Neutrinos in Cosmology and Astrophysics

Pedro C. Holanda Instituto de Física Gleb Wataghin UNICAMP

INSS, 08/2015

Talk Summary

- Lecture 1: Introduction to Cosmology
- Lecture 2: Neutrino Cosmology
- Lecture 3: Neutrino Astrophysics

Talk Summary

- Lecture 1: Introduction to Cosmology
- Lecture 2: Neutrino Cosmology
- Lecture 3: Neutrino Astrophysics

Einstein Equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$$

$g_{\mu\nu} : \text{metric}$ $R_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma^{\alpha}_{\mu\alpha,\nu} + \Gamma^{\alpha}_{\beta\alpha}\Gamma^{\beta}_{\mu\nu} + \Gamma^{\alpha}_{\beta\nu}\Gamma^{\beta}_{\mu\alpha}$ $R = g^{\mu\nu}R_{\mu\nu}$

Isotropic, uniform, expanding universe:

$$g_{\mu\nu} = diag(-1, a^2, a^2, a^2) \qquad \text{FRW metric}$$

$$d\tau^2 = dt^2 - a^2 |d\vec{r}|^2$$

$$R_{00} = (...) = -3\frac{\ddot{a}}{a}$$

$$R_{ij} = (...) = \delta_{ij}(2\dot{a}^2 + a\ddot{a})$$

$$R = -R_{00} + \frac{1}{a^2}R_{ii} = 6\left[\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2\right]$$

Left-hand side of Einstein Equation:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = (\dots) = \left(\frac{\dot{a}}{a}\right)^2$$

For the right-hand side, we assume a perfect isotropic fluid:

Putting everything together for the 00 element of Einstein Equation:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho \quad \longrightarrow \quad \text{Energy content of the Universe dictate its evolution}$$

Same equation, new nomenclature:

$$H = \dot{a}/a$$
$$H_0 = \dot{a}/a)_{\text{today}}$$
$$\rho_{cr} = 3H_0^2/8\pi G$$
$$\Omega_i = \rho_i/\rho_{cr}$$

$$\frac{H^2}{H_0^2} = \sum_i \frac{\rho_i}{\rho_{cr}} = \sum_i \Omega_i$$

Friedmann Equation

and some numbers:

 $H_0 = 67.3 \pm 1.2 \,\mathrm{km/s/Mpc} = h \times (100 \,\mathrm{km/s/Mpc})$

latest Planck results

Energy Conservation:

$$T^{\mu}_{\nu,\mu} = \frac{\partial T^{\mu}_{\nu}}{\partial x^{\mu}} + \Gamma^{\mu}_{\alpha\mu}T^{\alpha}_{\nu} - \Gamma^{\alpha}_{\nu\mu}T^{\mu}_{\alpha} = 0$$

For v = 0:

$$\frac{\partial \rho}{\partial t} + \frac{\dot{a}}{a} \left[3\rho + 3P \right] = 0$$

Radiation (in thermal equilibrium): P=
ho/3

$$\frac{\partial \rho}{\partial t} + 4\frac{\dot{a}}{a}\rho = \frac{1}{a^4}\frac{\partial}{\partial t}\left[\rho a^4\right] = 0$$

How does the Universe evolve?

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \frac{\rho_0}{a^4} \longrightarrow a(t) = \left(\frac{32\pi G\rho_0}{3}\right)^{1/4} t^{1/2}$$

(non-relativistic) matter: $P \sim v^2 << \rho$

$$\frac{\partial \rho}{\partial t} + 3\frac{\dot{a}}{a}\rho = \frac{1}{a^3}\frac{\partial}{\partial t}\left[\rho a^3\right] = 0$$

How does the Universe evolve?

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \frac{\rho_0}{a^3} \longrightarrow a(t) = \left(\frac{18\pi G\rho_0}{3}\right)^{1/3} t^{2/3}$$

Cosmological Constant:

$$\rho = \text{constant} = -P$$

How does the Universe evolve?

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho_0 \longrightarrow a(t) = exp\left[\left(\frac{8\pi G\rho_0}{3}\right)^{1/2}t\right]$$

Back to Friedmann equation:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left[\frac{\rho_0^{rad}}{a^4} + \frac{\rho_0^{nr}}{a^3} + \rho_\Lambda\right]$$

- ρ_0^{rad} : photons and neutrinos
- ρ_0^{nr} : atoms and cold dark matter
 - ρ_{Λ} : cosmological constant

Back to Friedmann equation:

 $\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \left[\frac{\rho_{0}^{\gamma}}{a^{4}} + \frac{\rho_{0}^{\nu}}{a^{4}} + \frac{\rho_{0}^{CDM}}{a^{3}} + \frac{\rho_{0}^{mat.}}{a^{3}} + \rho_{\Lambda}\right]$

1978 Nobel, Penzias and Wilson 2006 Nobel, Mather and Smoth

2011 Nobel, Perlmutter, Schmidt and Riess

Our concern here

Back to Friedmann equation:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left[\frac{\rho_0^{\gamma}}{a^4} + \frac{\rho_0^{\nu}}{a^4} + \frac{\rho_0^{CDM}}{a^3} + \frac{\rho_0^{mat.}}{a^3} + \rho_\Lambda\right]$$

more numbers, again from Planck:

$$\begin{aligned} \Omega_{\gamma} h^2 &= 2.47 \times 10^{-5} \\ \Omega_c h^2 &= 0.1199 \pm 0.0027 \\ \Omega_b h^2 &= 0.02205 \pm 0.00028 \\ \Omega_{\Lambda} &= 0.685^{+0.018}_{-0.016} \end{aligned}$$

Hom many neutrinos?

- thermal equilibrium (with Fermi-Dirac distribution) with plasma for high enough temperature:

 $\begin{array}{rccc} n + \nu_e & \leftrightarrow & p^+ + e^- \\ n + e^+ & \leftrightarrow & p^+ + \bar{\nu}_e \end{array}$

- neutrinos and photons (through scattering with electrons) share the same temperature, i.e., the same number density for each neutrino flavor, apart from a 7/8 numerical factor distinguishing boson and fermions distributions.

$$n_{\nu} = 3 \times \frac{7}{8} n_{\gamma} \sim 1180 \,\mathrm{cm}^{-3} \left(\times \frac{1}{a^3} \right)$$

Hom many neutrinos?

- thermal equilibrium (with Fermi-Dirac distribution) with plasma for high enough temperature:

 $\begin{array}{rccc} n + \nu_e & \leftrightarrow & p^+ + e^- \\ n + e^+ & \leftrightarrow & p^+ + \bar{\nu}_e \end{array}$

- neutrinos and photons (through scattering with electrons) share the same temperature, i.e., the same number density for each neutrino flavor, apart from a 7/8 numerical factor distinguishing boson and fermions distributions.

$$n_{\nu} = 3 \times \frac{7}{8} n_{\gamma} \sim 1180 \, {\rm cm}^{-3} \left(\times \frac{1}{a^3} \right)$$
 If in thermal equilibrium

Hom many neutrinos?

- outside thermal equilibrium: boltzman equations for $1+2 \leftrightarrow 3+4$ reaction in expanding universe:

$$a^{-3}\frac{d(n_{1}a^{3})}{dt} = n_{1}^{(0)}n_{2}^{(0)} < \sigma v > \left\{\frac{n_{3}n_{4}}{n_{3}^{(0)}n_{4}^{(0)}} - \frac{n_{1}n_{2}}{n_{1}^{(0)}n_{2}^{(0)}}\right\}$$

Roughfly expansion rate

$$<< \qquad \text{equilibrium} \\ >> \qquad \text{decoupling}$$

For neutrinos: $T \sim 1$ MeV, but still same number density of photons Let's calculate this number?

Hom many neutrinos?

- photons reheat after neutrino decoupling due to e+e- anihilation:

$$\frac{T_{\gamma}}{T_{\nu}} = \left(\frac{11}{4}\right)^{1/3}$$

Calculated through entropy density arguments

- leaving fewer neutrinos than photons:

$$\frac{n_{\gamma}}{n_{\nu}} = \frac{3}{11}$$

But still a lot: 113 v/cm³ per flavour

- cosmic microwave background spectrum, CMB (Blackbody radiation)

- 3 neutrinos for each photon, sharing the same temperature (but following a Fermi-Dirac distribution). Neutrino decoupling occurs for T ~ few MeV.

- Photon Reheating through $e^+ + e^-$ annihilation.

- Since higher energy neutrinos decouple last, some are still in contact with plasma during $e^+ + e^-$ annihilation \rightarrow partial heating of neutrinos (x10 in plot).

- Since higher energy neutrinos decouple last, some are still in contact with plasma during $e^+ + e^-$ annihilation \rightarrow partial heating of neutrinos (x10 in plot).

Neutrino is part of the energy content of the universe.

Neutrino is part of the energy content of the universe.

Relativistic neutrinos:

$$\rho_{\nu}(m_{\nu} << T_{\nu}) = \frac{7\pi^2}{120} \left(\frac{4}{11}\right)^{4/3} T_{\gamma}^4 \longrightarrow \Omega_{\nu} h^2 =$$

•
$$\Omega_{\nu}h^2 = 1.68 \times 10^{-5}$$

Neutrino is part of the energy content of the universe.

Relativistic neutrinos:

$$\rho_{\nu}(m_{\nu} \ll T_{\nu}) = \frac{7\pi^2}{120} \left(\frac{4}{11}\right)^{4/3} T_{\gamma}^4$$

•
$$\Omega_{\nu}h^2 = 1.68 \times 10^{-5}$$

Massive neutrinos:

$$\rho_{\nu}(m_{\nu} >> T_{\nu}) = m_{\nu}n_{\nu} \longrightarrow \Omega_{\nu}h^2 = \frac{\sum m_{\nu}}{94 \text{ eV}}$$

Neutrino is part of the energy content of the universe.

Relativistic neutrinos:

$$\rho_{\nu}(m_{\nu} \ll T_{\nu}) = \frac{7\pi^2}{120} \left(\frac{4}{11}\right)^{4/3} T_{\gamma}^4$$

$$\mathbf{\Omega}_{\nu}h^2 = 1.68 \times 10^{-5}$$

Massive neutrinos:

$$\rho_{\nu}(m_{\nu} >> T_{\nu}) = m_{\nu}n_{\nu} \longrightarrow \Omega_{\nu}h^2 = \frac{\sum m_{\nu}}{94 \text{ eV}}$$

Neutrino is part of the energy content of the universe.

Relativistic neutrinos:

$$\rho_{\nu}(m_{\nu} \ll T_{\nu}) = \frac{7\pi^2}{120} \left(\frac{4}{11}\right)^{4/3} T_{\gamma}^4$$

$$\bullet \quad \Omega_{\nu}h^2 = 1.68 \times 10^{-5}$$

Massive neutrinos:

Other important moments in Universe history

- At first, radiation dominated the energy content of the Universe (scales as a⁻⁴)
- As the universe cools down, matter grows in importance (scales as a⁻³) Equality happens when:

$$\frac{\rho_0^m}{a^3} = \frac{\rho_0^{rad}}{a^4} \quad \longrightarrow \quad a = \frac{\rho_0^{rad}}{\rho_0^m} \sim 10^{-4}$$

Transition between pressured to pressureless Universe

Structures start to grow!

Other important moments in Universe history

- CMB decoupling: when universe cools down enough even the most energetic photons are not energetic or numerous enough to prevent atoms to form.

- Electrons are captured by protons, forming Hydrogen atoms.
- Photons scattering cross-section drops, and photons travel freely since.

RECOMBINATION

BBN: Big-Bang Nucleosynthesis:

What is the proton/neutron ratio in our Universe?

BBN: Big-Bang Nucleosynthesis:

What is the proton/neutron ratio in our Universe? (tip: take Sun as "typical")

BBN: Big-Bang Nucleosynthesis:

What is the proton/neutron ratio in our Universe?

Answer:

BBN: Big-Bang Nucleosynthesis:

What is the proton/neutron ratio in our Universe?

Answer: 1 neutron for each ~7 protons

Why?

- neutrons outside an atom are unstable \rightarrow no neutrons today
- neutrons and protons were onde in thermal equilibrium \rightarrow same number

BBN: Big-Bang Nucleosynthesis:

What is the proton/neutron ratio in our Universe?

Answer: 1 neutron for each ~7 protons

Why?

- neutrons outside an atom are unstable \rightarrow no neutrons today
- neutrons and protons were onde in thermal equilibrium \rightarrow same number

Answer: neutrinos

 $\begin{array}{rccc} n + \nu_e & \leftrightarrow & p^+ + e^- \\ n + e^+ & \leftrightarrow & p^+ + \bar{\nu}_e \end{array}$

BBN: Big-Bang Nucleosynthesis:

What is the proton/neutron ratio in our Universe?

Answer: 1 neutron for each ~7 protons

Why?

- neutrons outside an atom are unstable \rightarrow no neutrons today
- neutrons and protons were onde in thermal equilibrium \rightarrow same number

Answer: neutrinos

 $\begin{array}{rccc} n + \nu_e & \leftrightarrow & p^+ + e^- \\ n + e^+ & \leftrightarrow & p^+ + \bar{\nu}_e \end{array}$

- guarantees equilibrium when $T >> m_{n.p.}$
- enhance neutron conversion when $T < m_{nn}$.
- decouple at the right moment to produce 7:1.

CMB anisotropies:

Early universe was almos isotropic, and small unisotropy is imprinted in CMB fluctuations.

CMB anisotropies:

(Massless) Neutrinos affect anisotropies through:

- matter-radiation energy density equality time
- perturbations

How we know they are there

Structure Formation:

Left out because choices must be made (and because we would be talking about non-linear effects, which is hard)...

How we know they are there

Structure Formation:

Left out because choices must be made (and because we would be talking about non-linear effects, which is hard)...

Enought for today. Tomorrow we put mass no neutrinos!