
1. The spherical evolution model provides a simple relation between the linear
and nonlinear densities. This relation is well approximated by

1 + δ(t) = (1 − D(t) δinit/δc)
−δc .

a/ Use the fact that the nonlinear density is mass/(density × volume) to derive
an approximation for the speed with which the edge of the object changes with
time. Express your answer in terms of f ≡ d lnD/d ln a.

b/ Use this approximation for δ(δinit) to estimate the linear theory overdensity
D(t)δi associated with a ‘void’ (a region whose density is 0.2 times that of the
background). This number is less than −1; why is this not problematic? (In
contrast, δ cannot be less than −1.)

2. It is often stated that (in standard gravity) one may treat the evolution of a
patch embedded in an over/under density as that within an effective cosmology
that has a higher/lower density. However, to do this correctly, one must account
both for the change in density, and for the fact that the Hubble constant of the
effective cosmology is modified (so as to produce a universe of the same age).
Explain how the excursion set approach incorporates this effect correctly. If one
wishes to simulate the evolution of structure in such an environment, should
one: a) change σ8? b) run the simulation for a longer or shorter time? c) do
something else? if so, what? (See Martino & Sheth 2009 for the solution.)

3. In standard gravity, the linear theory growth factor D is a function of time
t but not of wave number k. Use this to argue that an average density patch
of scale R is predicted to remain average density at later times. In modified
gravity models, the linear growth factor is D(k, t). Argue that, as a result,
the density within a patch is predicted to evolve, even if it was average density
initially. Since this is true for any R, should one worry about the definition
of a ‘homogeneous’ universe in such models? If yes, should one require that
physically reasonable models must have D(k, t) independent of k for sufficiently
large scales (small k)?

4. The characteristic mass scale m∗ is set by requiring that the linear theory

σ2(m∗) ≡
∫

dk

k

k3PL(k)

2π2
W 2(kR∗) = δ2

c .

a/ For a power law spectrum PL(k) ∝ kn, how does m∗ evolve with time? (Ex-
press your answer in terms of the linear theory growth factor.)

b/ Since all objects have the same density (∼ 200× the background), how do
the size and velocity dispersions of m∗ evolve with time?

c/ At fixed mass, how do the size and velocity dispersions evolve with time?
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d/ How do these scalings change if the objects have the same density relative
to the critical (rather than the background) density?

5. See Section 4.3 of Cooray & Sheth (2002). How does the discussion change if
the initial power spectrum is of the form P0(k) = A0 k−3/2 exp(−k2R2

∗) rather
than A0 k−3/2, where R∗ is the scale associated with what would have been
m∗ halos if there were no exp(−k2R2

∗) term. In particular, sketch and discuss
how the mass function and the nonlinear power-spectrum of the dark matter
are affected. Discuss why this might provide insight into structure formation in
WDM models.

6. Suppose that the density profile of a halo is ρ(r) ∝ r−ǫ.

a/ Show that the one-halo contribution to the two point correlation function is
ξ ∝ r−γ with γ = 2ǫ − 3.

b/ The stable clustering approximation assumes that nonlinear, virialized ob-
jects no longer participate in the expansion of the background Universe: they
maintain their shapes in physical coordinates, so they shrink in comoving co-
ordinates. Combine this with the assumption that halos are 200× denser than
the background at the time of virialization to show that γ = 3(3 + n)/(5 + n),
if the initial P (k) ∝ kn with n > −3.

7. Suppose that nonlinear stucture formation occurs by rearranging matter on
small scales. Argue that, as a result, halos must have compensated profiles such
as those discussed in Section 4.4 of Cooray & Sheth (2002). Then show that, in
such models, P (k) ∝ k4 on large scales (k ≪ 1). This shows explicitly that local
rearrangements of matter cannot generate P (k) ∝ k: if we see such a scaling,
then it must be primordial! What does this imply for the ‘back-reaction’ of
small-scale rearrangements of matter on the large scale distribution?

8. Assume that the universe is flat with a cosmological constant (ΩΛ = 1−Ωm),
that Ωm = Ωc + Ωb = 0.25 with Ωb = Ωm/6, σ8 = 0.8, and that the (linear
theory) power spectrum of matter fluctuations is given by

P (k) = Akn [(Ωc/Ωm)Tc(k) + (Ωb/Ωm)Tb(k)]2

with n = 1, Tc(k) = exp(−kRH/2), Tb(k) = 2 exp(−k2R2
S) sin(kRB)/(kRB),

and (RH , RS , RB) = (64, 8, 100)h−1Mpc.

a/ What is the physical significance of this value of n, and of these three scales?

b/ It is common to approximate

P (k) ≈ Akn (Ωc/Ωm)2 [Tc(k) + 2(Ωb/Ωc)Tc(k)Tb(k)].

Why is this reasonable?
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c/ We usually express the amplitude A in terms of σ8, which is the square root of
the variance of the linear theory fluctuation field when smoothed with a tophat
filter of radius 8h−1Mpc. What is A if σ8 = 0.8?

d/ Make a plot showing dn/d ln m, the comoving number density of halos, as a
function of lnm, at z = 0 and at z = 1. Assume that

dn

d lnm
=

ρ̄

m

ν exp(−ν2/2)√
2π

[

1 − erfc(Γν/
√

2)

2
+

e−Γ
2ν2/2

√
2πΓν

]

d ln ν

d lnm
,

where ρ̄ is the comoving background density, Γ2 ≈ 1/3 and ν = δc(z)/σ(m).
Discuss why cosmological constraints on, e.g., Ωm and σ8, from halo abundances
are usually derived from measurements at more than one epoch. (You may wish
to make a similar plot, but for a different value of σ8.)

e/ Assume that the density profile around the center of a halo scales as

ρ(r) ∝ (r/rs)
−2

1 + (r/rs)2
.

To set the constant of proportionality, assume that the average density within
the virial radius of a halo is 200× the background density, and that the scale
radius satisfies c = rvir/rs = c∗ (m∗/m)1/6, where m∗ is that mass at which
ν = 1. Make a plot showing the correlation function of the dark matter at z = 0
and z = 1, if P (k) ≈ Ak−3/2 and σ8 = 0.8 at z = 0. Compare this plot with
one in which you assume that the virial radius of a halo is 200 times the critical
density. Discuss the differences at low and high redshift.

f/ Assume that, at z = 1, the mean number of galaxies in a halo is given by
〈N |m〉 = 1+(m/1012h−1M⊙) and that there are no galaxies in halos with mass
less than 1011h−1M⊙. What is the comoving number density of these galaxies?

g/ Make a plot showing the two-point correlation function of galaxies at z = 1,
if, in halos which host a galaxy, the distribution of non-central galaxies is Pois-
son. Comment on why the transition scale between the 1- and 2-halo terms
occurs where it does. What is the large scale bias factor of these galaxies?

h/ Suppose that, between z = 1 and z = 0, galaxies do not merge even
though their host halos do. Show that the large scale bias factor evolves as
(b1 − 1) = (b0 − 1)D(z0)/D(z1) where D is the linear theory growth factor.
How does the two-halo term for these galaxies evolve?

i/ Suppose that the number of subhalos more massive than m in a parent halo of
mass M is N(≥ m|M) = 0.01(M/m). What does this imply about the amount
of mass that must be stripped from a galaxy’s halo after it enters a cluster?
(See discussion in Skibba et al. 2007.)
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