
- •Is the physics behind the masses of neutrinos different from that behind the masses of all other known particles?
 - Are neutrinos their own antiparticles?

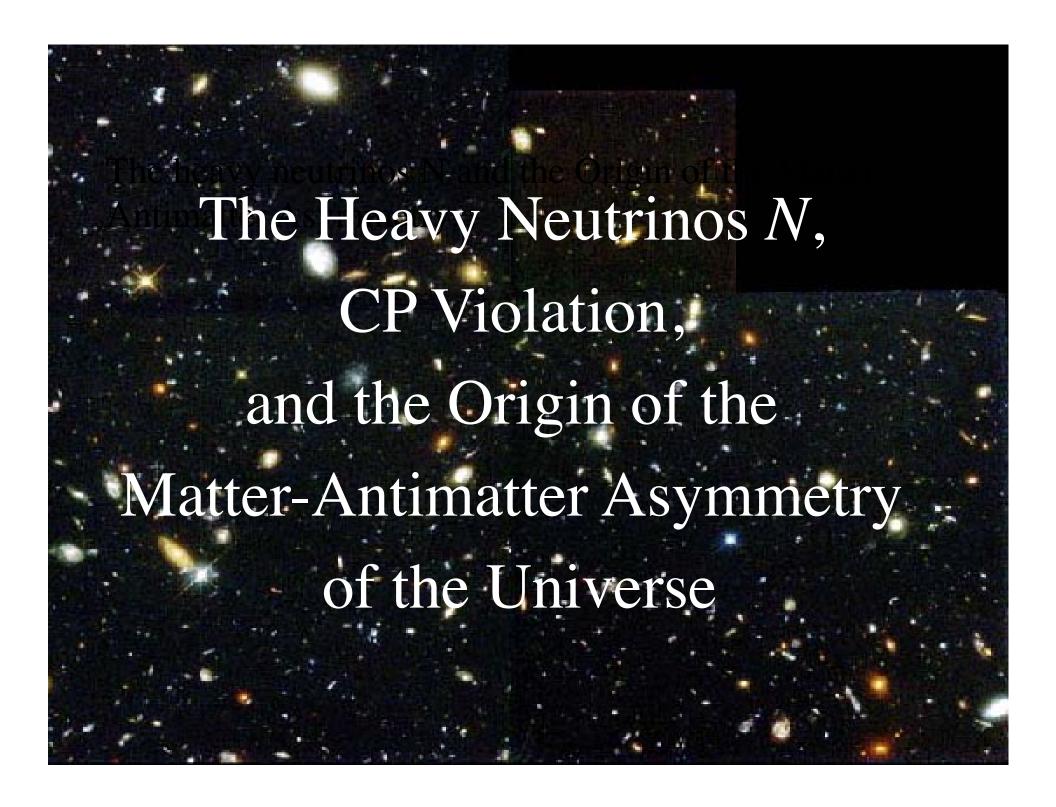
•Is the (mass)² spectrum like \equiv or \equiv ?

•What is the absolute scale of neutrino mass?

•Do neutrino interactions violate CP?


Is
$$P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}) \neq P(\nu_{\alpha} \rightarrow \nu_{\beta})$$
?

- •Is CP violation involving neutrinos the key to understanding the matter antimatter asymmetry of the universe?
- Are we descended from heavy neutrinos?


•What can neutrinos and the universe tell us about one another?

• Do neutrinos have Non-Standard-Model interactions?

- Do neutrinos break the rules?
 - Violation of Lorentz invariance?
 - Violation of CPT invariance?
 - Departures from quantum mechanics?

The Cosmic Puzzle

Today: $B = \#(Baryons) - \#(Antibaryons) \neq 0$.

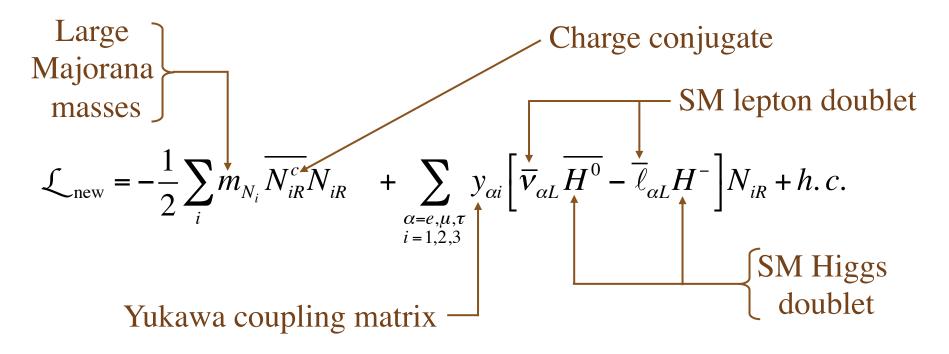
Standard cosmology: Right after the Big Bang, B = 0.

Also,
$$L = \#(\text{Leptons}) - \#(\text{Antileptons}) = 0$$
.

How did
$$B = 0$$
 $\Rightarrow B \neq 0$?

Sakharov:
$$B = 0$$
 \Rightarrow $B \neq 0$ requires \mathcal{L} and $\mathcal{L}P$.

It is easy to achieve, but the required degree and kind of It is harder.


The $\ensuremath{\mathcal{L}}$ in the quark mixing matrix, seen in B and K decays, leads to much too small a $B - \overline{B}$ asymmetry.

If *quark* \nearrow cannot generate the observed $B - \overline{B}$ asymmetry, can some scenario involving *leptons* do it?

The candidate scenario: **Leptogenesis**, a very natural consequence of the See-Saw picture.

(Fukugita, Yanagida)

The straightforward (type-I) See-Saw model adds to the SM 3 heavy neutrinos N_i , with —

The Yukawa interaction causes the decays —

$$N \to \ell^- + H^+, \ N \to \ell^+ + H^-, \ \left(\overline{N} = N, \text{ so the decays in each line}\right)$$

 $N \to \nu + H^0, \ N \to \overline{\nu} + \overline{H^0}.$ ($\overline{N} = N, \text{ so the decays in each line}$)

The N_i are heavy, but they would have been made during the *hot* Big Bang.

They would then have quickly decayed via the decay modes we just identified.

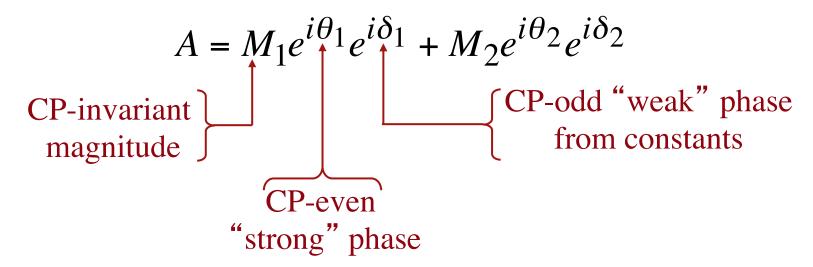
Phases in the Yukawa coupling matrix y would have led to \mathcal{L} and \mathcal{L} effects.

In particular, such phases would have led to —

and
$$\Gamma(N \to \ell^- + H^+) \neq \Gamma(N \to \ell^+ + H^-)$$

$$\Gamma(N \to \nu + H^0) \neq \Gamma(N \to \overline{\nu} + \overline{H^0})$$

$$\Gamma(N \to \nu + H^0) \neq \Gamma(N \to \overline{\nu} + \overline{H^0})$$


How Phases Lead To **CP Non-Invariance** 12

Palways comes from **phases**.

Therefore, Palways requires an *interference* between (at least) two amplitudes.

For example, an interference between two Feynman diagrams.

Let us consider how a CP-violating rate difference between two CP-mirror-image processes, such as $B^+ \to D^0 K^+$ and $B^- \to \overline{D}^0 K^-$, arises. Suppose some process P has the amplitude —

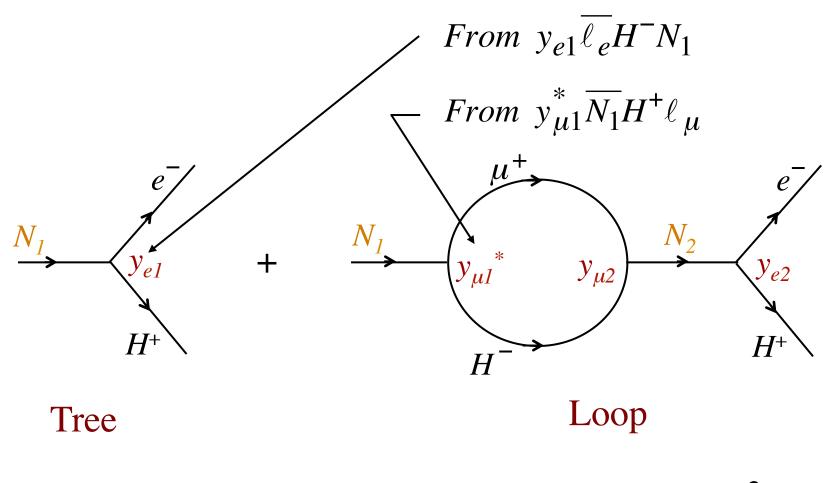
Then the CP-mirror-image process \overline{P} has the amplitude —

$$\overline{A} = M_1 e^{i\theta_1} e^{-i\delta_1} + M_2 e^{i\theta_2} e^{-i\delta_2}$$

Then the rates for \overline{P} and P differ by —

$$\overline{\Gamma} - \Gamma = |\overline{A}|^2 - |A|^2 = 4M_1M_2\sin(\theta_1 - \theta_2)\sin(\delta_1 - \delta_2)$$

$$\overline{\Gamma} - \Gamma = |\overline{A}|^2 - |A|^2 = 4M_1M_2\sin(\theta_1 - \theta_2)\sin(\delta_1 - \delta_2)$$


A CP-violating rate difference requires 3 ingredients:

- Two interfering amplitudes
- •These two amplitudes must have different CP-even phases
- •These two amplitudes must have different CP-odd phases

How Do St Inequalities Between N Decay Rates Come About?

Let us look at an example.

This example illustrates that **P** in **any decay** always involves amplitudes **beyond** those of lowest order in the Hamiltonian.

$$\Gamma(N_1 \to e^- + H^+) = \left| y_{e1} K_{\text{Tree}} + y_{\mu 1}^* y_{\mu 2} y_{e2} K_{\text{Loop}} \right|^2$$
Kinematical factors

$$\Gamma(N_1 \rightarrow e^- + H^+) = \left| y_{e1} K_{\text{Tree}} + y_{\mu 1}^* y_{\mu 2} y_{e2} K_{\text{Loop}} \right|^2$$

When we go to the CP-mirror-image decay, $N_1 \rightarrow e^+ + H^-$, all the coupling constants get complex conjugated, but the kinematical factors do not change.

$$\Gamma(N_1 \to e^+ + H^-) = \left| y_{e1}^* K_{\text{Tree}} + y_{\mu 1} y_{\mu 2}^* y_{e2}^* K_{\text{Loop}} \right|^2$$

All three ingredients needed for LF are present.

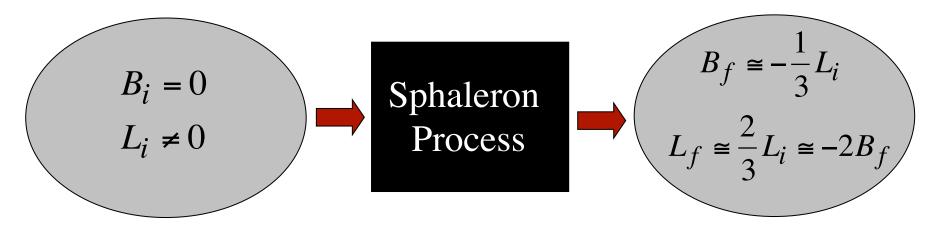
$$\Gamma(N_1 \rightarrow e^- + H^+) - \Gamma(N_1 \rightarrow e^+ + H^-)$$

$$= 4 \operatorname{Im}(y_{e1}^* y_{\mu 1}^* y_{e2} y_{\mu 2}) \operatorname{Im}(K_{\operatorname{Tree}} K_{\operatorname{Loop}}^*)$$

The inequalities —

$$\Gamma\left(N \to \ell^{-} + H^{+}\right) \neq \Gamma\left(N \to \ell^{+} + H^{-}\right)$$

and

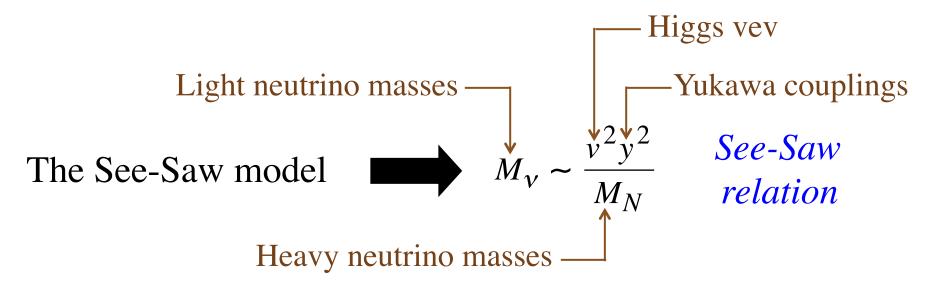

$$\Gamma\left(N \to v + H^0\right) \neq \Gamma\left(N \to \overline{v} + \overline{H^0}\right)$$

violate CP in the leptonic sector, and violate lepton number L.

Starting with a universe with L = 0, these decays would have produced one with $L \neq 0$.

Next —

The Standard-Model *Sphaleron* process, which does not conserve Baryon Number B, or Lepton Number L, but does conserve B - L, acts.



Initial state from N decays

Final state

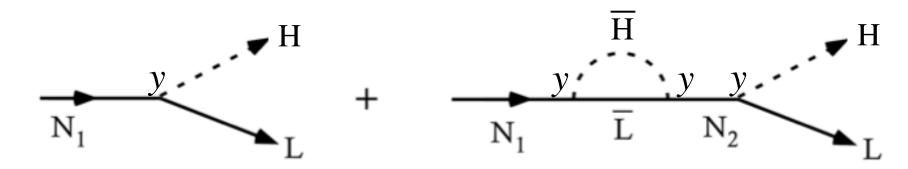
There is now a nonzero Baryon Number \mathcal{B} . Eventually, there are baryons, but \sim no antibaryons. Reasonable couplings y give the observed value of \mathcal{B} .

What N masses are required?

The light neutrino masses $M_v \sim 0.1$ eV.

$$v = 174 \text{ GeV}.$$

 y^2 is constrained by the observed Baryon Number per unit volume.


The CP-violating asymmetry between the *N* decay rates,

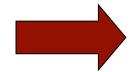
$$v \text{ or } \ell^{-} \longrightarrow H^{0} \text{ or } H^{+}$$

$$\varepsilon_{CP} = \frac{\Gamma(N \to LH) - \Gamma(N \to \overline{L}\overline{H})}{\Gamma(N \to LH) + \Gamma(N \to \overline{L}\overline{H})},$$

which produces a nonzero Lepton Number,

arises from interference between diagrams such as —

Note
$$\varepsilon_{CP}$$
 is $\propto (y^4/y^2) = y^2$.


Getting the observed Baryon Number requires $y^2 \sim 10^{-5}$.

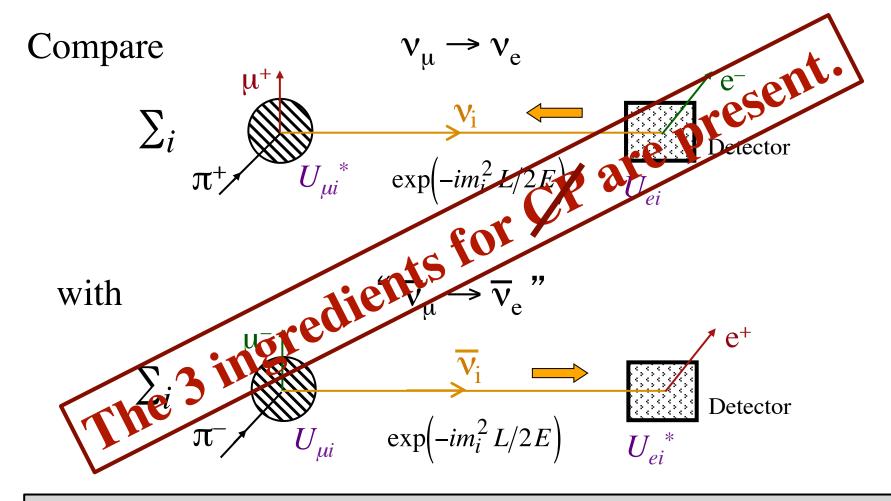
Then the see-saw relation —

$$M_{\nu} \sim \frac{v^2 y^2}{M_N}$$

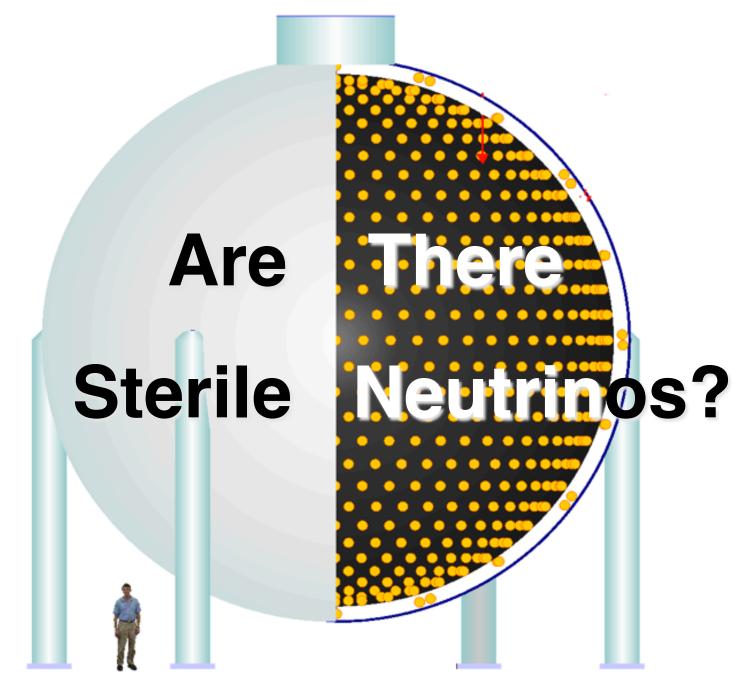
The heavy neutrinos N cannot be produced at the LHC.

The possibility of Leptogenesis must be explored through experiments with the light neutrinos v.

Generically, leptogenesis and light-neutrino LY imply each other.


They both come from phases in the Yukawa coupling matrix y.

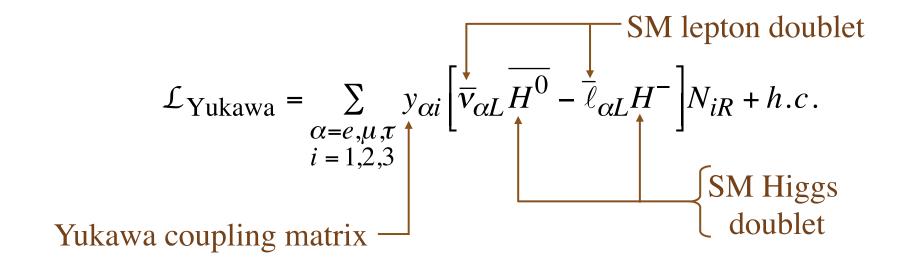
Looking the other way: If the oscillation CP phase δ proves to be large, it could explain almost the entire Baryon – Antibaryon asymmetry by itself.


(Pascoli, Petcov, Riotto)

Hosting international experiments to look for EY in light-neutrino oscillation is being contemplated in the US and in Japan.

To confirm LP in oscillation, compare two CP-mirror-image oscillations.

Do these two processes have different rates?



900001

Sterile Neutrino

One that does not couple to the SM W or Z boson

A "sterile" neutrino may well couple to some non-SM particles. These particles could perhaps be found at LHC or elsewhere. The heavy See-Saw partner neutrinos N_i interact with the rest of the world only through the Yukawa coupling —

The N_i do not couple to the SM W or Z boson.

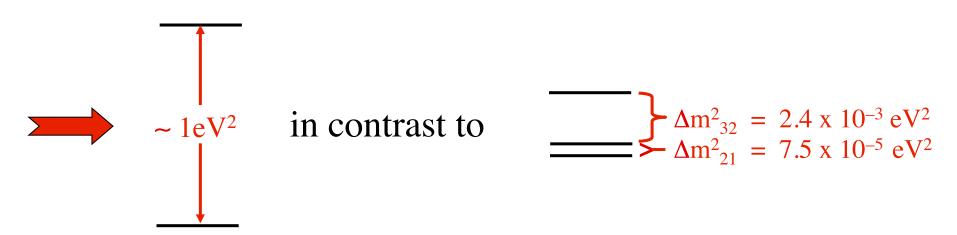
 \therefore The N_i are sterile neutrinos.

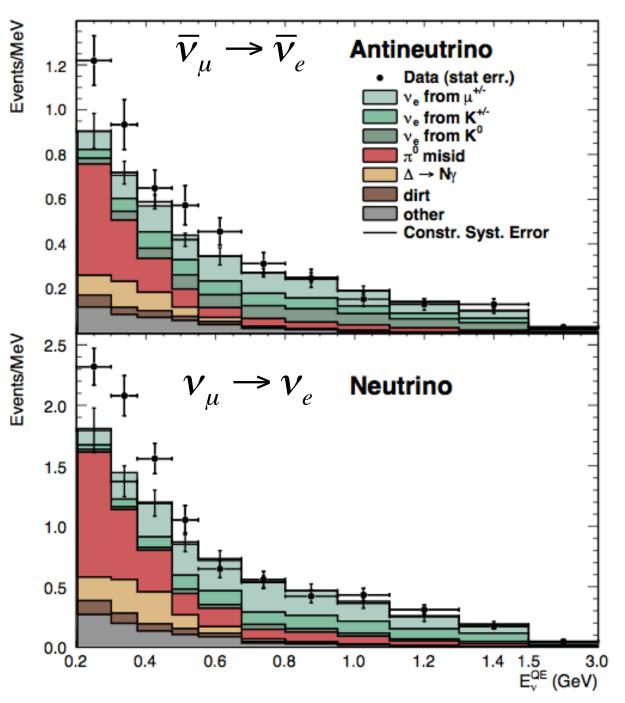
Are there also *light* sterile neutrinos with masses ~ 1 eV?

The Hints of eV-Mass Sterile Neutrinos

Probability (Oscillation)
$$\propto \sin^2 \left[1.27 \Delta m^2 (\text{eV}^2) \frac{L(\text{m})}{E(\text{MeV})} \right]$$

There are several hints of oscillation with $L(m)/E(MeV) \sim 1$:

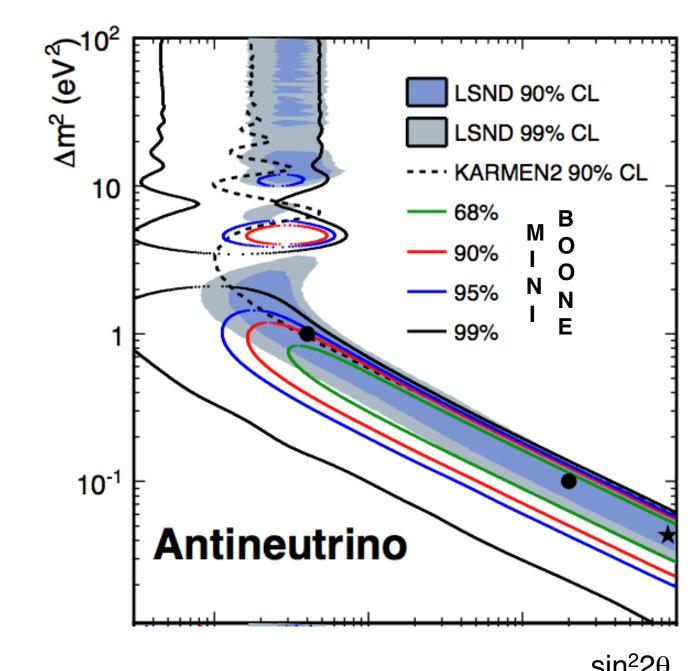

These
$$a \Delta m^2 \sim 1 \text{ eV}^2$$
, bigger than the two established splittings.


Then
$$\frac{\Gamma(Z \to v\bar{v})|_{\text{Exp}}}{\Gamma(Z \to \text{One } v\bar{v} \text{ Flavor})|_{\text{SM}}} = 2.984 \pm 0.009$$

The Hint From LSND

The LSND experiment at Los Alamos reported a rapid $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillation at $L(m)/E(MeV) \sim 1$.

$$P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) = \sin^{2} 2\theta \sin^{2} \left[1.27\Delta m^{2} \left(eV^{2} \right) \frac{L(m)}{E(MeV)} \right] \sim 0.26\%$$
From μ^{+} decay at rest; E ~ 30 MeV



The Hint From MiniBooNE

78.4 ± 28.5 excess events

162.0 ± 47.8 excess events

MiniBooNE and LSND allowed regions overlap.

> Two-level mass spectrum assumed.

 $\sin^2 2\theta$

From 1303.2588

ICARUS and OPERA, at $L/E \approx 35$ km/GeV, have not seen $\nu_{\mu} \rightarrow \nu_{e}$. This disfavors somewhat a $\nu_{\mu} \rightarrow \nu_{e}$ interpretation of the low-energy MiniBooNE ν_{e} excess, but it does not exclude it.

ICARUS and OPERA do not constrain the $\overline{V}_{\mu} \rightarrow \overline{V}_{e}$ interpretation of the low-energy MiniBooNE \overline{V}_{e} excess.

A Hint From Reactors

The measured \overline{v}_e flux at (10 - 100)m from reactor cores is $\sim 6\%$ below the theoretically expected value.

Are the \overline{v}_e disappearing by oscillating into another flavor?

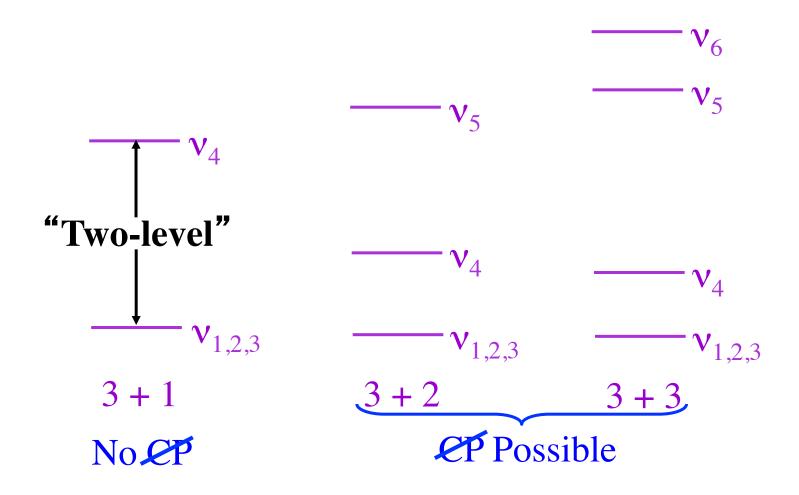
The \overline{v}_e energy is ~ 3 MeV, so at, say, 15m,

$$L(m)/E(MeV) = L(km)/E(GeV) \sim 5$$
.

If the \overline{v}_e are oscillating away,

$$\sin^2\left[1.27\Delta m^2(eV^2)\frac{L(km)}{E(GeV)}\right] \sim 1 \quad \Longrightarrow \quad \Delta m^2(eV^2) \sim 1.$$

But the uncertainty in the initial flux is as big as the effect. (Hayes, et al., Huber)


The Hint From 51Cr and 37Ar Sources

These radioactive sources were used to test the gallium solar v_e detectors GALLEX and SAGE.

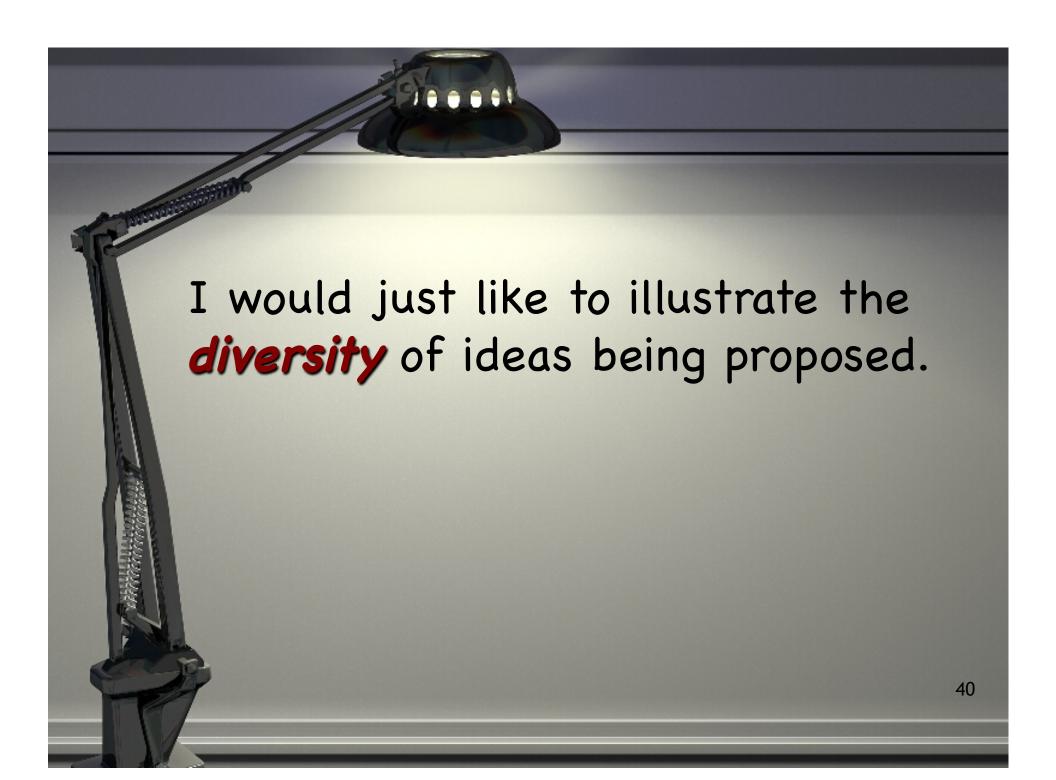
Measured event rate
$$\approx (75-85)\%$$

Expected event rate (Giunti, Laveder, Li, Long)

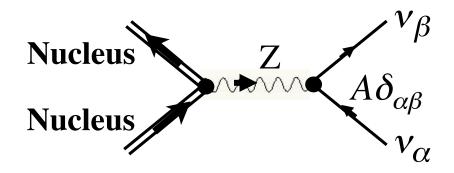
Rapid disappearance of v_e flux due to oscillation with a large Δm^2 ??

The Spectra That Are Tried

Short-Baseline experiments have an L/E too small to see the splitting between v_1, v_2 , and v_3 .


The Mixing Matrix When There Are Extra Neutrinos

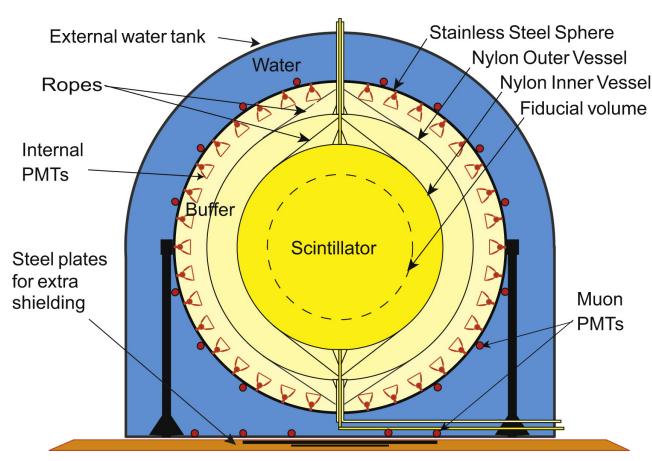
It's bigger.


With 3 + N neutrino mass eigenstates, there can be 3 + N lepton flavors, N of them sterile. For example, for N = 3:

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s_1} \\ \nu_{s_2} \\ \nu_{s_3} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & U_{e5} & U_{e6} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & U_{\mu 5} & U_{\mu 6} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & U_{\tau 5} & U_{\tau 6} \\ U_{s_1 1} & U_{s_1 2} & U_{s_1 3} & U_{s_1 4} & U_{s_1 5} & U_{s_1 6} \\ U_{s_2 1} & U_{s_2 2} & U_{s_2 3} & U_{s_2 4} & U_{s_2 5} & U_{s_3 6} \\ U_{s_3 1} & U_{s_3 2} & U_{s_3 3} & U_{s_3 4} & U_{s_3 5} & U_{s_3 6} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \nu_5 \\ \nu_6 \end{pmatrix}$$

Ideas For Future Experiments

Coherent Neutral-Current Scattering

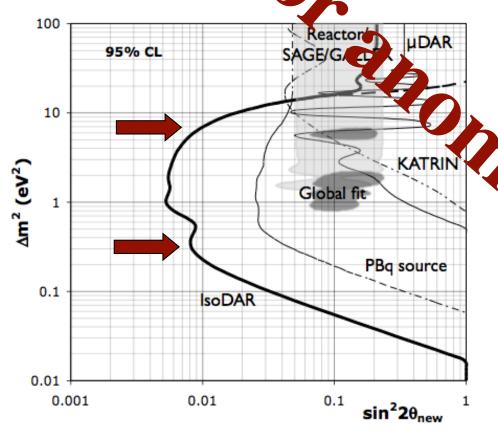

This process has the same rate for any incoming *active* neutrino, v_e , v_u , or v_τ .

But the Z does not couple to $v_{sterile}$.

If $v_{active} \rightarrow v_{sterile}$, the coherent scattering event rate will oscillate with it.

A Radioactive Source Near a Detector (SOX)

Borexino Detector



Place a 51 Cr v_e source or 144 Ce- 144 Pr \overline{v}_e source near or in Borexino.

Use a syclotron to make the ${}^{8}\text{Li}$, a $\overline{\nu}_{e}$ emitter.

Use a keep-scale scintillator detector to detect the \overline{v}_e via $\overline{v}_e p \rightarrow e^+ n$.

Sensitivity to $\overline{v_e}$ disappearance

(the reactor anomaly)

ın a 5-year run

Multi-Detector Short Baseline Experiments At Accelerators

Compare event rates in several detectors, at different distances from the source at Fermilab.

This is a good way to deal with flux uncertainties, so long as the neutrinos have not already oscillated before reaching the near detector.

Good huck!