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And the detector records this…

Jet?

Lepton?

U
n
d
er
ly
in
g
ev
en
t?
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Standard event generator frameworks

The three commonly used General Purpose Event Generators are

HERWIG
aa
Basic ME generator
aa
Angular ordered q̃
shower and p⊥-ordered
CS dipole shower
aa
YFS multipole QED
MPI afterburner
aa
Cluster hadronisation

a

PYTHIA
aa
Basic ME generator
aa
p⊥-ordered dipoles with
ME-corrections, VINCIA
antenna shower
aa
QED from shower
Interleaved MPI
aa
String hadronisation

a

SHERPA
aa
Mature ME generator
aa
p⊥-ordered CS dipole
shower, ANTS antenna
shower
aa
YFS multipole QED
MPI afterburner
aa
Cluster hadronisation

(Warning: No purists in this game. Every theorist has to learn and compromise)
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Part 2: Parton showering

a) Factorisation and logarithms
b) Picturing QCD calculations
c) From probabilities to parton showers
d) Parton shower details
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Factorisation: Divide and conquer

ū-quark

u-quark µ+-lepton

µ−-leptonPhoton

−ieγν−ieQuγµ

−igµν

(p1+p2)2+iǫ

Gluon

ε∗a/ (k)

ig3T
a
ij

i(p/−k/ )
(p−k)2+iǫ

v̄i(pb) ū(p1)

v(p2)uj(p)

Hadron

fb(xb, t)

f(x, t)

The hadronic cross section is

dσ(pp → µ+µ−g + X) = dxdxbf(x, t)fb(xb, t)dσ̂ , dσ̂ =

∣∣M(uū → µ+µ−g)
∣∣2 dΦn+1

4
√

(ppb)2
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Factorisation: Divide and conquer

ū-quark

u-quark µ+-lepton

µ−-leptonPhoton

−ieγν−ieQuγµ

−igµν

(p1+p2)2+iǫ

Gluon

ε∗a/ (k)

ig3T
a
ij

i(p/−k/ )
(p−k)2+iǫ

v̄i(pb) ū(p1)

v(p2)uj(p)

Hadron

fb(xb, t)

f(x, t)

E(p−k) ≈ zEp and small gluon p⊥ ⇒ Interal quark almost on-shell. Then:

i(�p − �k)
(p − k)2 ≈ u(pa)ū(pa)

p2a
, dΦn+1 ≈ dΦn

dϕdzdp2⊥
4(2π)3(1 − z) ,

1
4
√

(ppb)2
≈ z

4
√

(papb)2

=⇒ Matrix element, phase space integration and flux factors factorise! 23 / 81



Factorisation: Divide and conquer

ū-quark

u-quark µ+-lepton

µ−-leptonPhoton

−ieγν−ieQuγµ

−igµν

(p1+p2)2+iǫ

Gluon

ε∗a/ (k)

ig3T
a
ij

i(p/−k/ )
(p−k)2+iǫ

v̄i(pb) ū(p1)

v(p2)uj(p)

Hadron

fb(xb, t)

f(x, t)

Matrix element, phase space integration and flux factors factorise:

dσ(pp → µ+µ−g + X) = dσ(pp → µ+µ− + X)
∫

dp2⊥
p2⊥

dz
z

αs

2π
CF

f( xa
z , t)

fa(xa, t)
1 + z2

1 − z
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Factorisation: Divide and conquer

Every cross section containing an additional collinear gluon can be factorised as

dσ(pp → Y + g + X) = dσ(pp → Y + X)
∫

dp2⊥
p2⊥

dz
z

αs

2π

f( xa
z , t)

fa(xa, t)
P(z)

with the splitting kernels P(z)

Pqq = CF

1+z2

1−z
Pgg = CA

(1−z(1−z))2

z(1−z)
Pqg = TR

[

z
2 + (1− z)2

]

This is independent of the process pp → Y + X!
=⇒ Multi-parton cross sections can be approximated by “dressing up”
low-multiplicity results with many collinear partons!
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Emission probabilities

The splitting kernels
. . . are independent of the “hard” scattering;
. . . have a probabilistic interpretation:

∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz αs

2π
P(z) ≡

aa
Probability of emitting a gluon with
momentum fraction 1 − z ∈ [zmin, zmax] and
transverse momentum p⊥ ∈ [p⊥min, p⊥max].

Also, note
dp2⊥
p2⊥

= dQ2

Q2 = dΘ2

Θ2 = dρ

ρ
(for ρ = f(z)p2⊥)

=⇒ Many variables can be used to characterise the collinear limit!

…and note that we’ve put the z-range [zmin, zmax]. The lower limit zmin comes
from the constraint xa

z < 1, the upper limit when conserving 4-momentum.
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Emission probabilities

Integrating the splitting probability, we get∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz αs

2π
P(z) ≈

∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz αs

2π

2CF/A

(1 − z)

≈ αs ln
(

p2⊥max

p2⊥min

)
ln
( zmax

zmin

)
More generally, we can write

dσ(pp → Y + g + X) = dσ(pp → Y + X) ⊗
(
αsc2L2 + αsc1L + αsc0

)
with L = ln

(
Q2/p2⊥min

)
, Q2 = O(p2⊥max), p2⊥min = O(ΛQCD).

Even more generally
dσ(pp → Y + ng) = dσ(pp → Y) ⊗ αn

s
(
c2nL2n + c2n−1L2n−1 + · · · + c0

)
dσ(pp → Y + ng) ≈ dσ(pp → Y)αn

s c2nL2n

⇒ Multi-parton cross sections can be approximated by leading (double) log.
⇒ Comes from “dressing” low-multiplicity states with many collinear partons!
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Logarithms

We found

dσ(pp → Y + ng) ≈ dσ(pp → Y)αn
s c2nL2n

We can illustrate this logarithmic structure with a “legs-and-logs” plot.
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Symbolic figures for QCD calculations: αs-orders fill diagonals

Logs

Loops

Legs

O
rd

er
s
in

α
s

Orders in αs
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Symbolic figures for QCD calculations: αs-orders fill diagonals: NLO
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Symbolic figures for QCD calculations: αs-orders fill diagonals: NNLO
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Symbolic figures for QCD calculations: Tree-level terms fill towers
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Symbolic figures for QCD calculations: Tree-level terms fill towers
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Symbolic figures for QCD calculations: Virtual corrections fill towers

Logs

Loops

Legs dσB(pp→ X + emission)

nunresolved emissions+loops

0 1 2 3

dσV (pp→ X) +

p⊥min
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Symbolic figures for QCD calculations: Towers are composed of logs
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2n Leading log

Finite terms

Subleading logs

...

...
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Symbolic figures for QCD calculations: Towers are composed of logs
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”Dressing” a process with collinear partons

So far, we had dσ(pp → Y + ng) ≈ dσ(pp → Y)αn
s c2nL2n .

• (Multiple) gluon emission give the largest contribution to this
multi-parton cross section.

• A more careful analysis shows: The dominant contributions to the cross
section are produced by ordered emissions

ρ0 > ρ1 > ρ2 > . . .

Idea: Let’s approximate the multi-parton cross section by multiplying
splitting probabilities!
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Iterating the collinear approximation: Hard process

Logs

Loops

Legs

dσ(pp→ X)

0 resolved gluon emissions

40 / 81



Iterating the collinear approximation: One emission

Logs

Loops

Legs

dσ(pp → X)

1 resolved gluon emission

⊗

p⊥min

p⊥max

dp
⊥1

p
⊥1

dz1P1(z1)
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Iterating the collinear approximation: Two emissions

Logs

Loops

Legs

dσ(pp → X)

2 resolved gluon emissions

⊗

p⊥min

p⊥max

dp
⊥1

p
⊥1

dz1P1(z1) ⊗
dp

⊥2

p
⊥2

dz2P2(z2)
p⊥min

p⊥1
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Iterating the collinear approximation: Three emissions

Logs

Loops

Legs

dσ(pp → X)

3 resolved gluon emissions

⊗

p⊥min

p⊥max

dp
⊥1

p
⊥1

dz1P1(z1)

dp
⊥3

p
⊥3

dz3P3(z3)

⊗

dp
⊥2

p
⊥2

dz2P2(z2)
p⊥min

p⊥1

⊗

p⊥min

p⊥2
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Iterating the collinear approximation: Infinitely many emissions

Logs

Loops
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dσ(pp → X)

Infinitely many resolved gluon emissions

⊗
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dp
⊥1

p
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dp
⊥3

p
⊥3

dz3P3(z3)

⊗

dp
⊥2

p
⊥2

dz2P2(z2)
p⊥min

p⊥1

⊗

p⊥min

p⊥2

⊗ . . .
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Comments on iterating the collinear approximation

Note that dσ(pp → Y)αn
s c2nL2n is divergent as p⊥min → 0 .

=⇒ To give a sensible approximation of the multi-parton cross section,
we need to do more than just multiply splitting probabilities!
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NLO calculations and the Kinoshita-Lee-Nauenberg theorem

Pen-and-paper: Add Born + Real + Virtual

⟨O⟩NLO =
∫

BnO(Φn)dΦn +
∫

Bn+1O(Φn)dΦn+1 +
∫

VnOn(Φn)dΦn
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The KLN theorem: Lowest order is finite

Logs

Loops

Legs
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The KLN theorem: Real emissions diverge

Logs

Loops

Legs

48 / 81



The KLN theorem: Virtual corrections diverge

Logs

Loops

Legs
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The KLN theorem: Virtual + Real is finite …because all logs cancel!

Logs

Loops

Legs
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Can we cancel the product of splittings with all-order virtual corrections?

Logs

Loops

Legs

?
?
?
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The Sudakov form factor

=⇒ To give a sensible approximation of the multi-parton cross section,
we also need (approximate all-order) virtual corrections!

Approximate all-order virtual corrections form a Sudakov form factor

Π(ρ0, ρmin) = exp
(

−
∫ ρ0

ρmin

dρ

ρ

∫
dz

αs

2π
P(z)

)
= 1 −

∫ ρ0

ρmin

dρ1

ρ1

∫ z0

zmin

dz1
αs

2π
P1(z1)

+
∫ ρ0

ρmin

dρ1

ρ1

∫
dz1

αs

2π
P1(z1)

∫ ρ1

ρmin

dρ1

ρ1

∫
dz2

αs

2π
P2(z2) + . . .

But how do we get there?

=⇒ Probabilities!
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Taking probabilities seriously

We have already found:

δp2⊥
p2⊥

∫ z0

z1
dz

αs

2π
P(z) ≡

aa
Probability of an emission with 1 − z ∈ [z1, z0]
and p2⊥ in the range [p2⊥min, p2⊥min + δp2⊥].

Then the probability of no emission is

1 − δp2⊥
p2⊥

∫ z0

z1
dz

αs

2π
P(z)

or, if δp2⊥ is divided into n parts, and the no-emission probabilities are
independent[
1 − δp2⊥/n

p2⊥

∫ z0

z1
dz

αs

2π
P(z)

]n
→

n→∞
exp

(
−
∫ p2⊥min+δp2⊥

p2⊥min

dp2⊥
p2⊥

∫ z0

z1
dz

αs

2π
P(z)

)

The Sudakov factor is the probability of no resolvable emission in the
range [p2⊥min, p2⊥min + δp2⊥], where resolvable means 1 − z ∈ [z1, z0].
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The no-emission probability introduces all-order virtual corrections.
These do not change the number of legs ⇒ Fill rows.

Logs

Loops

Legs

dσ(pp → X) ⊗ Π0 (p
⊥0, p⊥min)

54 / 81



Branching probabilities

We have already found:∫ ρ0

ρmin

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z) ≡

aa
Probability of a resolvable emission
with p2⊥ in the range [ρmin, ρ2

0].

exp
(

−
∫ ρ0

ρmin

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z)

)
≡

aa
Probability of no resolvable emission
with p2⊥ in the range [ρmin, ρ0].

We can construct an all-legs and all-loops result with probabilities only!
=⇒ Ideal for numerical iteration with random numbers.
=⇒ Monte Carlo parton showers.

So far, we only added gluons. It is possible to add photon emission,
g → qq̄, γ → qq̄ etc. in the same way.
Also, we have not defined an ordering. Any ordering in ρ is allowed if
dρ/ρ = dp2⊥/p2⊥ (holds for angle, virtuality, p⊥)
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An algorithm to produce multiple emissions

0. Construct a state with no emissions (easy!).

1. Begin algorithm at a “largest p⊥” ρmax (evolution parameter).

2. Propose a new state with an emission at ρ < ρmax.

3. Decide if the new state should be constructed according to the
splitting function probability. If yes, construct the new state (need to
conserve momentum in this step!)

4. Set ρmax = ρ. Start from 1. (possibly with a new input state).

When the “p⊥” is decreased by δρ, there are two possibilities:
⋄ The algorithm produced an emission at scale ρ.
⋄ The algorithm did not produce an emission.

= P(No emission above ρmin) + P(No emission above ρ)× P(One emission at ρ)

= dσ ⊗ Π0(ρ0, ρmin) O0 + dσ ⊗

ρ0∫
ρmin

dρ

ρ

z0∫
z1

dz αs

2π
P(z) Π0(ρ0, ρ) O1
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Parton shower: Fixed order input

Logs

Loops

Legs

dσB(pp → X)⊗Π0(ρ0, ρmin) O0 + dσB(pp → X) ⊗
∫ ρ0

ρmin

dρ

ρ

∫ z0

z1

dz αs

2π
P(z) Π0(ρ0, ρ) O1
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Parton shower: No emission

Logs

Loops

Legs

dσB(pp → X)⊗Π0(ρ0, ρmin) O0 + dσB(pp → X) ⊗
∫ ρ0

ρmin

dρ

ρ

∫ z0

z1

dz αs

2π
P(z) Π0(ρ0, ρ) O1
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Parton shower: One emission at ρ

Logs

Loops

Legs

dσB(pp → X)⊗Π0(ρ0, ρmin) O0 + dσB(pp → X) ⊗
∫ ρ0

ρmin

dρ

ρ
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dz αs

2π
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Parton shower: No or one emission

Logs

Loops

Legs

dσB(pp → X)⊗Π0(ρ0, ρmin) O0 + dσB(pp → X) ⊗
∫ ρ0

ρmin

dρ

ρ

∫ z0

z1

dz αs

2π
P(z) Π0(ρ0, ρ) O1
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Parton shower cross sections

Each of these cross sections is finite because of Sudakov suppression:

dσB(pp → X) ⊗

∫ ρ0

ρmin

dρ

ρ

∫ z0

z1

dz
αs

2π
P(z) Π0(ρ0, ρ) O1 →

ρmin→0
finite

Now remember that we derived the no-emission probability from
Pemission + Pno emission = 1

=⇒ The PS never changes the cross section, it only changes shapes.
This is called parton shower unitarity.

Unitarity means that parton showers define how the inclusive cross section is
sliced up into exclusive cross sections:

σ0 or more jets = σexactly 0 jets + σ1 or more jets

= σexactly 0 jets + σexactly 1 jet + σ2 or more jets
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Parton shower example

Logs

Loops

Legs

PS generates
• no emission
• or one emission at ρ1

and no further emission
• or one emission at ρ1 and one at ρ2
• and so on for arbirtary many emissions
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Parton shower example
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• and so on for arbirtary many emissions
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Parton shower example
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Parton shower example

Logs

Loops

Legs

PS generates
• no emission
• or one emission at ρ1 and no further emission
• or one emission at ρ1 and one at ρ2
• and so on for arbirtary many emissions
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(No-)branching probabilities summary

Remember:

Π(ρ0, ρ1) = exp
(

−
∫ ρ0

ρ1

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z)

)
≡

aa
Probability of no resolv-
able emission with evo-
lution scale in the range
[ρ1, ρ0].

dρ

ρ

∫ z0

z1
dz

αs

2π
P(z)Π(ρ0, ρ) ≡

aa
Probability of a exactly
one resolvable emission,
with evolution scale ρ.
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Exercise: Compare the no-emission probabilities with Sudakov factors

We will often call the no-emission probability ”Sudakov (form) factor”. The
quark Sudakov form factor for a massless quark can be calculated analytically
in QCD. For q⊥ → 0, it reads

∆(ρ0, ρ1) = exp

(
−
∫ Q2

q2⊥

dp2⊥
p2⊥

αs

2π
CF
[
ln
(

Q2

p2⊥

)
− 3

2 + O
(

p2⊥
Q2

)])
(1)

a) Assume that the parton shower splitting kernel is P(z) = CF 1+z2
1−z , and that

z1 = a1 p⊥
Q + a2

p2⊥
Q2 , 0 < z1 < 1 and z0 = 1− z1. Write the no-emission probability,

for p⊥
Q → 0, in the form of eq. (1). (Hint: Rewrite P(z) so that you can clearly

identify which term gives the logarithm and which term gives the constant)
What are the phase space boundary z0, z1 necessary to match eq. (1)?

b) Now assume the splitting kernel P(z, p2⊥) = CF 2(1−z)
(1−z)2+p2⊥/Q2 − (1 + z). What is

the form of z0, z1 now?

Which phase space is larger?
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Initial state radiation and PDFs

We have quietly dropped PDFs before. Keeping the PDFs, we would
have arrived at

No-emission probability:

Π(ρ0, ρ1) = exp
(

−
∫ ρ0

ρ1

dρ

ρ

∫ z0

z1

dz
z

αs

2π

f1( x
z , ρ)

f0(x, ρ)
P(z)

)
Probability of an emission with xnew = x

z at evolution scale ρ:

dρ

ρ

∫ z0

z1

dz
z

αs

2π

f1( x
z , ρ)

f0(x, ρ)
P(z)Π(ρ0, ρ)

Note
d lnΠ
d ln ρ

=
∫ z0

z1

dz
z

αs

2π

f1( x
z , ρ)

f0(x, ρ)
P(z)

⇒ PDFs are crucial for radiating off an initial state parton.
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Backward evolution

Remember: PDFs evolve according to the DGLAP equation, from small
virtuality Q2 to larger virtuality Q2

0. PDFs are small at large Q2
0.

Should parton showers do the same?

It would be very unlikely to “hit” a resonance (i.e. a Higgs or Z-boson
propagator) in a narrow virtuality window at large Q2

0.
=⇒ Simulating high-scale physics would be nearly impossible!

=⇒ Instead, reformulate DGLAP to evolve from large Q2
0 and small x to

=⇒ smaller Q2 and larger x/z.
=⇒ Backwards evolution.

DGLAP : Sums up all emissions by evolving from Q2 to Q2
0

Backward evolution: Performs all emissions (that had previously been
Backward evolution: summed up) by evolving from Q2

0 to Q2.
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Review

Achievements so far:
• Found a way to approximate (one of) the largest contributions to a

n-parton cross section: the collinear approximation
…and devised a probabilistic algorithm to produce this result.

• The parton shower produces finite results by introducing all-order
(resummed) virtual corrections.

• We know how to treat emissions off final and initial state partons.

To get there, we needed
• To derive emission and no-emission probabilities.
• Find a prescription for momentum conservation - otherwise, we cannot

iterate the procedure.
• We had to define an evolution scale ρ to reproduce the dominant terms.

But…
• Momentum conservation can be implemented in many different ways.
• The evolution scale ρ can be defined freely, as long as dρ/ρ = dp2⊥/p2⊥.

This e.g. allows (relative) angle, virtuality, p2⊥…
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Choosing an ordering variable: Double-counting and hardness

Backward evolution in the initial state means evolving from a “hard
process” at large momentum transfer to smaller momentum transfers.

The hard process is the “starting point” of the radiation cascade.

We want to start from an “exact” result, i.e. a good description of the
inclusive cross section with n partons, and produce approximate higher
order corrections.

If the evolution scale is defined such that after some emissions, a
“harder” process is generated, then the exact starting point is obscured,
and we cannot do backward evolution.

=⇒ Initial state showers suggest to use a “hardness” ordering, i.e. where
large momentum transfers happen early in the cascade (e.g. Q2 or p2⊥).
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Choosing an ordering variable: Is virtuality ordering safe?

Ordering:
Pythia: Virtuality,
Herwig: Something else.
aaaa
aaaa
=⇒ Something is missing.

=⇒ Virtuality ordering did not capture the physics!
=⇒ Missing another important ingredient!
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The soft limit and QM interference

When trying to find an approximation of additional gluon emissions, we found
that the largest contribution to Qi(pi + k) → Q′

i (pi) + g(k) arose from an on-shell
propagator

u(pi)�ε
(�pi + �k)
(pi + k)2 = u(pi)

piε
2pik

= u(pi)
piε

(1 − z)E2Qi(1 − cosΘQig)

Apart from collinear divergence ΘQig → 0, there is also a soft divergence z → 1.

=⇒ We were missing the soft piece before!

For z → 1, already the amplitudes universally factorise. Thus, upon squaring

dσn+1 = dσn

∫
dw
w

dΩ
2π

αs

2π

∑
ij

CijWij

with Wij =
1 − cosΘQiQj

(1 − cosΘQig)(1 − cosΘQjg)
=⇒ QM interference between gluon emission off partons Qi and Qj!

How can soft emissions be independent?
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Coherence in the soft limit

How can soft emissions be independent?
Let us write

Wij = W1
ij + W2

ij with Wi
ij = 1

2

(
Wij + 1

(1 − cosΘQig)
− 1

(1 − cosΘQjg)

)
Then, after integrating over the azimuthal angle, we get∫

dϕQig

2π
Wi

ij =

{
1

(1−cos ΘQig) for ΘQig < ΘQiQj

0 else

Soft emissions are independent if ordered in emission angle!
Another (opening cone) argument shows: p⊥-ordered final state emissions are
okay as well.

Herwig had angular ordering in the CDF plot. Color coherence necessary to
describe data! But angle does not define hardness!
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Choosing an ordering variable: Hardness vs. angle

We found: Hardness ordering (Q2, p2⊥) motivated by ISR, Θ ordering by soft
limit. Both mutually exclusive!

Q2 E2Θ2 p2⊥

Virtuality
• Defines hardness, as

necessary in ISR.
aa

• No coherence.
Additional vetoes
necessary.

aa

Angle
• Does not define

hardness. Additional
vetoes necessary.

• Coherence by
construction.
aa

aa

p⊥

• Defines hardness, as
necessary in ISR.
aa

• Coherence in FSR.
ISR not clear.
aa

Is it hopeless? No! =⇒ Dipole/antenna showers.
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Dipoles / antennae

In the soft limit, we found

dσn+1 = dσn

∫
dw
w

dΩ
2π

αs

2π

∑
ij

CijWij

and after writing

Wij = W1
ij + W2

ij with Wi
ij = 1

2

(
Wij + 1

(1 − cosΘQig)
− 1

(1 − cosΘQjg)

)
derived angular ordering.

But we could have directly used Wij as splitting probability (≡ QCD antenna),
or partitioned cleverly (≡ QCD dipole).

Both antennae and dipoles can be inferred from NLO subtraction methods.
This means they come with a well-defined phase space mapping.
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Energy-momentum conservation

We have stressed the importance of energy-momentum conservation, but not
given a prescription.

NLO subtraction formalisms give a one-to-one correspondence

dΦn+1 = dΦndΦ̂ = dΦnJ(ρ, z, ϕ)dρdz dϕ

2π

which maps an on-shell n-particle phase space point unto an on-shell
n + 1-particle configuration. The n + 1-particle is completely covered.

This can be achieved by
aborbing the “recoil” of a 1 → 2 splitting with a spectator (dipoles).
performing 2 → 3 splittings (antennae).

⇒ Modern showers are all built in this way!

Momentum conservation in each intermediate step is the major advantage
compared to analytical tools. It also makes systematic step-by-step
improvements possible (→ next lecture).

Freedom in the recoil scheme is an uncertainty of exclusive prediction!
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Running scales

Until now, we have found:
• Parton showers generate the leading collinear logarithms. Angular ordering

(or modern showers) include the soft limit as well.
• Local momentum conservation (formally beyond LL) is included.
• Initial state radiation requires PDF evaluations at dynamical scales (e.g.

Q2, p2⊥ of the branching).
aa

Another important improvement is eval-
uation of αs at dynamical scales αs =
αs(p2⊥).
aa
This is known as Modified Leading Log
Approximation. This resums dominant
universal propagator corrections to all
orders.
aa
After this improvement, many more soft
emissions are produced. The PS must
ensure to avoid the Landau pole (e.g.
p⊥min > ΛQCD).

aa

αs(p
2

⊥1
)

αs(p
2

⊥2
)

aa
aa
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Common event generator frameworks

Parton showers are usually part of event generator frameworks.
Commonly used event generators for LHC physics are

HERWIG++: Improved angular ordered q̃ shower and p⊥-ordered
Catani-Seymour dipole shower.
PYTHIA 8: p⊥-ordered dipole shower based on DGLAP+ME-
corrections, and VINCIA antenna shower as FSR plugin.
SHERPA : p⊥-ordered Catani-Seymour dipole shower, ANTS antenna
shower

All three include QED radiation, EW effects, underlying event, diffractive
modelling, hadronisation, higher-order improvements, hadron decays…

Other public QCD shower programs outside event generators include
ARIADNE, CASCADE, DEDUCTOR, HERWIRI…
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Summary of Part 2: Parton showering

• QCD scattering cross sections factorise in the soft / collinear limits.
• The factorisation is universal, and can be viewed as probabilistic.
• The existence of emission and no-emission probabilities makes

all-order (all-legs) numerical implementations possible.
• Parton showers require an ordering criterion. Hardness and angle are

well-motivated, but not without pitfalls.
• Almost all modern showers are based on antennae or dipoles.
• With the inclusion of soft effects, momentum conservation and

running scales, many (all-order) refinements are added.

…but parton showers only describe soft or collinear emissions!
We need to work harder to describe hard well-separated emissions!

80 / 81



References

Introduction
Good references for event generators in general are:
MCnet report (Phys. Rept. 504 (2011) 145-233)
Many older lectures of MCNet (montecarlonet.org) and CTEQ schools.
Peter Skands’ TASI lectures (arXiv:1207.2389)
Stefan Höche’s TASI lectures (http://slac.stanford.edu/ shoeche/tasi14/ws/tasi.pdf)
Factorisation: Divide and conquer
The book: Collins, Perturbative Quantum Chromodynamics
Collins, Soper, Sterman (Nucl.Phys.B250(1985)199)
Backward evolution
The ISR paper: PLB 175 (1985) 321
Choosing an ordering variable: Is virtuality ordering safe?
Plot taken from CDF (PRD 50 (1994) 5562)
Dipoles / antennae
Ariadne (CPC 71 (1992) 15)
Catani, Seymour (Nucl.Phys.B485(1997)291)
Kosower antennae (Phys.Rev. D57 (1998) 5410)
Nagy, Soper (JHEP 0709 (2007) 114)
Vincia (Phys.Rev. D78 (2008) 014026)
Dinsdale, Ternick, Weinzierl (Phys.Rev. D76 (2007) 094003)
Sherpa CS (JHEP 0803 (2008) 038)
Sherpa ANTS (JHEP 0807 (2008) 040)
Herwig++ CS (JHEP 1101 (2011) 024)
Running scales
Amati et al. (Nucl.Phys. B173 (1980) 429)
Common event generator frameworks
Herwig++ (JHEP 0312 (2003) 045,JHEP 1101 (2011) 024)
Pythia 8 (Comput.Phys.Commun. 178 (2008) 852-867)
Vincia (Phys.Rev. D78 (2008) 014026, Phys.Rev. D84 (2011) 054003, Phys.Lett. B718 (2013) 1345-1350)
Sherpa (JHEP 0803 (2008) 038, JHEP 0807 (2008) 040)
Other showers:
HERWIRI (Phys.Lett.B685(2010)283, Phys.Rev.D81(2010)076008, Phys.Lett.B719(2013)367, arXiv:1305.0023)
DEDUCTOR (JHEP 1406 (2014) 097, JHEP 1406 (2014) 178, JHEP 1406 (2014) 179)


