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Programme

Class 1: The classical fermionic string

Class 2: The quantized fermionic string

Class 3: Partition Function

Class 4: Interactions
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Outline

Class 1: The classical fermionic string

The action and its symmetries

Gauge fixing and constraints

Equations of motion and boundary conditions

Oscillator expansions
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Why superstrings?

The spectra of bosonic strings contain a tachyon → it might
indicate the vacuum has been incorrectly identified.

The mass squared of a particle T is the quadratic term in the

action: M2 = ∂2V (T )
∂T 2 |T=0 = − 4

α′ =⇒ we are expanding
around a maximum of V . If there is some other stable
vacuum, this is not an actual inconsistency.
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Why superstrings?

Is there a good minimum elsewhere?

The tachyon potential around T = 0 looks like

V (T ) =
1

2
M2T 2 + c3T

3 + c4T
4 + · · ·

The T 3 term gives rise to a minimum, but the T 4 term
destabilizes it again...

Moreover tachyon exchange contributes IR divergences in loop
diagrams

The critical dimension of the bosonic string is D=26

All physical d.o.f. of bosonic string are bosonic
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Why superstrings?

These shortcomings can be overcome by constructing a theory
with world-sheet supersymmetry.

Associated with each bosonic d.o.f. Xµ(σ, τ), world-sheet
spinors are introduced: Ψµ(τ, σ) , µ = 0, . . . ,D − 1 ,

Ψ =

(
ψ+

ψ−

)
described by two-component Majorana spinors .

Gliozzi, Scherk and Olive (1977): it is possible to get a model
with no tachyons and equal masses and multiplicities for
bosons and fermions

Green and Schwarz (1980): this model had space-time susy
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The action

In this superstring theory the one-loop diagrams are
completely finite and free of ultraviolet divergences

As in the bosonic string theory, the action has to be
formulated so as to avoid negative norm states

SB couples D scalar fields Xµ(σ, τ) to two-dim gravity hαβ

Ghosts are removed by physical state conditions:

Tαβ ∼ δSB
δhαβ

= 0

=⇒ the absence of negative norm states depends crucially
on reparametrization invariance
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The action

Treating Xµ and Ψµ as susy partners for a world-sheet susy, and
coupling them to two-dimensional supergravity is an appropriate
construction

Such an action does indeed provide a theory in which all negative
norm states are removed by constraints arising as eom

Consistency of the theory requires D=10 for the superstring
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Supersymmetry

Although this construction possesses world-sheet N=1 susy, it does
not possess manifest space-time susy

Applying GSO projection to the states of the theory, a D = 10
space-time supersymmetric theory without tachyons is obtained

This is the Neveu-Schwarz-Ramond superstring.

There is also the Green-Schwarz formalism in which space-time
susy is manifest at the cost of world-sheet susy.

A covariant extension of the GS formalism is the pure spinor
formulation.
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Other possibilities?

Extended supersymmetry?
N = 2 world-sheet supersymmetry → critical dimension D = 2

N = 4 world-sheet supersymmetry → negative critical
dimension!

Heterotic string: superstring modes for right-movers and
bosonic string modes for left-movers. N = 1 susy in D = 10
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Superstring action

We want to find the susy extension of the Polyakov action

Recall

SP = − 1

4πα′

∫
d2σ

√
−hhαβ∂αX

µ∂βXµ (1)

Susy extension should be the coupling of supersymmetric ”matter”
to two-dimensional supergravity

Xµ(τ, σ) are world-sheet scalars but space-time vectors

=⇒ their susy partners should be world-sheet spinors with a
target space vector index
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Let us consider the action

S = − 1

4π

∫
d2σ

√
−h

[
1

α′ h
αβ∂αX

µ∂βXµ + iψ̄µρα∂αψµ

]
(2)

ψµ is a Majorana spinor

ψ̄ = ψ†ρ0 = (ψ∗)TC = ψTC Conjugate spinor

=⇒ Majorana spinors are real

ρα are two dimensional Dirac matrices. A convenient basis is

ρ0 = iσ2 =

(
0 1
−1 0

)
, ρ1 = σ1 =

(
0 1
1 0

)
(3)
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Brief remainder on two-dimensional spinors

The two-dimensional Dirac matrices satisfy

{ρα, ρβ} = 2hαβ (4)

They transform under coordinate transformations and are
related to the constant Dirac matrices ρa through the
zweibein:

ρα = eαa ρ
a =⇒ {ρa, ρb} = 2ηab = 2

(
−1 0
0 1

)

We define the analogue of γ5 in four-dimensions:

ρ̄ = ρ0ρ1 = σ3 =

(
1 0
0 −1

)
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Brief remainder on two-dimensional spinors

Using spinor indices

χ̄Γψ = χAΓA
BψB where χA = χBC

BA

where Γ is some combination of Dirac matrices.
The charge conjugation matrix (CC † = 1)

C = ρ0 =

(
0 1
−1 0

)

Two-dimensional spinor indices take values A = ±, i.e.

ψA =

(
ψ+

ψ−

)
(5)

and ψ+ = −ψ−, ψ
− = ψ+
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Useful relations (exercises)

Spin-flip property, valid for anticommuting Majorana spinors

λ̄1ρ
α1 · · · ραnλ2 = (−1)nλ̄2ρ

αn · · · ρα1λ1 (6)

Fierz identity, valid for anticommuting Majorana spinors

(ψ̄λ)(ϕ̄χ) = −1

2
{(ψ̄χ)(ϕ̄λ) + (ψ̄ρ̄χ)(ϕ̄ρ̄λ̄) + (ψ̄ραχ)(ϕ̄ραλ)}

ραρβρα = 0

ραρβ = hαβ + 1
e ϵ

αβ ρ̄ with ϵ01 = 1
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Back to the action for the supertring

Let us work out the balance between bosonic and fermionic
degrees of freedom .

D real scalars Xµ provide D bosonic degrees of freedom

D world-sheet Majorana fermions ψµ provide 2D fermionic
degrees of freedom ψµ

±

=⇒ we have to introduce D real auxiliary scalar fields Fµ

Together (Xµ, ψµ,Fµ) form an off-shell scalar multiplet of
two-dimensional N=1 supersymmetry

On-shell (Xµ, ψµ) suffice: SF ∝
∫
d2σe FµFµ
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Back to the action

S = − 1

4π

∫
d2σ

√
−h

[
1

α′ h
αβ∂αX

µ∂βXµ + iψ̄µρα∂αψµ

]
The derivative is ordinary instead of covariant due to the Majorana
spin-flip property: ψ̄µραωαψµ = −ψ̄µραωαψµ

It is invariant under the infinitesimal transformations:√
1

α′ δϵX
µ = i ϵ̄ψµ (7)

δϵψ
µ =

√
2

α′
1

2
ρα∂αX

µϵ (8)

with ϵ a constant anticommuting infinitesimal Majorana spinor.

Supersymmetry transformations mix bosonic and fermionic fields
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A basic fact about susy is

[δ1, δ2]X
µ = δ1(ϵ̄2ψ

µ)− (1 ↔ 2) = aα∂αX
µ

the commutator of two supersymmetry transformations gives a
spatial translation (here on the world-sheet) with

aα = 2i ϵ̄1ρ
αϵ2

Here it is important that for Majorana spinors in two dimensions:
ϵ̄1ρ

αϵ2 = −ϵ̄2ραϵ1.

[δ1, δ2]ψ
µ = aα∂αψ

µ

Here it is necessary that ψµ obeys the Dirac equation:
ρα∂αψ

µ = 0.
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The gravity sector

The supergravity multiplet consists of the
zweibein eaα and the gravitino χα

The bein is necesary to describe spinors on a curved manifold as
the group GL(n,R) does not have spinor representations whereas
the tangent space group SO(n − 1, 1) does.

The zweibein has 4 components.

There are two reparametrizations and one local Lorentz
transformation as gauge symmetries.

This leaves one bosonic degree of freedom in two-dimensions
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The supergravity multiplet consists of the
zweibein eaα and the gravitino χα

The bein is necesary to describe spinors on a curved manifold as
the group GL(n,R) does not have spinor representations whereas
the tangent space group SO(n − 1, 1) does.
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Sugra degrees of freedom

The gravitino is a world-sheet vector and a world-sheet Majorana
spinor. It has 2[

n
2
]n = 4 components in n = 2 dimensions

For N=1 supersymmetry there are 2[
n
2
] supersymmetry parameters,

leaving (n − 1)2[
n
2
]=2 fermionic degrees of freedom for n = 2

The complete off-shell sugra multiplet requires the introduction of
an auxiliary real scalar field A.

The complete off-shell multiplet is (eaα, χα,A). On-shell (e
a
α, χα)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sugra degrees of freedom

The gravitino is a world-sheet vector and a world-sheet Majorana
spinor. It has 2[

n
2
]n = 4 components in n = 2 dimensions

For N=1 supersymmetry there are 2[
n
2
] supersymmetry parameters,

leaving (n − 1)2[
n
2
]=2 fermionic degrees of freedom for n = 2

The complete off-shell sugra multiplet requires the introduction of
an auxiliary real scalar field A.

The complete off-shell multiplet is (eaα, χα,A). On-shell (e
a
α, χα)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sugra degrees of freedom

The gravitino is a world-sheet vector and a world-sheet Majorana
spinor. It has 2[

n
2
]n = 4 components in n = 2 dimensions

For N=1 supersymmetry there are 2[
n
2
] supersymmetry parameters,

leaving (n − 1)2[
n
2
]=2 fermionic degrees of freedom for n = 2

The complete off-shell sugra multiplet requires the introduction of
an auxiliary real scalar field A.

The complete off-shell multiplet is (eaα, χα,A). On-shell (e
a
α, χα)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sugra degrees of freedom

The gravitino is a world-sheet vector and a world-sheet Majorana
spinor. It has 2[

n
2
]n = 4 components in n = 2 dimensions

For N=1 supersymmetry there are 2[
n
2
] supersymmetry parameters,

leaving (n − 1)2[
n
2
]=2 fermionic degrees of freedom for n = 2

The complete off-shell sugra multiplet requires the introduction of
an auxiliary real scalar field A.

The complete off-shell multiplet is (eaα, χα,A). On-shell (e
a
α, χα)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The action

The action

S = − 1

4π

∫
d2σ

√
−h

[
1

α′ h
αβ∂αX

µ∂βXµ + iψ̄µρα∂αψµ

]
is not locally susy.

Local susy requires the additional term:

S ′ =
i

8π

∫
d2σeχ̄αρ

βραψµ

(√
2

α′∂βXµ − i

4
χ̄βψµ

)

The auxiliary field A does not appear and the auxiliary matter
scalars Fµ can be eliminated via their eom. e = |deteaα| =

√
−h.

The kinetic term for the gravitino vanishes identically in two
dimensions χ̄αΓ

αβγDβχγ where Γαβγ is the antisymmetrized
product of three Dirac matrices which vanishes in two dimensions
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The action

The complete action is:

S = − 1

8π

∫
d2σe

[
2

α′ h
αβ∂αX

µ∂βXµ + 2iψ̄µρα∂αψµ

−i χ̄αρ
βραψµ

(√
2

α′∂βXµ − i

4
χ̄βψµ

)]
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Symmetries

The action is invariant under the following local world-sheet
symmetries

Supersymmetry√
2

α′ δϵX
µ = i ϵ̄ψµ ,

δϵψ
µ =

1

2
ρα

(√
2

α′∂αX
µ − i

2
χ̄αψ

µ

)
ϵ ,

δϵeα
a =

i

2
ϵ̄ραχα ,

δϵχα = 2Dαϵ

where ϵ(τ, σ) is a Majorana spinor which parametrizes susy
transformations and Dα is a covariant derivative with torsion
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Symmetries

Dαϵ = ∂αϵ−
1

2
ωαρ̄ϵ

ωα = −1

2
ϵabωαab = ωα(e) +

i

4
χ̄αρ̄ρ

βχβ

ωα(e) = −1

e
eαaϵ

βγ∂βeγ
a

where ωα(e) is the spin connection without torsion
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Symmetries

Weyl transformations: hαβ → Ω2(τ, σ)hαβ for Ω2 = e2Λ

δΛX
µ = 0

δΛψ
µ = −1

2
Λψµ

δΛeα
a = Λeα

a

δΛχα =
1

2
Λχα

Super-Weyl transformations

δηχα = ραη

δη(others) = 0

with η(τ, σ) a Majorana spinor parameter
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Symmetries

Two-dimensional Lorentz transformations

δlX
µ = 0

δlψ
µ = −1

2
l ρ̄ψµ

δleα
a = lϵabeα

b

δlχα = −1

2
l ρ̄χα

Reparametrizations

δξX
µ = −ξβ∂βXµ

δξψ
µ = −ξβ∂βψµ

δξeα
a = −ξβ∂βeαa − eβ

a∂αξ
β

δξχα = −ξβ∂βχα − χβ∂αξ
β
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Symmetries

The symmetry transformation rules can be obtained using the
Noether method or superspace techniques.

In addition to the local world-sheet symmetries, the action is also
invariant under global space-time Poincaré transformations:

δXµ = aµνX
ν + bµ , aµν = −aνµ

δhαβ = 0

δψµ = aµνψ
ν

δχα = 0



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Symmetries

The symmetry transformation rules can be obtained using the
Noether method or superspace techniques.

In addition to the local world-sheet symmetries, the action is also
invariant under global space-time Poincaré transformations:
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Gauge fixing

We can now use local susy, reparametrizations and Lorentz
transformations to gauge away two d.o.f. of the zweibein and two
d.o.f. of the gravitino.

To do this we decompose the gravitino as

χα =

(
hα

β − 1

2
ραρ

β

)
χβ +

1

2
ραρ

βχβ

=

(
1

2
ρβραχβ +

1

2
ραρ

βχβ

)
= χ̃α + ραλ (9)

where χ̃ = 1
2ρ

βραχβ is ρ-traceless: ρ · χ̃ = 0 and λ = 1
2ρ

αχα,
corresponding to a decomposition of the spin 3/2 gravitino into
helicity ±3/2 and ±1/2 components.
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The same decomposition can be made for the susy transformation
of the gravitino:

δϵχα = 2Dαϵ

= 2(Πϵ)α + ραρ
βDβϵ

where

(Πϵ)α =

(
hα

β − 1

2
ραρ

β

)
Dβϵ =

1

2
ρβραDβϵ

maps spin 1/2 fields to ρ-traceless spin 3/2 fields.
Now we can write

χ̃α = ρβραDβκ (10)

for some spinor κ (where we used ραρβρα = 0)
=⇒ κ can be eliminated by a susy transformation →χα = ραλ
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Superconformal gauge

Reparametrizations and local Lorentz transformations allow to
transform the zweibein into

eα
a = eϕδaα (11)

In this way we arrive at the superconformal gauge (a generalization
of the conformal gauge):

eα
a = eϕδaα , χα = ραλ (12)

In the classical theory we can use Weyl (δΛeα
a = Λeα

a) and
super-Weyl (δηχα = ραη) transformations to gauge away ϕ and λ,
leaving only eα

a = δaα and χα = 0

In analogy to the bosonic case, these symmetries will be broken in
the quantum theory except in the critical dimension.
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The action in superconformal gauge

In superconformal gauge the action simplifies to

S = − 1

4π

∫
d2σ

[
1

α′∂αX
µ∂αXµ + iψ̄µρα∂αψµ

]
This is the action of a free scalar superfield in two dimensions.
To arrive at this action we have rescaled eϕ/2ψ → ψ.

World-sheet indices are now raised and lowered with the flat metric
ηαβ and ρα = δαa ρ

a.
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Equations of motion

The e.o.m. derived from the action

S = − 1

4π

∫
d2σ

[
1

α′∂αX
µ∂αXµ + iψ̄µρα∂αψµ

]
are

∂α∂
αXµ = 0 (13)

ρα∂αψ
µ = 0 . (14)

As in the bosonic theory, they have to be supplemented by
boundary conditions (later)
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Equations of motion

The e.o.m. for the zweibein and the gravitino are:

Tαβ = 0 , TFα = 0 .

They are constraints on the system

For theories with fermions, the energy-momentum tensor is defined
as

Tαβ =
2π

e

δS

δeβa
eaα (15)

We can analogously define the supercurrent as the response to
variations of the gravitino:

TFα =
2π

e

δS

iδχ̄α
(16)
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In the superconformal gauge they are

Tαβ = − 1

α′

(
∂αX

µ∂βXµ − 1

2
ηαβ∂

γXµ∂γXµ

)
− i

4

(
ψ̄µρα∂βψµ + ψ̄µρβ∂αψµ

)
= 0

TFα = −1

4

√
2

α′ ρ
βραψ

µ∂βXµ = 0

Tracelessness Tα
α = 0 follows upon using the e.o.m. and as a

consequence of Weyl invariance

The analogue ραTFα = 0 follows from super-Weyl invariance
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Conservation laws and conserved charges

The energy-momentum tensor and the supercurrent are conserved:

∂αTαβ = 0 (17)

∂αTFα = 0 (18)

These conservation laws lead to an infinite number of conserved
charges.
In light-cone coordinates on the world-sheet

σ± = τ ± σ (19)

where ds2 = −dτ2 + dσ2 = −dσ+dσ−

η+− = η−+ = −1

2
, η+− = η−+ = −2 (20)

η++ = η−− = η++ = η−− = 0 , ∂± =
1

2
(∂τ ± ∂σ) (21)
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Analysis in light-cone coordinates on the world-sheet

The action and eom in light-cone coordinates are

S = − 1

2π

∫
d2σ

[
2

α′∂+X
µ∂−Xµ + i(ψµ

+∂−ψ+µ + ψµ
−∂+ψ−µ)

]
where

ψA =

(
ψ+

ψ−

)
and the eom

∂+∂−X
µ = 0 , (22)

∂−ψ
µ
+ = ∂+ψ

µ
− = 0 . (23)
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Analysis in light-cone coordinates on the world-sheet

The energy-momentum tensor in light-cone coordinates is

T++ = − 1

α′∂+X · ∂+X − i

2
ψ+ · ∂+ψ+ ,

T−− = − 1

α′∂−X · ∂−X − i

2
ψ− · ∂−ψ− , (24)

T+− = T−+ = 0

with ∂−T++ = ∂+T−− = 0
And the supercurrent

TF± = −1

2

√
2

α′ψ± · ∂±X (25)

with
∂−TF+ = ∂+TF− = 0 (26)
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Solutions

From the e.o.m.

∂+∂−X
µ = 0 =⇒ Xµ(τ, σ) = Xµ

L (σ
+) + Xµ

R (σ
−)

∂−ψ
µ
+ = ∂+ψ

µ
− = 0 =⇒ ψµ

+ = ψµ
+(σ

+) , ψµ
− = ψµ

−(σ
−)

the fields can be split into left- and right-movers

and from the conservation laws

∂−T++ = ∂+T−− = 0 , ∂−TF+ = ∂+TF− = 0 =⇒

T++ and TF+ are functions of σ+ only whereas
T−− and TF− are functions of σ− only.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solutions

From the e.o.m.

∂+∂−X
µ = 0 =⇒ Xµ(τ, σ) = Xµ

L (σ
+) + Xµ

R (σ
−)

∂−ψ
µ
+ = ∂+ψ

µ
− = 0 =⇒ ψµ

+ = ψµ
+(σ

+) , ψµ
− = ψµ

−(σ
−)

the fields can be split into left- and right-movers

and from the conservation laws

∂−T++ = ∂+T−− = 0 , ∂−TF+ = ∂+TF− = 0 =⇒

T++ and TF+ are functions of σ+ only whereas
T−− and TF− are functions of σ− only.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Boundary conditions

Varying Xµ in the action such that δXµ(τ0) = 0 = δXµ(τ1) gives:

δSP =
1

2πα′

∫ τ1

τ0

dτ

∫ l

0
dσ

√
−hδXµ∇2Xµ

− 1

2πα′

∫ τ1

τ0

dτ
√
−h δXµ∂σX

µ|σ=l
σ=0

The boundary term vanishes if

∂σX
µ(τ, 0) = ∂σX

µ(τ, l) = 0

These are Neumann boundary conditions on Xµ: the ends of the
open string move freely in space-time

Surface term also vanishes if fields are periodic → closed string

Xµ(τ, l) = Xµ(τ, 0) , ∂σX
µ(τ, l) = ∂σX

µ(τ, 0)
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Boundary conditions

To derive the e.o.m. for the fermions we impose
δψµ(τ0) = δψµ(τ1) = 0
Further we have to impose bdry cond such that the boundary term

δS =
1

2π

∫ τ1

τ0

dτ(ψ+ · δψ+ − ψ− · δψ−)|σ=l
σ=0 (27)

vanishes.

For the closed string this requires

(ψ+ · δψ+ − ψ− · δψ−)(σ) = (ψ+ · δψ+ − ψ− · δψ−)(σ + l)

which is solved by

ψµ
+(σ) = ±ψµ

+(σ + l) (28)

ψµ
−(σ) = ±ψµ

−(σ + l) (29)

and the same conditions on δψ±. Antiperiodicity of ψ is possible
as they are fermions on the world-sheet.
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Ramond and Neveu-Schwarz boundary conditions

Periodic bdy cond are called Ramond boundary conditions

ψµ
+(σ) = +ψµ

+(σ + l)

ψµ
−(σ) = +ψµ

−(σ + l)

Anti-periodic bdy cond are called Neveu-Schwarz boundary
conditions

ψµ
+(σ) = −ψµ

+(σ + l)

ψµ
−(σ) = −ψµ

−(σ + l)

Space-time Poincaré invariance requires that we impose the same
boundary conditions in all directions µ.
This also guarantees that TF± have definite periodicity.
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Boundary conditions

Fermions on the world-sheet satisfy

ψµ(σ + l) = e2πiϕψµ(σ)

{
ϕ = 0 for the R sector
ϕ = 1

2 for the NS sector
(30)

More general phases are not allowed for real ψ.
The conditions for the two spinor components ψ+ and ψ− can be
chosen independently, leading to four possibilities

(R,R) (NS,NS) (NS,R) (R,NS)

We shall see that string states in the (R,R) and (NS,NS) sectors
are space-time bosons while those in the (R, NS) and (NS, R)
sectors are space-time fermions.
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Boundary conditions for the open string

For the open string the variation

δS =
1

2π

∫ τ1

τ0

dτ(ψ+ · δψ+ − ψ− · δψ−)|σ=l
σ=0

has to be canceled on each boundary, i.e. at σ = 0 and σ = l ,
separately. This leads to

ψµ
+(0) = ±ψµ

−(0) , ψµ
+(l) = ±ψµ

−(l)

To preserve space-time Poincaré invariance we have to impose the
same conditions on all µ.
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Boundary conditions for the open string

For the open string the variation

δS =
1

2π

∫ τ1

τ0

dτ(ψ+ · δψ+ − ψ− · δψ−)|σ=l
σ=0

has to be canceled on each boundary, i.e. at σ = 0 and σ = l ,
separately. This leads to

ψµ
+(0) = ±ψµ

−(0) , ψµ
+(l) = ±ψµ

−(l)

To preserve space-time Poincaré invariance we have to impose the
same conditions on all µ.
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Boundary conditions for the open string

Without loss of generality we specify

ψµ
+(0) = ψµ

−(0) , ψµ
+(l) = ηψµ

−(l) (31)

where η = ±1. Only the relative sign in the boundary conditions at
σ = 0 and σ = l is relevant and by a redefinition ψ− → ±ψ−,
which leaves the action invariant, we can always move the sign to
the σ = l boundary.

We then have to distinguish beetween two sectors:
η = +1 is the Ramond sector
η = −1 is the Neveu Schwarz sector
States in the R sector will turn out to be space-time fermions.
States in the NS sector will turn out to be space-time bosons.
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Boundary conditions for the open string

Without loss of generality we specify

ψµ
+(0) = ψµ

−(0) , ψµ
+(l) = ηψµ

−(l) (31)

where η = ±1. Only the relative sign in the boundary conditions at
σ = 0 and σ = l is relevant and by a redefinition ψ− → ±ψ−,
which leaves the action invariant, we can always move the sign to
the σ = l boundary.

We then have to distinguish beetween two sectors:
η = +1 is the Ramond sector
η = −1 is the Neveu Schwarz sector
States in the R sector will turn out to be space-time fermions.
States in the NS sector will turn out to be space-time bosons.
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Superconformal algebra

To find the algebra satisfied by Tαβ and TFα we need the equal τ
Poisson brackets.
In conformal gauge[

Xµ(σ), Ẋµ(σ′)
]
PB

= 2πα′ηµνδ(σ, σ′)[
Xµ(σ),Xµ(σ′)

]
PB

=
[
Ẋµ(σ), Ẋµ(σ′)

]
PB

= 0

{ψµ
+(σ), ψ

ν
+(σ

′)} = {ψµ
−(σ), ψ

ν
−(σ

′)} = −2πiδ(σ − σ′)ηµν ,

{ψµ
+(σ), ψ

ν
−(σ

′)} = 0

Using these brackets one finds
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Superconformal algebra

[
T±±(σ),T±±(σ

′)
]

= ±
(
2T±±(σ

′)∂′ + ∂′T±±(σ
′)
)
2πδ(σ − σ′)[

T±±(σ),TF±(σ
′)
]

= ±
(
3

2
TF±(σ

′)∂′ + ∂′TF±(σ
′)

)
2πδ(σ − σ′){

TF±(σ),TF±(σ
′)
}

= ± i

2
T±±(σ

′)2πδ(σ − σ′)

We can also verify the supersymmetry transformations[
TF±(σ),

√
2

α′X
µ(σ′)

]
=

1

2
ψµ
±(σ)2πδ(σ − σ′)

{
TF±(σ), ψ

µ
±(σ

′)
}

=
i

2

√
2

α′∂±X
µ(σ′)2πδ(σ − σ′)
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Oscillator expansions

We now solve the classical equations of motion in conformal gauge
taking into account the boundary conditions.

We do this for the unconstrained system. The constraints then
have to be imposed on the solutions.

We have to distinguish between closed and open strings

The treatment for the bosonic coordinates is identical to the
bosonic string. Let us briefly recall it.
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Oscillator expansions

We now solve the classical equations of motion in conformal gauge
taking into account the boundary conditions.

We do this for the unconstrained system. The constraints then
have to be imposed on the solutions.

We have to distinguish between closed and open strings

The treatment for the bosonic coordinates is identical to the
bosonic string. Let us briefly recall it.
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Oscillator expansions

We now solve the classical equations of motion in conformal gauge
taking into account the boundary conditions.

We do this for the unconstrained system. The constraints then
have to be imposed on the solutions.

We have to distinguish between closed and open strings

The treatment for the bosonic coordinates is identical to the
bosonic string. Let us briefly recall it.
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Oscillator expansions

We now solve the classical equations of motion in conformal gauge
taking into account the boundary conditions.

We do this for the unconstrained system. The constraints then
have to be imposed on the solutions.

We have to distinguish between closed and open strings

The treatment for the bosonic coordinates is identical to the
bosonic string. Let us briefly recall it.
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Oscillator expansions: Closed bosonic string

The general solution of the two-dimensional wave equation
∂+∂−X

µ = 0, compatible with the periodicity condition

Xµ(σ, τ) = Xµ(σ + l , τ)

is

Xµ(σ, τ) = Xµ
R (τ − σ) + Xµ

L (τ + σ)

where

Xµ
R (τ − σ) =

1

2
xµ +

πα′

l
pµ(τ − σ) + i

√
α′

2

∑
n ̸=0

1

n
αµ
ne

− 2π
l
in(τ−σ)

Xµ
L (τ + σ) =

1

2
xµ +

πα′

l
pµ(τ + σ) + i

√
α′

2

∑
n ̸=0

1

n
α̃µ
ne

− 2π
l
in(τ+σ)
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Oscillator expansions: Closed bosonic string

If we define

αµ
0 = α̃µ

0 =

√
α′

2
pµ

we can write

∂−X
µ = Ẋµ

R =
2π

l

√
α′

2

+∞∑
n=−∞

αµ
ne

− 2π
l
in(τ−σ)

∂+X
µ = Ẋµ

L =
2π

l

√
α′

2

+∞∑
n=−∞

α̃µ
ne

− 2π
l
in(τ+σ)
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Oscillator expansions: Closed bosonic string

From the Poisson brackets for the Xµ, we derive the brackets for
the αµ

n , α̃
µ
n , xµ, pµ

[αµ
m, α

ν
n]PB = [α̃µ

m, α̃
ν
n]PB = −imδm+nη

µν ,

[α̃µ
m, α

ν
n]PB = 0 ,

[xµ, pν ]PB = ηµν
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Oscillator expansions: Open bosonic string

For the open string we have to require X ′µ = 0 at σ = 0 and
σ = l . The general solution of the wave equation subject to these
bdry cond is

Xµ(τ, σ) = xµ +
2πα′

l
pµτ + i

√
2α′
∑
n ̸=0

1

n
αµ
ne

−i π
l
nτ cos

(nπσ
l

)
from which we get, with αµ

0 =
√
2α′pµ,

∂±X
µ =

1

2
(Ẋµ ± X ′µ) =

π

l

√
α′

2

+∞∑
n=−∞

αµ
ne

−πin
l
(τ±σ)

Then

[αµ
m, α

ν
n]PB = −imδm+nη

µν , [xµ, pν ]PB = ηµν
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Oscillator expansions of fermionic fields: closed string

The fermionic fields require some care. We have to distinguish
between two choices of boundary cond for each chirality.
The general solutions of the two-dimensional Dirac equation with
periodic (R) and antiperiodic (NS) bdy cond are

ψµ
+(σ, τ) =

√
2π

l

∑
r∈Z+ϕ

b̃µr e
−2πir(τ+σ)/l

where

{
ϕ = 0 (R)
ϕ = 1

2 (NS)

ψµ
−(σ, τ) =

√
2π

l

∑
r∈Z+ϕ

bµr e
−2πir(τ−σ)/l

The reality of the Majorana spinors translates into
(bµr )∗ = bµ−r , (b̃

µ
r )∗ = b̃µ−r
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Oscillator expansions of fermionic fields: closed string

In terms of the fermionic oscillator modes, the anticommutators

{ψµ
+(σ), ψ

ν
+(σ

′)} = {ψµ
−(σ), ψ

ν
−(σ

′)} = −2πiδ(σ − σ′)ηµν ,

{ψµ
+(σ), ψ

ν
−(σ

′)} = 0

translate to

{bµr , bνs } = −iδr+sη
µν ,

{b̃µr , b̃νs } = −iδr+sη
µν ,

{bµr , b̃νs } = 0

Next we decompose the generators of conformal and
superconformal transformations into modes
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Oscillator expansions of T±± and TF±

The conservation equations

∂−T++ = 0 , ∂+T−− = 0

=⇒ the existence of an infinite number of conserved charges: for
any function f (σ+) we have ∂−(f (σ

+)T++) = 0 and the
corresponding charges are

Lf =
1

πα′

∫ l

0
dσ+f (σ+)T++(σ

+)

and similarly for T−−.
We can choose for f (σ±) a complete set satisfying the periodicity
condition appropriate for the closed string:

fm(σ
±) = exp

(
2πi

l
mσ±

)
for all integers m
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Energy-momentum tensor and supercurrent

We then define the super-Virasoro generators as the corresponding
charges at τ = 0

Ln = − l

4π2

∫ l

0
dσe−

2πi
l
nσT−− ,

L̃n = − l

4π2

∫ l

0
dσe

2πi
l
nσT++ ,

Gr = − 1

π

√
l

2π

∫ l

0
dσe−2πirσ/lTF−(σ)

G̃r = − 1

π

√
l

2π

∫ l

0
dσe2πirσ/lTF+(σ)
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In terms of oscillators Lm = L
(α)
m + L

(b)
m

L
(α)
n =

1

2

∑
m∈Z

α−m · αm+n

L
(b)
n =

1

2

∑
r

(
r +

n

2

)
b−r · bn+r

Gr =
∑
m

α−m · br+m

Note
∑

b−r · bn+r = 0 as it corresponds to ∂−(ψ−ψ−). It was
included to make the expression look more symmetric.

From the definition we see TF± has the same periodicity as the ψµ
±

TF± = −1

2

√
2

α′ψ± · ∂±X

periodic in the R-sector and antiperiodic in the NS-sector =⇒ the
mode numbers are integer and half-integer respectively.
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In terms of oscillators Lm = L
(α)
m + L

(b)
m

L
(α)
n =

1

2

∑
m∈Z

α−m · αm+n

L
(b)
n =

1

2

∑
r

(
r +

n

2

)
b−r · bn+r

Gr =
∑
m

α−m · br+m

Note
∑

b−r · bn+r = 0 as it corresponds to ∂−(ψ−ψ−). It was
included to make the expression look more symmetric.
From the definition we see TF± has the same periodicity as the ψµ

±

TF± = −1

2

√
2

α′ψ± · ∂±X

periodic in the R-sector and antiperiodic in the NS-sector =⇒ the
mode numbers are integer and half-integer respectively.
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In terms of oscillators Lm = L
(α)
m + L

(b)
m

L
(α)
n =

1

2

∑
m∈Z

α−m · αm+n

L
(b)
n =

1

2

∑
r

(
r +

n

2

)
b−r · bn+r

Gr =
∑
m

α−m · br+m

Note
∑

b−r · bn+r = 0 as it corresponds to ∂−(ψ−ψ−). It was
included to make the expression look more symmetric.
From the definition we see TF± has the same periodicity as the ψµ

±

TF± = −1

2

√
2

α′ψ± · ∂±X

periodic in the R-sector and antiperiodic in the NS-sector =⇒ the
mode numbers are integer and half-integer respectively.
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Classical super-Virasoro algebra

The generators Lm and Gr satisfy the following reality conditions

L∗m = L−m , G ∗
r = G−r

Using the basic brackets, one can now verify

[Lm, Ln] = −i(m − n)Lm+n

[Lm,Gr ] = −i(
1

2
m − r)Gm+r

{Gr ,Gs} = −2iLr+s

It can also be derived from the Poisson brackets for T±± and TF±
and the definitions of Lm,Gr , L̃m, G̃r . For the closed string there
are two copies of this algebra, one for the left- and one for the
right-movers.
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Oscillator expansions of fermionic fields: open string

For the open string we also expand the fermionic fields in modes
and implement the bdy cond

ψµ
+(0) = ψµ

−(0) , ψµ
+(l) = ηψµ

−(l)

The bdy cond relate the left- and right-moving modes and there is
only one set of oscillators.

ψµ
±(σ, τ) =

√
π

l

∑
r

bµr e
−πir(τ±σ)/l where r ∈

{
Z (R)

Z+ 1
2 (NS)
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Energy-momentum tensor and supercurrent

We now derive the mode expansions of the Virasoro generators for
the open string.

The bdy cond mix left- and right-movers and
consequently T++ and T−−

Ln = − l

2π2

∫ l

−l
dσe

iπ
l
nσT++(σ)

Gr = − 1

π

√
l

π

∫ l

−l
dσe iπrσ/lTF+(σ)

=⇒ Ln =
1

2

∑
m∈Z

α−m · αm+n +
1

2

∑
r

(
r +

n

2

)
b−r · bm+r

Gr =
∑
m

α−m · br+m with

{
r ∈ Z for R

r ∈ Z+ 1
2 for NS
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Energy-momentum tensor and supercurrent

We now derive the mode expansions of the Virasoro generators for
the open string. The bdy cond mix left- and right-movers and
consequently T++ and T−−

Ln = − l

2π2

∫ l

−l
dσe

iπ
l
nσT++(σ)

Gr = − 1

π

√
l

π

∫ l

−l
dσe iπrσ/lTF+(σ)

=⇒ Ln =
1

2

∑
m∈Z

α−m · αm+n +
1

2

∑
r

(
r +

n

2

)
b−r · bm+r

Gr =
∑
m

α−m · br+m with

{
r ∈ Z for R

r ∈ Z+ 1
2 for NS
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Classical super-Virasoro algebra

The generators Lm and Gr satisfy the following reality conditions

L∗m = L−m , G ∗
r = G−r

Using the basic brackets, one can now verify

[Lm, Ln] = −i(m − n)Lm+n

[Lm,Gr ] = −i(
1

2
m − r)Gm+r

{Gr ,Gs} = −2iLr+s

It can also be derived from the Poisson brackets for T±± and TF±
and the definitions of Lm,Gr , L̃m, G̃r . For the closed string there
are two copies of this algebra, one for the left- and one for the
right-movers.


