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Programme

Class 1: The classical fermionic string
Class 2: The quantized fermionic string

Class 3: Partition Function

Class 4: Interactions




Outline

Class 1: The classical fermionic string
@ The action and its symmetries
@ Gauge fixing and constraints
@ Equations of motion and boundary conditions

@ Oscillator expansions
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Why superstrings?

@ The spectra of bosonic strings contain a tachyon — it might
indicate the vacuum has been incorrectly identified.

@ The mass squared of a particle T is the quadratic term in the
2
action: M? = %#T)h:o = —é —> we are expanding
around a maximum of V. If there is some other stable

vacuum, this is not an actual inconsistency.
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Why superstrings?

Is there a good minimum elsewhere?

The tachyon potential around T = 0 looks like

1
V(T) = E/\/12T2+C3T3+C4T4+--~

The T3 term gives rise to a minimum, but the T# term
destabilizes it again...

@ Moreover tachyon exchange contributes IR divergences in loop
diagrams

@ The critical dimension of the bosonic string is D=26

All physical d.o.f. of bosonic string are bosonic
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Why superstrings?

These shortcomings can be overcome by constructing a theory
with world-sheet supersymmetry.

Associated with each bosonic d.o.f. X*(o,7), world-sheet
spinors are introduced: V#(7,0),u=0,...,D —1,

v= ()

described by two-component Majorana spinors .

Gliozzi, Scherk and Olive (1977): it is possible to get a model
with no tachyons and equal masses and multiplicities for
bosons and fermions

Green and Schwarz (1980): this model had space-time susy
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The action

@ In this superstring theory the one-loop diagrams are
completely finite and free of ultraviolet divergences

@ As in the bosonic string theory, the action has to be
formulated so as to avoid negative norm states

Sg couples D scalar fields X" (o, 7) to two-dim gravity h.p

@ Ghosts are removed by physical state conditions:

0SB
TO(B ~ (sthB =

= the absence of negative norm states depends crucially
on reparametrization invariance
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The action

Treating X* and W* as susy partners for a world-sheet susy, and
coupling them to two-dimensional supergravity is an appropriate
construction

Such an action does indeed provide a theory in which all negative
norm states are removed by constraints arising as eom

Consistency of the theory requires D=10 for the superstring
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Supersymmetry

Although this construction possesses world-sheet N=1 susy, it does
not possess manifest space-time susy

Applying GSO projection to the states of the theory, a D = 10
space-time supersymmetric theory without tachyons is obtained

This is the Neveu-Schwarz-Ramond superstring.

There is also the Green-Schwarz formalism in which space-time
susy is manifest at the cost of world-sheet susy.

A covariant extension of the GS formalism is the pure spinor
formulation.
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Other possibilities?

@ Extended supersymmetry?
N = 2 world-sheet supersymmetry — critical dimension D = 2

N = 4 world-sheet supersymmetry — negative critical
dimension!

@ Heterotic string: superstring modes for right-movers and
bosonic string modes for left-movers. N =1 susy in D = 10
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Superstring action

We want to find the susy extension of the Polyakov action

Recall
1

4o/

Sp=-—

/ d?oV/—hh*P 9, X" X,, (1)
Susy extension should be the coupling of supersymmetric " matter”

to two-dimensional supergravity

XH(7,0) are world-sheet scalars but space-time vectors

—> their susy partners should be world-sheet spinors with a
target space vector index



Let us consider the action

1 1 VNN
S = —47r/d20\/—h [O/haﬁaax'uaﬁxﬂ—i_”/}”p 8Q¢H:| (2)

" is a Majorana spinor
b=yl =) C=yTC Conjugate spinor

= Majorana spinors are real

p~ are two dimensional Dirac matrices. A convenient basis is

0o_ 2 0 1 11 0 1
p =10 _<_1 0 ) p =0 = 1 0 (3)



Brief remainder on two-dimensional spinors

@ The two-dimensional Dirac matrices satisfy
{p*, "} = 20" (4)

They transform under coordinate transformations and are
related to the constant Dirac matrices p? through the
zweibein:

p*=ep’ = {0 =20 =2 <_01 ?)

@ We define the analogue of 4° in four-dimensions:

1 0
-_ 01_ 3 _



Brief remainder on two-dimensional spinors

Using spinor indices

T = x*TaByp  where " = ygCP

where I is some combination of Dirac matrices.
The charge conjugation matrix (CCT = 1)

0 1
C:p0:<—1 0)




Brief remainder on two-dimensional spinors

Using spinor indices
XM = x"TaPyp  where x* = xgC™

where I is some combination of Dirac matrices.
The charge conjugation matrix (CCT = 1)

0 1
C:p0:<—1 0)

Two-dimensional spinor indices take values A=+, i.e.

ba = (jﬁj) (5)

and =~ =y



Useful relations (exercises)

@ Spin-flip property, valid for anticommuting Majorana spinors

)\1,0(11 . pan)\z _ (_1)n5\2pan ... pO‘l)\l (6)

o Fierz identity, valid for anticommuting Majorana spinors

(FNEX) = 5 {IEN) + (F2)@E) + (o) (Fpa\)}

® p%pppa =0

o ppf = hP 4 %eo‘ﬁﬁ with 91 =1
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Back to the action for the supertring

Let us work out the balance between bosonic and fermionic
degrees of freedom .

@ D real scalars X* provide D bosonic degrees of freedom

@ D world-sheet Majorana fermions ¥* provide 2D fermionic
degrees of freedom 9/

@ — we have to introduce D real auxiliary scalar fields F*

o Together (X, F*) form an off-shell scalar multiplet of
two-dimensional N=1 supersymmetry

On-shell (X#,¢*) suffice: Sg oc [ d?ce FFF,



Back to the action
1 1 7
R / v/ —h [a,haﬁaax“aﬁxu + praam]

The derivative is ordinary instead of covariant due to the Majorana
spin-flip property: ¢¥*p®wa1), = —YHp*wathy,

It is invariant under the infinitesimal transformations:

\/gaexu S (7)

/21
(5{(!)” == aipaaaxﬂe (8)

with € a constant anticommuting infinitesimal Majorana spinor.

Supersymmetry transformations mix bosonic and fermionic fields



A basic fact about susy is
[51, 52]X” = 51(521/#) — (1 — 2) = aaaaX“

the commutator of two supersymmetry transformations gives a
spatial translation (here on the world-sheet) with

aa = 2i€1pa62
Here it is important that for Majorana spinors in two dimensions:

E1per = —ExpTeq.

[01, d2]p" = a“Onyp"

Here it is necessary that ¢* obeys the Dirac equation:
POt = 0.
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The gravity sector

The supergravity multiplet consists of the
zweibein €7 and the gravitino

The bein is necesary to describe spinors on a curved manifold as
the group GL(n,R) does not have spinor representations whereas
the tangent space group SO(n — 1,1) does.

The zweibein has 4 components.

There are two reparametrizations and one local Lorentz
transformation as gauge symmetries.

This leaves one bosonic degree of freedom in two-dimensions
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Sugra degrees of freedom

The gravitino is a world-sheet vector and a world-sheet Majorana
spinor. It has 23lp =4 components in n = 2 dimensions

For N=1 supersymmetry there are 2l3] supersymmetry parameters,
leaving (n — 1)2!21=2 fermionic degrees of freedom for n = 2

The complete off-shell sugra multiplet requires the introduction of
an auxiliary real scalar field A.

The complete off-shell multiplet is (€3, xa,A). On-shell (€2, xa)
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The action
1 1 -
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The action

The action
1 1 o VN VRN
5 = [ oy [ Lmaxian, i)

is not locally susy. Local susy requires the additional term:

i . 2 i
S = &r/d%exapﬁp s (\/ ~ 08X = 4xa%)

The auxiliary field A does not appear and the auxiliary matter
scalars F* can be eliminated via their eom. e = |detel| = v/ —h.

The kinetic term for the gravitino vanishes identically in two
dimensions garaﬁmﬁM where I is the antisymmetrized
product of three Dirac matrices which vanishes in two dimensions



The action

The complete action is:

1 2 .
S = —— [ d%ce [O/haﬂaaxwﬁxuwiwpa oy

87
o n 2 i
—iXap’ ™ aaﬁxu - ZX,Bwu



Symmetries

The action is invariant under the following local world-sheet

symmetries

@ Supersymmetry
/2
— 0 X
Q@
eyt

dees?

deXa

jEp

1 /2 i_

Epa ( gaaxﬂ - 2Xo/¢“> €,
L

5 P Xas

2D €

where €(,0) is a Majorana spinor which parametrizes susy
transformations and D, is a covariant derivative with torsion



Symmetries

D,e = aae—iwaﬁe
]. ab i_ _ B
Wa = —5€ waabzwa(e)Jerapp Xp
1
wa(e) = —;eaaemagev"

where w,(€) is the spin connection without torsion



Symmetries

o Weyl transformations: hag — Q2(7,0)hag for Q2 = 2
0

oaXt =

1
oAt = —5/\1/1”
one? = Ne)?

1
(5/\on = EAXOL

@ Super-Weyl transformations
577on = pPal

dp(others) = 0

with 7(7,0) a Majorana spinor parameter



Symmetries

@ Two-dimensional Lorentz transformations

Xt =0
1
st = Sl
6,ea" = /eabeab
1 ._
0Xa = *Elea
@ Reparametrizations
9 G G
Sept = —iﬁﬁglli“
Seea® = —€705ea” — 570"
5§Xa = _gﬁaﬁXa_XBaagﬂ



Symmetries

The symmetry transformation rules can be obtained using the
Noether method or superspace techniques.




Symmetries

The symmetry transformation rules can be obtained using the
Noether method or superspace techniques.

In addition to the local world-sheet symmetries, the action is also
invariant under global space-time Poincaré transformations:

oXH = a* XY + b, auy = —auy
dhag = 0

Y =y

0Xa = 0
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Gauge fixing

We can now use local susy, reparametrizations and Lorentz
transformations to gauge away two d.o.f. of the zweibein and two
d.o.f. of the gravitino.

To do this we decompose the gravitino as

1 1
Xa = (haﬁ — 5pap” ) X5+ 5par’Xs
1 1
= (50%paxs + Zpar’xs
2 2
= Xa+ pPar 9)
where ¥ = %pﬁpaxﬁ is p-traceless: p- Y =0and A\ = %po‘xa,

corresponding to a decomposition of the spin 3/2 gravitino into
helicity +3/2 and +1/2 components.



The same decomposition can be made for the susy transformation
of the gravitino:

deXa = 2Dne
= 2(I'Ie)a—|—pap5Dge

where
— B 1 B — 1 B
(Ne)a = | ha Epap Dge = Ep paDge

maps spin 1/2 fields to p-traceless spin 3/2 fields.
Now we can write

Xa = PBPOzD,B"'€ (10)
for some spinor x (where we used p®pgpo = 0)
= Kk can be eliminated by a susy transformation —x, = poA
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Superconformal gauge

Reparametrizations and local Lorentz transformations allow to
transform the zweibein into

e, = e%5?2 (11)

In this way we arrive at the superconformal gauge (a generalization
of the conformal gauge):

e’ = e¢5;, Xa = Pa (12)

In the classical theory we can use Weyl (dpen? = Ae,?) and
super-Weyl (0,Xa = pa7) transformations to gauge away ¢ and A,
leaving only e,? =07 and x, =0

In analogy to the bosonic case, these symmetries will be broken in
the quantum theory except in the critical dimension.



The action in superconformal gauge

In superconformal gauge the action simplifies to

1 1 Q VNN,
S = —an d’c [a,aaX#a Xy, + iH p*aby,

This is the action of a free scalar superfield in two dimensions.
To arrive at this action we have rescaled e%/24) — ).




The action in superconformal gauge

In superconformal gauge the action simplifies to

1 1 Q VNN,
S = —an d’c [a,aaX#a Xy, + iH p*aby,

This is the action of a free scalar superfield in two dimensions.
To arrive at this action we have rescaled e%/24) — ).

World-sheet indices are now raised and lowered with the flat metric
n*® and p® = 6<p°.



Equations of motion

The e.o.m. derived from the action

/ d’c { Do XHO* X, + ip* p*Dahy,
are

Do 0" (13)
PO = 0. (14)

As in the bosonic theory, they have to be supplemented by
boundary conditions (later)
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Equations of motion

The e.o.m. for the zweibein and the gravitino are:
Tog =0, Tra =0.
They are constraints on the system

For theories with fermions, the energy-momentum tensor is defined
as
27 0S

e 665

Taﬁ €aa (15)

We can analogously define the supercurrent as the response to
variations of the gravitino:

TFa = 2i 5?
e iox“

(16)



In the superconformal gauge they are
1 1
Ta,B = —J aaX“QgXH — 57704587)(“87)(#

(d_}#paaﬁwu + 1/_1“%(%%) =0

i
4
1 /2

Tra = =7\ =P Patt05X =0




In the superconformal gauge they are
- 1 I 1 Y X
Ta,B = —J aaX aﬁXH — §na58 X 8’7XN
i - _
5 (B padsy + P psdatsy) = 0
1 /2
Tra = =7\ =P Patt05X =0

Tracelessness TS = 0 follows upon using the e.o.m. and as a
consequence of Weyl invariance

The analogue p® Tg, = 0 follows from super-Weyl invariance



Conservation laws and conserved charges

The energy-momentum tensor and the supercurrent are conserved:

Tas = O (17)
0“Tr, = 0 (18)
These conservation laws lead to an infinite number of conserved
charges.
In light-cone coordinates on the world-sheet
ct=71+0 (19)
where ds? = —d7? + do? = —dotdo™
1 _ _
M- =n-y=—5, N =n==2 (20)

L 1
Nt =n-——=ntT=n"=0, 0r= 50 £0,) (21)



Analysis in light-cone coordinates on the world-sheet

The action and eom in light-cone coordinates are

2 .
S = —— [ do [a,mX*‘a—Xu+:(wia_w+ﬂ+w“a+w_#)

=)

where

and the eom



Analysis in light-cone coordinates on the world-sheet

The action and eom in light-cone coordinates are

1 2
s = —5 d’c [O/mXﬂa_x,LJri(wia_mﬁwaw_#)
where
_ ¢+)
ha <1/1—
and the eom
040_X* = 0, (22)
o_yYt = oyt =0. (23)



Analysis in light-cone coordinates on the world-sheet

The energy-momentum tensor in light-cone coordinates is

1 ]
Ty = —98+X'3+X—§¢+'3+¢+7
1 i
T__ = ——0_X-0_X—=9_-0_9Y_ 24
90-X-0 Y- 0-v—, (24)
T+_ - T_+:O

Wlth 8_ T++ = 8+ T__ = 0
And the supercurrent

1 2
Try = —5\/ al/}j: -0+ X (25)
with
O_Try =0:Tr. =0 (26)



Solutions

From the e.o.m.

040_Xt =0 = XHr,0)=X]"(cT) + Xk(c7)
Ol =09t =0 = YL =yl(cT), ! =yt (07)

the fields can be split into left- and right-movers




Solutions

From the e.o.m.

040_Xt =0 = XHr,0)=X]"(cT) + Xk(c7)
Ol =09t =0 = YL =yl(cT), ! =yt (07)

the fields can be split into left- and right-movers
and from the conservation laws
8_T++:8+T__:O, a_TF+:8+TF_:O -

T+ and Tg,y are functions of o only whereas
T__ and Tg_ are functions of ¢~ only.
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Boundary conditions

Varying X* in the action such that §X*(7p) = 0 = 6 X*(11) gives:

/
6Sp = dr da\/—héX#V2X“

Xu|a !

27ra

The boundary term vanishes if
0 XH(7,0) = 0, X¥(1,1) =0

These are Neumann boundary conditions on X*: the ends of the
open string move freely in space-time

Surface term also vanishes if fields are periodic — closed string
XH(r, 1) = X¥(1,0), O XH(1,1) = 0, XH(7,0)



Boundary conditions

To derive the e.o.m. for the fermions we impose
5H(r0) = 61#(r1) = 0
Further we have to impose bdry cond such that the boundary term
1 M _
5= 5o [ dr(ws v v be)ESs (@)

0

vanishes.




Boundary conditions

To derive the e.o.m. for the fermions we impose

5UH(0) = 6#(r1) = 0

Further we have to impose bdry cond such that the boundary term

5= 5o [ dr(ws v v be)ESs (@)

27 o
vanishes. For the closed string this requires
(Vg - 0y = - 6Y_)(0) = (V4 - 0y — - 0p_) (0 + 1)
which is solved by
Y (o) =+ (o + 1) (28)
Y (o) = Y (o + 1) (29)

and the same conditions on dy 1. Antiperiodicity of ¢ is possible
as they are fermions on the world-sheet.



Ramond and Neveu-Schwarz boundary conditions

Periodic bdy cond are called Ramond boundary conditions

Yh(o) =+t (o +1)
P (o) =+t (o + 1)

Anti-periodic bdy cond are called Neveu-Schwarz boundary
conditions

(o) = =l (o +1)
(o) = —yL(o +1)
Space-time Poincaré invariance requires that we impose the same

boundary conditions in all directions p.
This also guarantees that Tgy have definite periodicity.



Boundary conditions

Fermions on the world-sheet satisfy

i ¢ = 0 for the R sector
Yo+ 1) = ™y (o) { ¢ = L for the NS sector (30)

More general phases are not allowed for real 1.
The conditions for the two spinor components 14 and ¢ _ can be
chosen independently, leading to four possibilities

(R,R) (NS,NS) (NS,R) (R,NS)

We shall see that string states in the (R,R) and (NS,NS) sectors
are space-time bosons while those in the (R, NS) and (NS, R)
sectors are space-time fermions.



Boundary conditions for the open string

For the open string the variation

1 T1 _
55 = o / dr(s - §tb4 — - 6_)[2=h

0

has to be canceled on each boundary, i.e. at c =0 and 0 =/,
separately. This leads to

Ph(0) = £¢2(0), (M) = 20())



Boundary conditions for the open string

For the open string the variation

1 T1 _
55— L / dr(s - §tb4 — - 6_)[2=h

2770

has to be canceled on each boundary, i.e. at c =0 and 0 =/,
separately. This leads to

Ph(0) = £¢2(0), (M) = 20())

To preserve space-time Poincaré invariance we have to impose the
same conditions on all u.



Boundary conditions for the open string

Without loss of generality we specify

Ph(0) =¢2(0), A (1) =nt(1) (31)

where n = +1. Only the relative sign in the boundary conditions at
o =0 and ¢ =/ is relevant and by a redefinition ¥ — +_,
which leaves the action invariant, we can always move the sign to
the o = | boundary.




Boundary conditions for the open string

Without loss of generality we specify

Ph(0) =¢2(0), A (1) =nt(1) (31)

where n = +1. Only the relative sign in the boundary conditions at
o =0 and ¢ =/ is relevant and by a redefinition ¥ — +_,
which leaves the action invariant, we can always move the sign to
the o = | boundary.

We then have to distinguish beetween two sectors:

1 = +1 is the Ramond sector

1n = —1 is the Neveu Schwarz sector

States in the R sector will turn out to be space-time fermions.
States in the NS sector will turn out to be space-time bosons.



Superconformal algebra

To find the algebra satisfied by T,z and Tr, we need the equal 7
Poisson brackets.
In conformal gauge

XH(o), X*(o") = 2ma'n* (0, 0’)
PB

X1 (0). XM py = [XM(0) XM(N)] =0

{¢h(0), ¥ (o)} = {¥(0),¢¥ (o)} = —27id(o — o)™,
{¢h(0),v"(c")} = 0

Using these brackets one finds



Superconformal algebra

[Tis(0), Tex(d")] = £(2Tas(0")d + 0 Tis(0")) 276(c — o’)

[Tix(0), Tre(0)] = =+ <2 Tre(o)0' + & Tpi(a’)> 276(0 — o)

{Trs(o), Tra(d)} = :I:é Ti+(0")2mé(0 — o)

We can also verify the supersymmetry transformations

TFi(O'), \/EXM(OJ)

{Tre(0).0(0)} = QV[jafwaﬁmﬂ«r—aﬁ

= S¥h(0)2md(o — o)




Oscillator expansions

We now solve the classical equations of motion in conformal gauge
taking into account the boundary conditions.
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Oscillator expansions

We now solve the classical equations of motion in conformal gauge
taking into account the boundary conditions.

We do this for the unconstrained system. The constraints then
have to be imposed on the solutions.

We have to distinguish between closed and open strings

The treatment for the bosonic coordinates is identical to the
bosonic string. Let us briefly recall it.



Oscillator expansions: Closed bosonic string

The general solution of the two-dimensional wave equation
040_X" =0, compatible with the periodicity condition

XH(o, 1) = XH(o+ 1,7)

is
X4(0,7) = Xi(r — @) + X} 7 + o)
where
1 o e 1 g
Xk(r—0) = EXM—I-TPM(T—O' I“EZEQ#G in(r—0o)
n#0

X'(t+0) = EX“%——O/p T+o)+iy/ = Z —ake” iFin(r+o)

L 2 / 2 &5n



Oscillator expansions: Closed bosonic string

If we define
B g o
we can write
. o [of X
o_Xt = X'/é: I > Z af,‘e Tin(T—0)
n=—o00
o 2m [ X . — 2 (o)
8+X'u = XL = T E Z O/,fe [




Oscillator expansions: Closed bosonic string

From the Poisson brackets for the X*, we derive the brackets for

the afy, &y, x*, p*

[O‘lrfw alr;]PB = [d!rﬁw dlrlr]PB = —"m5m+n7lw 9
[Gh O‘Z]PB = 0,
[Xuv PV]PB =



Oscillator expansions: Open bosonic string

For the open string we have to require X’* = 0 at 0 = 0 and
o = I. The general solution of the wave equation subject to these
bdry cond is

27
X¥(r,0) = xt+

p“T +iv2 Z —abke ' cos <n7770)

/ /
n7é0

from which we get, with o = v2a/pH,

l
Op XM = f(x“ £ X'H) = ,/ Z alte™ (o)

Then

[, anlpg = —imdmyn™ . [X*, p"]pg = 0™



Oscillator expansions of fermionic fields: closed string

The fermionic fields require some care. We have to distinguish
between two choices of boundary cond for each chirality.

The general solutions of the two-dimensional Dirac equation with
periodic (R) and antiperiodic (NS) bdy cond are

¢i(07 7_) — / 277[- Z Eﬁef27rir(r+o)/l

reZ+a¢
¢=0 (R)
here
v { =% (N9
27 —2mir(t—o)/l
Pilor) = T3 breririo)
reZ+¢

The reality of the Majorana spinors translates into
() = b (B) = B,

—r



Oscillator expansions of fermionic fields: closed string

In terms of the fermionic oscillator modes, the anticommutators

{¢h(0), ¥ (o)} = {¥(0),¢¥ (")} = —2mid(o — o)™,
{¥h (o), v (0)} = 0

translate to

{bF, b5} = —idrysm™,
{Bﬁ, EZ} = —ibrsn",
(b By = 0

Next we decompose the generators of conformal and
superconformal transformations into modes



Oscillator expansions of T, and Tr.

The conservation equations
8_T++:0, (?+T__=O
—> the existence of an infinite number of conserved charges: for

any function (o) we have O_(f(c%)T,4) = 0 and the
corresponding charges are

1

i
L= o Jo dotf(c™) Ty (o)

and similarly for T__.
We can choose for f(ot) a complete set satisfying the periodicity
condition appropriate for the closed string:

i
fin(0F) = exp <7/”mai> for all integers m



Energy-momentum tensor and supercurrent

We then define the super-Virasoro generators as the corresponding
charges at 7 =0

L, = —— [ doe F™T__,

™
3
|
|
Q.
Q
J
~
+

1 / : —2miro /1
Gr = —; Z ) doe TF_(O')
~ 1 /1 ! .
Gr - _ ; Z /O do_e27r/ra/l TF+ (O’)



In terms of oscillators L,,, = Lg,?) + L%’)

1
Lg;a) — 5 Z O_pm - am+n
meZ

1) — %Z (r + g) b_r - bntr

G = Zafm'bﬂrm

Note > b_, - bpy, = 0 as it corresponds to J_()_1_). It was
included to make the expression look more symmetric.
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G = Zafm : br+m

Note > b_, - bpy, = 0 as it corresponds to J_()_1_). It was
included to make the expression look more symmetric.
From the definition we see T has the same periodicity as the 1/}

1 /2
Tre = —5\[ ¥ - 02X
[0

periodic in the R-sector and antiperiodic in the NS-sector =—> the
mode numbers are integer and half-integer respectively.



In terms of oscillators L,,, = Lg,?) + L%’)

1
Lg;a) — 5 Z O_pm - am+n
meZ

Lgb) = %Z (r + g) by bnyr
G = Zafm : br+m

Note > b_, - bpy, = 0 as it corresponds to J_()_1_). It was
included to make the expression look more symmetric.
From the definition we see T has the same periodicity as the 1/}

1 /2
Tre = —5\[ ¥ - 02X
[0

periodic in the R-sector and antiperiodic in the NS-sector =—> the
mode numbers are integer and half-integer respectively.



Classical super-Virasoro algebra

The generators L, and G, satisfy the following reality conditions
Ly=L p, G =G_,

Using the basic brackets, one can now verify

[Lm,Ln) = —i(m—n)Lmyin
(L, G| = —i(%m )G
{Gr, Gs} - —2iLr+5

It can also be derived from the Poisson brackets for T4+ and Tr4
and the definitions of L,,, G,, Zm, G,. For the closed string there
are two copies of this algebra, one for the left- and one for the
right-movers.



Oscillator expansions of fermionic fields: open string

For the open string we also expand the fermionic fields in modes
and implement the bdy cond

Ph(0) =¢L(0), L (1) =nl (1)

The bdy cond relate the left- and right-moving modes and there is
only one set of oscillators.

i _ ™ w —mir(tto)/l Z (R)
Yi(o, 1) \/72,: bte where r € { Z+1  (NS)



Energy-momentum tensor and supercurrent

We now derive the mode expansions of the Virasoro generators for
the open string.




Energy-momentum tensor and supercurrent

We now derive the mode expansions of the Virasoro generators for
the open string. The bdy cond mix left- and right-movers and
consequently T4 and T__

/ /
L, = -— /dJe’nUT++()

Gr _ _\/>/ do'emrU/ITF‘F( )

= L, = fZa_m Qmin+ = Z(r—i— >b_ - bmyr

meZ

. reZ for R
G = ;a,m-br+m with {reZ%—é for NS



Classical super-Virasoro algebra

The generators L, and G, satisfy the following reality conditions
Ly=L p, G =G_,

Using the basic brackets, one can now verify

[Lm,Ln) = —i(m—n)Lmyin
(L, G| = —i(%m )G
{Gr, Gs} - —2iLr+5

It can also be derived from the Poisson brackets for T4+ and Tr4
and the definitions of L,,, G,, Zm, G,. For the closed string there
are two copies of this algebra, one for the left- and one for the
right-movers.



