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Open ���
Questions	



Looking to the Future 	
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• What is the absolute scale ���
of neutrino mass? 	



• Is the physics behind the masses of neutrinos ���
different from that behind the masses ���

of all other known particles?	


• Are neutrinos their own antiparticles?	



• Is the (mass)2 spectrum like       or       ?	





• Do neutrino interactions ���
violate CP? ���

Is P(να → νβ) ≠ P(να → νβ) ?	
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• Is CP violation involving neutrinos ���
the key to understanding the matter – 
antimatter asymmetry of the universe?	



• Are we descended from heavy neutrinos?	
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• Are there non-weakly-interacting ���
“sterile” neutrinos?	



• Are there more than 3 mass eigenstates?	



• Do neutrinos have Non-Standard-
Model interactions?	



• What can neutrinos and the universe ���
tell us about one another?	
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• Do neutrinos break the rules?	



• Violation of Lorentz invariance?	


• Violation of CPT invariance?	


• Departures from quantum mechanics?	
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The heavy neutrinos N and the Origin of the Matter-
Antimatter Asymmetry.	

The Heavy Neutrinos N, ���

CP Violation, ���
and the Origin of the ���

Matter-Antimatter Asymmetry 
of the Universe	





8	



Today: B ≡ #(Baryons) – #(Antibaryons) ≠ 0.	



Standard cosmology: Right after the Big Bang, B = 0. 	



  How did B = 0             B ≠ 0 ?



The Cosmic Puzzle"

Also, L ≡ #(Leptons) – #(Antileptons) = 0. 	



Sakharov: B = 0             B ≠ 0 requires C and CP. 	





9	



The CP in the quark mixing matrix, seen in B and K decays, 
leads to much too small a B – B asymmetry.	



The candidate scenario: Leptogenesis, a very 
natural consequence of the See-Saw picture.	



(Fukugita, Yanagida)	



If quark CP cannot generate the observed ���
B – B asymmetry, can some scenario ���

involving leptons do it?	



C is easy to achieve, but the required 
degree and kind of CP is harder.	
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The straightforward (type-I) See-Saw model ���
adds to the SM 3 heavy neutrinos Ni, with —	



L new = −
1
2

mNi
NiR

c NiR +
i
∑ yαi ναL H

0 − ℓαLH
−#

$
%
&NiR

α=e,µ,τ
i =1,2,3

∑ + h. c.

SM Higgs ���
doublet	



SM lepton doublet	



Large 
Majorana 

masses	



Yukawa coupling matrix	



Charge conjugate	



The Yukawa interaction causes the decays — 	



N→ ℓ− +H +

N→ν +H 0 N→ν +H 0

N→ ℓ+ +H −,	

 ,	



,	

 .	


N = N, so the decays in each line 

are C and CP mirror images.	

(	

 (	
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Phases in the Yukawa coupling matrix y ���
would have led to C and CP effects.	



In particular, such phases would have led to —	



The Ni are heavy, but they would have been made 
during the hot Big Bang.	



They would then have quickly decayed ���
via the decay modes we just identified. 	



  

€ 

Γ N →ℓ− +H+( ) ≠ Γ N →ℓ+ +H−( )

€ 

Γ N →ν +H0( ) ≠ Γ N →ν +H0& 
' 
( ) 

* 
+ 

and	

 C and CP	
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How Phases Lead To 
CP Non-Invariance 
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For example, an interference between ���
two Feynman diagrams.	



CP always comes from phases.	



Therefore, CP always requires an interference 
between (at least) two amplitudes.	



Let us consider how a CP-violating rate difference    
between two CP-mirror-image processes, such as ���

                    and                    , arises.	



€ 

B+ →D0K+

€ 

B− →D 0K−
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Suppose some process P has the amplitude —	



€ 

A = M1e
iθ1e−iδ1 + M2e

iθ2e−iδ2

€ 

A = M1e
iθ1eiδ1 + M2e

iθ2eiδ2

CP-even ���
“strong” phase	



CP-invariant ���
magnitude	



Then the CP-mirror-image process P ���
has the amplitude —	



€ 

Γ −Γ = A 2 − A 2 = 4M1M2 sin θ1 −θ2( )sin δ1 −δ2( )

Then the rates for P and P differ by —	



CP-odd “weak” phase ���
from constants 	
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A CP-violating rate difference  
requires 3 ingredients: 

• Two interfering amplitudes	


• These two amplitudes must have different CP-even phases	


• These two amplitudes must have different CP-odd phases	



€ 

Γ −Γ = A 2 − A 2 = 4M1M2 sin θ1 −θ2( )sin δ1 −δ2( )
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How Do CP Inequalities Between 
N Decay Rates Come About?"

Let us look at an example.	



This example illustrates that CP in any decay ���
always involves amplitudes beyond those ���

of lowest order in the Hamiltonian. 	
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N1	



H+	



ye1	



e	



yµ1
*	

 yµ2	



N1	

 N2	



H+	



ye2	

+	



H	



+	

µ	

e	



  

€ 

From ye1ℓeH
−N1

  

€ 

From yµ1
* N1H

+ℓµ

Tree	

 Loop	



€ 

Γ N1→e− +H+( ) = ye1KTree + yµ1
* yµ2ye2KLoop

2

Kinematical factors	
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€ 

Γ N1→e− +H+( ) = ye1KTree + yµ1
* yµ2ye2KLoop

2

When we go to the CP-mirror-image decay,                      ,  ���
all the coupling constants get complex conjugated, but the 
kinematical factors do not change.	



€ 

N1→e+ +H−

€ 

Γ N1→e+ +H−( ) = ye1
* KTree + yµ1yµ2

* ye2
* KLoop

2

All three ingredients needed for CP are present. 	



€ 

Γ N1→e− +H+( ) −Γ N1→e+ +H−( )
= 4 Im ye1

* yµ1
* ye2yµ2( )Im KTreeKLoop

*( )



19	



  

€ 

Γ N →ℓ− +H+( ) ≠ Γ N →ℓ+ +H−( )

€ 

Γ N →ν +H0( ) ≠ Γ N →ν +H0& 
' 
( ) 

* 
+ 

and	



Starting with a universe with L = 0, ���
these decays would have produced one with L ≠ 0.	



violate CP in the leptonic sector, ���
and violate lepton number L.	



The inequalities —	
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There is now a nonzero Baryon Number B. 	



Next —	


The Standard-Model Sphaleron process, ���

which does not conserve Baryon Number B, ���
or Lepton Number L, but does conserve B – L, acts.	



€ 

Bi = 0
Li ≠ 0

€ 

Bf ≅ −
1
3
Li

L f ≅
2
3
Li ≅ −2Bf

Sphaleron ���
Process	



Initial state ���
from N decays	



Final state	



Eventually, there are baryons, but ∼ no antibaryons.	


Reasonable couplings y give the observed value of B.	
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What N masses are required?	



The light neutrino masses Mν ∼ 0.1 eV. 	



y2 is constrained by the observed ���
Baryon Number per unit volume.	



v = 174 GeV.	



€ 

Mν
v2y2

MN
∼	

The See-Saw model	



Light neutrino masses	



Heavy neutrino masses	



Higgs vev	



Yukawa couplings	



See-Saw 
relation	
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y	

y	

 y	

 y	


H HH	



The CP-violating asymmetry between the N decay rates,	



€ 

εCP ≡
Γ N →LH( ) −Γ N →L H ( )
Γ N →LH( ) +Γ N →L H ( )

ν or ℓ–	

 H0 or H+	



,	



arises from interference between diagrams such as —  	



Note εCP is ∝ (y4/y2) = y2. 	



Getting the observed Baryon Number requires y2
 ∼ 10–5. 	



which produces a nonzero Lepton Number, 	
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Then the see-saw relation —	



The heavy neutrinos N cannot ���
be produced at the LHC.  	



€ 

Mν
v2y2

MN
∼	



MN ∼ 10(9 – 10) GeV. 	



The possibility of Leptogenesis must be explored 
through experiments with the light neutrinos ν. 	





24 

Generically, leptogenesis and ���
light-neutrino CP imply each other. 	



They both come from phases in the 
Yukawa coupling matrix y. 	



Looking the other way: If the oscillation 
CP phase δ proves to be large, it could 

explain almost the entire Baryon – 
Antibaryon asymmetry by itself. 	



(Pascoli, Petcov, Riotto)	
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Hosting international experiments to look 
for CP in light-neutrino oscillation ���

 is being contemplated in ���
 the US and in Japan.	





e+	


“ νµ → νe ”	



ν	


π–	



Detector	



e–	

µ+	


νµ → νe	



π+	



ν	



µ–	



Compare	



with	



Uµi
*	



Uµi	

 Uei
*	



Uei	



€ 

i∑

€ 

i∑

€ 

exp −imi
2 L 2E( )

€ 

exp −imi
2 L 2E( )
i	



i	



To confirm CP in oscillation, compare  
two CP-mirror-image oscillations. 

Do these two processes have different rates?  
26	



Anti-Detector	

Detector	
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Are    There!

Sterile   Neutrinos?!
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Sterile Neutrino ���
One that does not couple ���
to the SM W or Z boson	



A “sterile” neutrino may well couple 
to some non-SM particles. These 

particles could perhaps be found at 
LHC or elsewhere. 
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The heavy See-Saw partner neutrinos Ni interact with the 
rest of the world only through the Yukawa coupling —	



    

€ 

LYukawa = yαi ν αLH
0 − ℓ αLH

−% 
& ' 

( 
) * NiRα=e,µ,τ

i = 1,2,3

∑ + h.c.

SM Higgs ���
doublet	



SM lepton doublet	



Yukawa coupling matrix	



The Ni do not couple to the SM W or Z boson.	



∴ The Ni are sterile neutrinos.	



Are there also light sterile neutrinos with masses ∼ 1 eV?	





The Hints of eV-Mass Sterile Neutrinos"
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Probability Oscillation( )∝ sin2 1.27Δm2 eV2( ) L m( )
E MeV( )

#

$
%
%

&

'
(
(

At least 1 sterile  neutrino	



Γ Z→νν( ) Exp
Γ Z→One νν Flavor( ) SM

= 2.984± 0.009Then	



At least 4 mass eigenstates   	



At least 4 flavors	



These            a Δm2 ∼ 1 eV2, bigger ���
 than the two established splittings.   	



There are several hints of oscillation with L(m)/E(MeV) ∼ 1: 	



∼ 1eV2	
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The Hint From LSND"

∼ 1eV2	

 in contrast to	


>	

 Δm2

21  =  7.5 x 10–5  eV2	


Δm2

32  =  2.4 x 10–3 eV2	



The LSND experiment at Los Alamos reported a ���
rapid                oscillation at L(m)/E(MeV) ∼ 1. 	



€ 

ν µ →ν e

P νµ → νe( ) = sin2 2θ sin2 1.27Δm2 eV 2( ) L m( )
E MeV( )

#

$
%
%

&

'
(
(
∼ 0.26%	



From µ+ decay at rest; E ∼ 30 MeV 	
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The Hint From 
MiniBooNE"

νµ →νe

νµ →νe

78.4 ± 28.5 
excess events	



162.0 ± 47.8 
excess events 	
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M
I
N
I!

B
O
O
N
E

sin22θ!

MiniBooNE 
and LSND 

allowed 
regions 
overlap.	



Two-level 
mass 

spectrum 
assumed.	



From 1303.2588	
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ICARUS and OPERA, at L/E ≈ 35 km/GeV, have not 
seen                . This disfavors somewhat a                 ���
interpretation of the low-energy MiniBooNE νe excess, 
but it does not exclude it.                	



νµ →νe νµ →νe

ICARUS and OPERA do not constrain the                  
interpretation of the low-energy MiniBooNE      excess. 	



νµ →νe
νe
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A Hint From Reactors"
The measured νe flux at (10 – 100)m from reactor cores ���

is ∼ 6% below the theoretically expected value.	



L(m)/E(MeV) = L(km)/E(GeV) ∼ 5.	



If the νe are oscillating away,                                               	



€ 

sin2 1.27Δm2 eV 2( ) L km( )
E GeV( )

# 

$ 
% 

& 

' 
( ∼ 1	



€ 

Δm2 eV 2( ) ∼ 1	

.	



Are the νe disappearing by oscillating into another flavor?	



The νe energy is ∼ 3 MeV, so at, say, 15m, 	



But the uncertainty in the initial flux is as big as the effect.	


(Hayes, et al., Huber)	
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The Hint From 51Cr and 37Ar Sources"

These radioactive sources were used to test the ���
gallium solar νe detectors GALLEX and SAGE. 	



Measured event rate
Expected event rate

≈ 75 – 85( )%

(Giunti, Laveder, Li, Long)	



Rapid disappearance of νe flux ���
due to oscillation with a large Δm2?? 	
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The Spectra That Are Tried"

ν1,2,3	



ν4	



3 + 1	

 3 + 2	



ν4	



ν1,2,3	



ν5	



CP Possible	

No CP	



Short-Baseline experiments have an L/E too small ���
to see the splitting between ν1, ν2, and ν3.	



3 + 3	



ν4	



ν1,2,3	



ν5	


ν6	



“Two-level”	
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The Mixing Matrix When  
There Are Extra Neutrinos"

It’s bigger.	


With 3 + N neutrino mass eigenstates, there can be 3 + N ���
lepton flavors, N of them sterile. For example, for N = 3: 	
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Ideas For Future 
Experiments	
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I would just like to illustrate the ���
diversity of ideas being proposed.
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Coherent Neutral-Current Scattering"

Z	


Aδαβ	



€ 

να
€ 

νβ

Nucleus	



Nucleus	



This process has the same rate for any ���
incoming active neutrino,  νe, νµ, or ντ .	



But the Z does not couple to νsterile . 	



If νactive → νsterile , the coherent scattering ���
event rate will oscillate with it.  	
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A Radioactive Source  
Near a Detector (SOX)"

Place a 51Cr ���
νe source or 

144Ce-144Pr νe 
source near or 
in Borexino.	



1304.7721	
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νe From 8Li Decay"
Use a cyclotron to make the 8Li, a νe emitter.	



Use a kton-scale scintillator detector ���
to detect the νe via νe p → e+n.	



Sensitivity to νe 
disappearance ���

(the reactor anomaly) ���
in a 5-year run 	



(Bungau et al.)	
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Multi-Detector Short Baseline 
Experiments At Accelerators"

Compare event rates in several detectors, ���
at different distances from the source at Fermilab. 	



This is a good way to deal with flux uncertainties, ���
so long as the neutrinos have not already oscillated 

before reaching the near detector.	
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Good luck! 


