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FROMFEW-TO MANY-BODY
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Mohit Randeria, Nature Phys. 6,561 (2010)

Mohit Randeria, Physics5, 10 (2012)
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Cooperconsidered a two-body problem with the restriction
introduced by the Pauli principle

1
ENQEF—EFL‘K[)( ) a— 0~
kpa

Concerns two spin components. In cold atoms there can be more than
two. Either use several hyperfine states or use a mixture

Is there an equivalent Cooper-like problem for three particles?
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EFIMOV EFFECT MUST BE CONSIDERED

Vitaly Efimov 1970

Identical bosons in 3D have an infinite ladder of three-body bound
states when there is a two-body bound state atzero energy
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Experimental observation —Grimm group. 133-Cesium Nature 440, 315 (2006).
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External confinement

Non-universallity

Finite temperature

Condensed Bose ordegenerate Fermi systems
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REDUCTIONISM

Consider a single Fermi sea
and two other particles

Pauli principle is simpler to
handle in momentum
space

Turns out the two-body
physics is the same as for
the Cooper pair problem
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COOPER PAIR INSPIRATION
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Momentum-space three-body equations

Skornyakov and Ter-Martirosian, Zh.Eksp. Teor. Fiz. 31, 775 (1956).

A P, —P0 a.qo + E
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Bound states: B{pJ = - dqf {q [I‘L {q p)— K \q, FJreg,}] . ] ‘ S = :
TAB O ~laap + [ mipe® - TRem —i0F

Needsregularization! Use method of Danilov, Zh.Eksp. Teor. Fiz. 40,498
(1961). Nice recent discuss by Pricoupenko, Phys. Rev. A82,043633 (2010)
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WHAT ABOUT EFIMOV SCALING?

We find many-body Efimov scaling!

Efimov scaling
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k*=6.9%1073 a,! ke=0.03k* n~10'2 cm?3
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A REALISTIC SYSTEM
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OBSERVABILITY?

» Densities have been too small or measurements
have notbeen around the second trimer
threshold point.

> Trimer moves outside threshold regime D'Incao ef
al.PRL93,123201 (2004).

> Perhapsnot a problem Wang and Esry New. J.

Phys. 13, 035025 (2011).

>Dimer regime isharder since lowest Efimov state

naslarge binding energy.

TALES OF QUANTUM MECHANICS 10.0CTOBER2014
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Bound states are rarely alone in the world when we probe

them
Separation of scales usually comes to the

rescue

Cold atomic three-body results are largely consistent with no background
effect

HOW EVER: Background density has energy scale thatis slightly smaller
than binding energy. Effects should be addressable in current experiments!

Important lesson: Cooper pair problem
No bound states in vacuum, but bound states with Fermi sea background!

Need to generalize the Cooper problem to three (or more)-body states!

N.G.Nygaard and N.T. Zinner, New J. Phys. 16,023026 (2014)



More Fermi seas will not change the results qualitatively
Niemannand Hammer Phys. Rev. A 86,013628 (2012).

Fluctuationsare an important outstanding question!

Scattering states and recombination in a Fermi sea

Mixed systems of bosonic and fermionic atoms

Superfluid or condensed states?

Can many-body effects provide a three-body parameter?
Canitbe universal?
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TRIMERS IN CONDENSATES

Impurities Born-Oppenheimer potential
\ \ with no condensate
R O2h2
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Two impuritiesin BEC of light bosons—
BEC isweakly interacting —¢ islarge

Born-Oppenheimer resultis strongly
modified by presence of condensate
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NTZ, EPL101 (2013) 60009




No Efimov effectin 1D or 2D

Zero-range limit provides 2 bound statesin 2D and one
bound state in 1D

Realistic cold gases have traps, must be taken into account through
oscillator potentials. This complicates matters

Pauli blocking on three-body states in 2D might be similarto 3D, but
1D will be very different

An interpolation scheme would be extremely nice!

M.T. Yamashita et al,arXivi1404.7002 (2014).
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CONDENSED-MATTER
APPLICATIONS

» Multi-band superconductors

» Surfaces and wires —low-dimensional bound
state problems

» Excitons and polarons

> Trion states —carbon nanotubes

» Surface states on non-trivial insulators

TALES OF QUANTUM MECHANICS 10.0CTOBER2014
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THREE ANGLES OF APPROACH

> Characterize low-energy bound states in
different geometries, dimensionalities, and with
both short- and long-range interactions.

> Apply many-body effects in eithera top-down
or a bottom-up fashion.

> Merge findings to improve formalism that
accounts for both many- and few-body
correlations in a general setting.

TALES OF QUANTUM MECHANICS 10.0CTOBER2014
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A top-down scheme

Advantages:

Green’s function approach is very general

Can work with both fermions and with bosons
Canaccommodate degenerate backgrounds
Can be generalized to finite temperature ‘easily’

Disadvantages:

Long-range interactions are difficult to handle
Self-energy term is complicated

Requires truncation atlow order



Bottom-up approach

Use exactdiagonalization, stochastic methods, and other numerical schemes

Advantages:

Includes all correlations within model space

Can work both short- and long-range interactions
Easy access to full N-body wave function

Disadvantages:

Can notbe extended to large systems
Truncation implies effective interaction must be
used
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SYNTHESIZE FORMALISM

> Top-down and bottom-up approaches
complementeach other.

> Results will help pin down precise varitional wave
functions for general systemes.

» Ultimate goal is to predict the low-energy

pehavior of a quantum system based on

knowledge of its few-body structure.

» Develop a classification scheme for quantum

structures.

TALES OF QUANTUM MECHANICS 10.0CTOBER2014
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Particle physics

Quark bound states —strongly-interacting systems

Quark matter —dense stars

Possibility of superfluid behavior —polarized superfluids
Bound statesin a medium?

Nuclear physics
Nuclear physics methods and inspiration isimportant
Nuclear matter —neutron matter —neutron stars

An (almost) universal interaction type of problem

Renormalization group nuclear studies are interesting
Can one turn it around to integrate out /ow-momentum degrees of freedom?
That would be great for handling Pauli blocking effectsfor instance



Cold atoms are nice, but ‘difficult’ to interact with for technological purposes

Technology relies mostly on solid-state devices, i.e. electronics

Simulation and quantum manipulation with cold atoms is very powerful

To harness the power we need cold atom-solid-state interfaces!

Atoms on a chip, atoms close to wires and nanotubes
Atoms trapped around optical fibers
Microstructured potentials thatcan beat optical wavelength limit

Hybrid quantum systems
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