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Class 2: The quantized fermionic string

Canonical quantization

Light-cone quantization

Spectrum of the fermionic string, GSO projection
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Summary

The fermionic string is quantized analogously to the bosonic string,
although now we’ll find the critical dimension is 10

The super-Virasoro constraints, which allow to eliminate the
ghosts, are implemented and analyzed in essentially the same way
as in the bosonic string.

One new feature is the existence of two sectors: bosonic and
fermionic, which have to be studied separately.

To remove the tachyon one has to perform the so-called GSO
projection, which guarantees space-time supersymmetry of the
ten-dimensional theory.

There are two possible space-time supersymmetric GSO projections
which result in the Type IIA and Type IIB superstring.
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Canonical quantization

We will consider the functions Xµ(τ, σ) and ψµ(τ, σ) as quantum
mechanical operators

This is equivalent to the transition from classical mechanics to
quantum mechanics via canonical commutation relations for the
coordinates and their conjugate momenta.

The Poisson brackets are promoted to (anti)commutators
according to

[ , ]PB → 1

i
[ , ] , { , }PB → 1

i
{ , }
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Canonical quantization

In this way we obtain for the equal time commutators[
Xµ(σ), Ẋµ(σ′)

]
= 2πiα′ηµνδ(σ, σ′)[

Xµ(σ),Xµ(σ′)
]

=
[
Ẋµ(σ), Ẋµ(σ′)

]
= 0

{ψµ
+(σ), ψ

ν
+(σ

′)} = {ψµ
−(σ), ψ

ν
−(σ

′)} = 2πδ(σ − σ′)ηµν ,

{ψµ
+(σ), ψ

ν
−(σ

′)} = 0
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The Fourier expansion coefficients are now operators with the
following (anti)commutation relations

[αµ
m, α

ν
n] = [α̃µ

m, α̃
ν
n] = mδm+nη

µν ,

[α̃µ
m, α

ν
n] = 0 ,

[xµ, pν ] = iηµν

{bµr , bνs } = {b̃µr , b̃νs } = δr+sη
µν ,

{bµr , b̃νs } = 0

The reality conditions become hermiticity conditions:

(αµ
m)

† = αµ
−m , (α̃µ

m)
† = α̃µ

−m

and if we rescale them as: aµm = 1√
m
αµ
m, (a

µ
m)† =

1√
m
αµ
−m for

m > 0 , then the aµm satisfy the usual harmonic oscillator
commutation relations.
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Hilbert space

We define oscillators with positive (negative) mode numbers as
annihilation (creation) operators.

Recall the bosonic string: The ground state is annihilated by all
positive modes and we choose it to be an eigenstate of the center
of mass momentum operator αµ

0 and α̃µ
0 with eigenvalue pµ:

αµ
m|0; pµ > = 0 , α̃µ

m|0; pµ >= 0 , for m > 0

p̂µ|0; pµ > = pµ|0; pµ >

To examine the states in the Hilbert space of the fermionic theory
we have to distinguish between R and NS sectors.
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Hilbert space

The oscillator ground state in the NS sector is defined by

αµ
m|0 >NS= bµr |0 >NS= 0 , m = 1, 2, . . . , r =

1

2
,
3

2
, . . .

and the ground state in the R sector is defined as

αµ
m|a >R= bµm|a >R= 0 , m = 1, 2, . . . ,

|a >R is because of the zero modes bµ0 . Recall

{bµr , bνs } = {b̃µr , b̃νs } = δr+sη
µν ,

Then {bµ0 , bν0} = ηµν .

It is easy to check that [bµ0 ,M
2] = 0 =⇒

the states |a > and
∏

i b
µi
0 |a > are degenerate in mass.
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Hilbert space

The mass-shell condition is determined by the zero-frequency part
of the Virasoro constraints. Recall the closed bosonic string

L0 =
∞∑
n=1

α−n · αn +
1

2
α2
0 = N +

α′

4
p2

L̃0 =
∞∑
n=1

α̃−n · α̃n +
1

2
α2
0 = Ñ +

α′

4
p2

Then

M2 = −pµpµ = M2
L +M2

R ,

α′M2
L = 2(Ñ + a) , α′M2

R = 2(N + a)

a is the normal ordering constant accounting for the ordering
ambiguity of L0 and M2

L = M2
R .



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Normal ordering

The super-Virasoro generators are undefined without giving an
operator ordering prescription. We define them by normal ordering:
annihilation operators to the right of creation operators

Ln = L
(α)
n + L

(b)
n

L
(α)
n =

1

2

∑
m∈Z

: α−m · αm+n :

L
(b)
n =

1

2

∑
r∈Z+ϕ>0

(
r +

n

2

)
: b−r · bn+r :

Gr =
∑
m∈Z

α−m · br+m

Ambiguity in L0 taken into account by normal ordering constant
a → aNS and aR .
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Level numbers

The mass operators for the fermionic string are given by the same
expressions as in the bosonic case:

α′M2 = N + constant

but with level number operator: N = N(α) + N(b)

N(α) =
∞∑

m=1

α−m · αm N(b) =
∑

r∈Z+ϕ>0

rb−r · br

and constant = aNS or aR .
An excitation by αµ

−m with m > 0 increases α′M2 by m units.
An excitation by bµ−r with r > 0 increases α′M2 by r units.
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NS and R sectors

In the NS sector (r ∈ Z+ 1
2) there is a unique ground state, which

may then be identified with a spin zero state.

In the R sector the ground state is degenerate:
The states |0 > and

∏
i b

µi
0 |0 > are degenerate in mass.

They form a representation of the Clifford algebra: {bµ0 , bν0} = ηµν .

We then represent the bµ0 as Dirac matrices:

bµ0 |a >=
1√
2
(γµ)ab|b >

γµ is a Dirac matrix in d dimensions, satisfying {γµ, γν} = 2ηµν
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2) there is a unique ground state, which

may then be identified with a spin zero state.

In the R sector the ground state is degenerate:
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∏
i b

µi
0 |0 > are degenerate in mass.

They form a representation of the Clifford algebra: {bµ0 , bν0} = ηµν .
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NS and R sectors

We write the R ground state |a >, where a is an SO(d − 1, 1)
spinor index.
|a > transforms as a spinor of SO(d −1, 1) =⇒ they are fermions.

Since the oscillators are all space-time vectors, they cannot
change bosons into fermions or viceversa =⇒

Whether a state belongs to the R or NS sector depends on the
ground state it is built on.

We still have to implement the constraints on the states.
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The R ground state

We can work out an explicit description of |0 >R for d even.
Define fermionic raising and lowering operators

b±0 =
1

2
(±b00 + b10) ,

b±i =
1

2
(b2i0 ± ib2i+1

0 ) , i = 1, . . . ,
d − 2

2

In this basis, the Clifford algebra reads (i = 0, . . . , d−2
2 )

{b+i , b
−
j } = δij

Define a highest weight state |0 >R satisfying b−i |0 >R= 0.

Successive application of the raising operators b+i generates the 2
d
2

dimensional representation of SO(d − 1, 1). For d = 10:

|s >= |s0, s1, s2, s3, s4 > , with si = ±1

2
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The R ground state

|s >= |s0, s1, s2, s3, s4 > , with si = ±1

2

where

|0 >R= | − 1

2
,−1

2
,−1

2
,−1

2
,−1

2
> ,

and b+i raises si from −1
2 to +1

2 .

This leads to a 2
n
2 representation of the bµ0 :

|s >= (b+4 )
s4+1/2 · · · (b+0 )

s0+1/2|0 >R

The notation s reflects the Lorentz properties of the spinors.
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2
> ,

and b+i raises si from −1
2 to +1

2 .
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The Lorentz generators

Σµν = − i

4
[γµ, γν ]

satisfy the SO(d − 1, 1) algebra

i [Σµν ,Σρσ] = ηνρΣµσ − ηνσΣµρ − ηµρΣνρ + ηµσΣνρ

The generators Σ2i ,2i+1 commute and can be simultaneously
diagonalized. In terms of raising and lowering operators

Si = iδi,0Σ2i ,2i+1 = b+i b
−
i − 1

2

so |s > is a simultaneous eigenstate of the Si with eigenvalues si .
The half-integer values show that this is a spinor representation.
The spinors form the 2d/2 dimensional representation of the
Lorentz algebra SO(d − 1, 1)
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The Dirac representation is reducible as a representation of the
Lorentz algebra. Because Σµν is quadratic in the γµ matrices, the
|s > with even and odd numbers of +1

2 do not mix.

Define

Γ = i−(d−2)/2γ0γ1 · · · γd−1 = 2d/2S0S1 · · · Sd/2

which has the properties

(Γ)2 = 1 , {Γ, γµ} = 0 , [Γ,Σµν ] = 0

The eigenvalues of Γ are ±1.

Then Γ is diagonal, taking the value +1 when the sa include an
even number of −1

2s and −1 for an odd number of −1
2 .



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Dirac representation is reducible as a representation of the
Lorentz algebra. Because Σµν is quadratic in the γµ matrices, the
|s > with even and odd numbers of +1

2 do not mix.
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The 2d/2 states with Γ eigenvalue (chirality) +1 form a Weyl
representation of the Lorentz algebra, and the 2d/2 states with
eigenvalue −1 form a second, inequivalent, Weyl representation.

In d = 4, the Dirac representation is the familiar four-dimensional
one, which separates into two two-dimensional Weyl repr.

4Dirac = 2+ 2′

In d = 10 the representations are

32Dirac = 16+ 16′
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The 2d/2 states with Γ eigenvalue (chirality) +1 form a Weyl
representation of the Lorentz algebra, and the 2d/2 states with
eigenvalue −1 form a second, inequivalent, Weyl representation.

In d = 4, the Dirac representation is the familiar four-dimensional
one, which separates into two two-dimensional Weyl repr.

4Dirac = 2+ 2′

In d = 10 the representations are

32Dirac = 16+ 16′
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Hilbert space

Recall in the bosonic string, η00 = −1 =⇒ [α0
m, α

0
−m] = −m, and

α0
−m|0 >, with m > 0, have negative norm

< 0|α0
mα

0
−m|0 > < 0

They are called ghosts
The physical state conditions: Virasoro constraints, allowed to
decouple the ghosts.
The constraints Ln|ϕ >= 0, cannot be implemented ∀n since

< ϕ| [Ln, L−n] |ϕ >=< ϕ|2nL0|ϕ > +
c

12
n(n2 − 1) < ϕ|ϕ >

At most:

Ln|phys > = 0 , n > 0

(L0 + a)|phys > = 0
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For the closed string there are similar constraints involving L̃n and
the level matching condition (L0 − L̃0)|phys >= 0

For the fermionic string we need the super Virasoro algebra.

[Lm, Ln] = (m − n)Lm+n +
d

8
m(m2 − 2ϕ)δm+n

[Lm,Gr ] =
(m
2
− r

)
Gm+r

{Gr ,Gs} = 2Lr+s +
d

2

(
r2 − ϕ

2

)
δr+s

with ϕ = 0 for R and ϕ = 1/2 for NS.

A straightforward way to derive it is to evaluate the
(anti)commutators between two states which are annihiated by all
annihilation operators or to use techniques of SCFT
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Hilbert space

Due to the anomalies in the super Virasoro algebra, it is again
impossible to impose Lm|phys >= Gr |phys >= 0,∀m, r =⇒

Ln|phys > = 0 , n > 0

Gr |phys > = 0 , r > 0

(L0 + a)|phys > = 0 ,

in the NS sector, and

Ln|phys > = 0 , n > 0

Gr |phys > = 0 , r ≥ 0

L0|phys > = 0 ,

in the R sector
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Hilbert space

Note we have not included a normal ordering constant in the R
sector. There are several reasons for this.

From the super Virasoro algebra we find G 2
0 = L0, i.e. if we had

(L0 − µ2)|phys >= 0 we also need (G0 − µ)|phys >= 0.
However G0 =

∑
m α−m · bm has no normal ordering ambiguity.

Also, G0 is anti-commuting whereas the normal ordering constant
is a commuting c-number.

When we discuss the spectrum we’ll find that µ = 0 is correct.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Hilbert space

For the closed string we have of course a second set of conditions
for left-movers and also

(L0 − L̃0)|phys >= 0 ,

again expressing that no point on a closed string is distinguished.

Consider the ground state in the R sector. Physical state
=⇒ G0|a >= 0. With

G0 =
∑
m∈Z

α−m·bm and αµ
m|a >R= bµm|a >R= 0 , m = 1, 2, . . .

we find
G0|a >= α0µb

µ
0 |a >∝ pµ(γ

µ)ab|b >= 0
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Hilbert space

For the closed string we have of course a second set of conditions
for left-movers and also

(L0 − L̃0)|phys >= 0 ,

again expressing that no point on a closed string is distinguished.

Consider the ground state in the R sector. Physical state
=⇒ G0|a >= 0. With

G0 =
∑
m∈Z

α−m·bm and αµ
m|a >R= bµm|a >R= 0 , m = 1, 2, . . .

we find
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0 |a >∝ pµ(γ
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Canonical quantization

G0|a >= α0 · b0|a >∝ pµ(γ
µ)ab|b >= 0

Introducing the polarization spinor us and defining the state
|u >= us |s > =⇒ |u > is a physical state if pµγµu = 0, i.e. if u
satisfies the massless Dirac equation.

What about the negative norm states?

One can prove a no-ghost theorem stating that the ghosts
decouple in the critical dimension d for a particular value of the
normal ordering constant.

For the fermionic string, the superconformal symmetry is enough
to allow for ghost decoupling for d = 10 and a = −1/2
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One can prove a no-ghost theorem stating that the ghosts
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|u >= us |s > =⇒ |u > is a physical state if pµγµu = 0, i.e. if u
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µ)ab|b >= 0

Introducing the polarization spinor us and defining the state
|u >= us |s > =⇒ |u > is a physical state if pµγµu = 0, i.e. if u
satisfies the massless Dirac equation.
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One can prove a no-ghost theorem stating that the ghosts
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Light-Cone quantization

We will not prove the no-ghost theorem but instead discuss the
non-covariant light-cone quantization where the constraints are
solved explicitly.

In the bosonic theory the light-cone gauge is obtained by

X+ =
2πα′

l
p+τ

which fixes the gauge completely.

X± = X 0 ± X 1 are light-cone coordinates in space-time.

This gauge is again possible in the fermionic theory and also
completely eliminates the reparametrization invariance.
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Light-Cone quantization

We will not prove the no-ghost theorem but instead discuss the
non-covariant light-cone quantization where the constraints are
solved explicitly.

In the bosonic theory the light-cone gauge is obtained by

X+ =
2πα′

l
p+τ

which fixes the gauge completely.

X± = X 0 ± X 1 are light-cone coordinates in space-time.

This gauge is again possible in the fermionic theory and also
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Light-cone quantization

In the bosonic theory, the conformal gauge leaves some gauge
freedom: reparametrizations and Weyl transformations which do
not change the gauge.

This allows to fix τ = X+ at each point of the world-sheet.

Now we still have local supersymmetry transformations

In going to super-conformal gauge we have fixed it partially,
leaving only transformations satisfying ∂+ϵ

− = ∂−ϵ
+ = 0.

This freedom can now be used to transform ψ+ away:

X+ =
2πα′

l
p+τ , ψ+ =

1√
2
(ψ0 + ψ1) = 0 ,

or, equivalently b+r = 0, ∀r . We can now solve the constraints.
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This allows to fix τ = X+ at each point of the world-sheet.
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In going to super-conformal gauge we have fixed it partially,
leaving only transformations satisfying ∂+ϵ
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(ψ0 + ψ1) = 0 ,
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Solving the constraints

The bosonic constraints T±± = 0 lead to

∂±X
− =

1

2p+
l

2π

(
1

α′∂±X
i∂±X

i + iψi
±∂±ψ

i
±

)
and the fermionic constraints TF± = 0 =⇒

ψ−
± =

2

α′p+
l

2π
ψi
±∂±X

i ,

which leaves only the transverse coordinates X i and ψi as
independent dof.
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Solving the constraints

The corresponding oscillator expressions are

α−
m =

1√
2α′p+

{∑
n

: αi
nα

j
m−nδij +

∑
r

(m
2
− r

)
: birb

i
m−r : +aδm

}

and

b−r =

√
2

α′
1

p+

∑
q

αi
r−qb

i
q

For the closed string we have to supplement these expressions with
the right-movers.
For the open string there is a 1/2 factor in the r.h.s.
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Solving the constraints

For the closed string the level matching condition L0 − L̃0 = 0
leads to

N
(α)
tr + N

(b)
tr = Ñ

(α)
tr + Ñ

(b)
tr

The mass operators are now

α′M2
L = 2(Ñ

(α)
tr + Ñ

(b)
tr + ã) , α′M2

R = 2(N
(α)
tr + N

(b)
tr + a) ,

M2
L = M2

R

as a consequence of level matching and we assumed a = ã.
We have to determine the normal ordering constants.
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Normal ordering constants

In the NS sector of the closed string we have

aNS = ãNS =
1

2
(d − 2)

 ∞∑
n=0

n −
∞∑

r=1/2

r

 =
1

2
(d − 2)(− 1

12
− 1

24
)

= − 1

16
(d − 2)

In the R sector of the closed string, the sum in the fermionic sector
is over the integers and then it cancels the contribution from the
bosonic sector =⇒ aR = ãR = 0.

We used ζ functions regularization:∑∞
n=1(n + a) = ζ(−1, a) = − 1

12(6a
2 − 6a+ 1)
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The spectrum

We first discuss the open string.

α′M2 = N
(α)
tr + N

(b)
tr + a ,

NS sector:

The ground state is the oscillator vacuum with α′M2 = a.

The first excited state is bi−1/2|0 > with α′M2 = 1
2 + a. This

is a vector of SO(d − 2) which must be massless.
Lorentz invariance requires that physical states fall into reps
of little group of SO(d-1,1) which is SO(d-1) for massive
particles and SO(d-2) for massless particles. =⇒ a = −1

2 .
Using a = − 1

16(d − 2) =⇒ d = 10
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The spectrum

At the next excitation level we have αi
−1|0 > and

bi−1/2b
j
−1/2|0 > with α′M2 = 1

2 comprising 8 + 28 bosonic
states.

It can be shown that these and all the other massive
light-cone states, which are tensors of SO(8), combine
uniquely to tensors of SO(9), the little group for massive
states in ten dimensions.
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The spectrum

At the next excitation level we have αi
−1|0 > and

bi−1/2b
j
−1/2|0 > with α′M2 = 1

2 comprising 8 + 28 bosonic
states.

It can be shown that these and all the other massive
light-cone states, which are tensors of SO(8), combine
uniquely to tensors of SO(9), the little group for massive
states in ten dimensions.
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The spectrum

R sector:
We already know that the R ground state is a spinor of SO(9, 1).

A Dirac spinor in ten space-time dimensions has 25 independent
complex or 64 real components.

On shell this reduces to 32 components since the Dirac equation
γµ∂µψ = 0 relates half of the components to the other half.

We can still impose a Weyl or Majorana condition, each of which
reduces the number of independent components by a factor of two.

In d = 10 it is even possible to impose both simultaneously leaving
8 independent on-shell components, the components of a
Majorana-Weyl spinor of SO(8) =⇒ as required by SUSY
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We already know that the R ground state is a spinor of SO(9, 1).
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We already know that the R ground state is a spinor of SO(9, 1).

A Dirac spinor in ten space-time dimensions has 25 independent
complex or 64 real components.

On shell this reduces to 32 components since the Dirac equation
γµ∂µψ = 0 relates half of the components to the other half.

We can still impose a Weyl or Majorana condition, each of which
reduces the number of independent components by a factor of two.
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R sector:
We already know that the R ground state is a spinor of SO(9, 1).

A Dirac spinor in ten space-time dimensions has 25 independent
complex or 64 real components.

On shell this reduces to 32 components since the Dirac equation
γµ∂µψ = 0 relates half of the components to the other half.

We can still impose a Weyl or Majorana condition, each of which
reduces the number of independent components by a factor of two.

In d = 10 it is even possible to impose both simultaneously leaving
8 independent on-shell components, the components of a
Majorana-Weyl spinor of SO(8) =⇒ as required by SUSY
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The spectrum

It is easy to see that the R ground state is massless

Using the description

b±0 =
1

2
(±b00 + b10) ,

b±i =
1

2
(b2i0 ± ib2i+1

0 ) , i = 1, . . . ,
d − 2

2

In LCG one only has the raising and lowering zero modes b±i with
i = 1, . . . , 4 =⇒ the degenerate R ground state can be described
by the 16 states |s1, s2, s3, s4 > with si = ±1

2 .

We can choose the ground state to have either one of two possible
chiralities: |a > and |ȧ >.
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The spectrum

The ground state |a > contains all states with
∑

i si ∈ 2Z and
|ȧ > all states with

∑
i si = 2Z+ 1.

The first excitation level consists of states αi
−1|a > and bi−1|a >

plus their chiral partners with α′M2 = 1.

For d = 10 all the massive light-cone states can be uniquely
assembled into representations of SO(9)

It can be shown that the fermionic string theory with all the states
in both R and NS sectors is inconsistent → GSO projection

Tachyon free spectrum follows from requirement of modular
invariance and space-time supersymmetry from the vanishing of
the one-loop partition function
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∑
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|ȧ > all states with
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plus their chiral partners with α′M2 = 1.

For d = 10 all the massive light-cone states can be uniquely
assembled into representations of SO(9)

It can be shown that the fermionic string theory with all the states
in both R and NS sectors is inconsistent → GSO projection
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invariance and space-time supersymmetry from the vanishing of
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α′M2 States and SO(8) repr. Little group (−1)F
Repr. little
group

−1
2

|0 >
(1)

SO(9) −1 (1)

0
bi−1/2|0 >
(8)v

SO(8) +1 (8)v

+1
2

αi
−1|0 >, bi−1/2b

j
−1/2|0 >

(8)v , (28)
SO(9) −1 (36)

+1

bi−1/2b
j
−1/2b

k
−1/2|0 >

(56)v
αi
−1b

j
−1/2|0 >

(1)+(28)+(35)
bi−3/2|0 >
(8)v

SO(9) +1 (84) + (44)
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Table: R sector

α′m2 States and SO(8) repr. Little group (−1)F
Repr. little
group

0

|a >
(8)s
|ȧ >
(8)c

SO(8)
+1

−1

(8)s

(8)c

+1

αi
−1|a >, bi−1|ȧ >

(8)c + (56)c (8)s + (56)s
αi
−1|ȧ >, bi−1|a >

(8)s + (56)s (8)c + (56)c

SO(9)
+1

−1

(128)

(128)
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GSO projection

Turning the argument around, we motivate the GSO projection by
requiring a space-time supersymmetric spectrum.

At the massless level this can be achieved by projecting out one of
the two possible chiralities of the R ground state: This leaves the
on-shell dof of N=1, d=10 SYM theory: a massless spinor and a
massless vector.

We also want to get rid of the tachyon

Define a quantum number which is the eigenvalue of the operator
(−1)F , where F is the world-sheet fermion number.

Assigning the NS vacuum (−1)F |0 >= −|0 >, we can write in the
NS sector F =

∑
r>0 b

i
−rb

i
r − 1.
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At the massless level this can be achieved by projecting out one of
the two possible chiralities of the R ground state: This leaves the
on-shell dof of N=1, d=10 SYM theory: a massless spinor and a
massless vector.

We also want to get rid of the tachyon
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GSO projection

Requiring all the states satisfy (−1)F = 1, we remove all states
with half integer α′M2 (for which there are no space-time
fermions).

A general state in the NS sector, αi1
−n1 · · ·α

iN
−nN

bj1−r1 · · · b
jM
−rM

|0 >
has (−1)F = (−1)M+1 and all states with M even are projected
out.

In particular the tachyon (with fermionic oscillation number
M = 0) disappears.
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M = 0) disappears.
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GSO projection

Requiring all the states satisfy (−1)F = 1, we remove all states
with half integer α′M2 (for which there are no space-time
fermions).

A general state in the NS sector, αi1
−n1 · · ·α

iN
−nN

bj1−r1 · · · b
jM
−rM

|0 >
has (−1)F = (−1)M+1 and all states with M even are projected
out.

In particular the tachyon (with fermionic oscillation number
M = 0) disappears.
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In the R sector, the equivalent of (−1)F is a generalized chirality
operator

(−1)F = 16b20 · b90(−1)
∑

n>0 b
i
−nb

i
n

where γ = 16b20 · · · b90 is the chirality operator in the eight
transverse dimensions and

∑
n>0 b

i
−nb

i
n the world-sheet fermion

number operator.

{(−1)F , ψµ} = 0

and the eigenvalues of the R ground states are ±1 depending on
the chirality.
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In the R sector, the equivalent of (−1)F is a generalized chirality
operator

(−1)F = 16b20 · b90(−1)
∑

n>0 b
i
−nb

i
n

where γ = 16b20 · · · b90 is the chirality operator in the eight
transverse dimensions and

∑
n>0 b

i
−nb

i
n the world-sheet fermion

number operator.

{(−1)F , ψµ} = 0

and the eigenvalues of the R ground states are ±1 depending on
the chirality.
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We define

(−1)F |a >= 16
9∏

i=2

bi0|a >= +1|a > and (−1)F |ȧ >= −1|ȧ >

Then a state in the R sector αi1
−n1 · · ·α

iN
−nN

bj1−m1
· · · bjM−mM

|a > has

(−1)F = (−1)M(−1)
∑

i δmi ,0 .

And the analogous state built on the |ȧ > ground state has
(−1)F = −(−1)M(−1)

∑
i δmi ,0 .

The GSO projection then amounts to demanding that all the states
have either (−1)F = 1 or (−1)F = −1 =⇒ susy spectrum.

Of course the consistency of the truncation requires that in the
interacting theory no projected-out states are produced.

This follows from demanding locality of the operator product
algebra of the vertex operators for all allowed states
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We define

(−1)F |a >= 16
9∏

i=2

bi0|a >= +1|a > and (−1)F |ȧ >= −1|ȧ >

Then a state in the R sector αi1
−n1 · · ·α

iN
−nN

bj1−m1
· · · bjM−mM

|a > has

(−1)F = (−1)M(−1)
∑

i δmi ,0 .

And the analogous state built on the |ȧ > ground state has
(−1)F = −(−1)M(−1)

∑
i δmi ,0 .

The GSO projection then amounts to demanding that all the states
have either (−1)F = 1 or (−1)F = −1 =⇒ susy spectrum.

Of course the consistency of the truncation requires that in the
interacting theory no projected-out states are produced.

This follows from demanding locality of the operator product
algebra of the vertex operators for all allowed states
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We define

(−1)F |a >= 16
9∏

i=2

bi0|a >= +1|a > and (−1)F |ȧ >= −1|ȧ >

Then a state in the R sector αi1
−n1 · · ·α

iN
−nN

bj1−m1
· · · bjM−mM

|a > has

(−1)F = (−1)M(−1)
∑

i δmi ,0 .

And the analogous state built on the |ȧ > ground state has
(−1)F = −(−1)M(−1)

∑
i δmi ,0 .

The GSO projection then amounts to demanding that all the states
have either (−1)F = 1 or (−1)F = −1 =⇒ susy spectrum.

Of course the consistency of the truncation requires that in the
interacting theory no projected-out states are produced.

This follows from demanding locality of the operator product
algebra of the vertex operators for all allowed states
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GSO projection: closed string

To obtain the closed string spectrum, take the tensor product of
two open string spectra, obeying the constraint
(L0 − L̃0)|phys >= 0

There are four sectors: (NS, NS) and (R,R) lead to space-time
bosons and (NS, R) and (R,NS) lead to space-time fermions.

We can choose between two possible chiralities for the left and
right R ground state.

(L0 − L̃0)|phys >= 0 in each sector =⇒ M2
R = M2

L and then the
closed string states are products of open string states at the same
mass level.
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GSO projection: closed string

To obtain the closed string spectrum, take the tensor product of
two open string spectra, obeying the constraint
(L0 − L̃0)|phys >= 0

There are four sectors: (NS, NS) and (R,R) lead to space-time
bosons and (NS, R) and (R,NS) lead to space-time fermions.

We can choose between two possible chiralities for the left and
right R ground state.

(L0 − L̃0)|phys >= 0 in each sector =⇒ M2
R = M2

L and then the
closed string states are products of open string states at the same
mass level.
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GSO projection: closed string

To obtain the closed string spectrum, take the tensor product of
two open string spectra, obeying the constraint
(L0 − L̃0)|phys >= 0

There are four sectors: (NS, NS) and (R,R) lead to space-time
bosons and (NS, R) and (R,NS) lead to space-time fermions.

We can choose between two possible chiralities for the left and
right R ground state.

(L0 − L̃0)|phys >= 0 in each sector =⇒ M2
R = M2

L and then the
closed string states are products of open string states at the same
mass level.
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GSO projection: closed string

To obtain the closed string spectrum, take the tensor product of
two open string spectra, obeying the constraint
(L0 − L̃0)|phys >= 0

There are four sectors: (NS, NS) and (R,R) lead to space-time
bosons and (NS, R) and (R,NS) lead to space-time fermions.

We can choose between two possible chiralities for the left and
right R ground state.

(L0 − L̃0)|phys >= 0 in each sector =⇒ M2
R = M2

L and then the
closed string states are products of open string states at the same
mass level.
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Closed fermionic string spectrum

Table: (NS, NS)-sector

α′M2 States and SO(8) representation Little group (−1)F (−1)F̃

−2
|0 >L ×|0 >R

(1) (1)
SO(9) −1 −1

0
b̃i−1/2|0 >L ×bj−1/2|0 >R

(8)v (1)
SO(8) +1 +1

Representation contents with respect to the little group: (1) and
(1) + (28) + (35)v
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(R,R)-sector

α′M2 States and SO(8) repr. Repr little group (−1)F (−1)F̃

0

|a >L ×|b >R

(8)s (8)s

|ȧ >L ×|ḃ >R

(8)c (8)c

|ȧ >L ×|b >R

(8)c (8)s

|a >L ×|ḃ >R

(8)s (8)c

(1) + (28) + (35)s

(1) + (28) + (35)c

(8)v + (56)v

(8)v + (56)v

+1

−1

−1

+1

+1

−1

+1

−1
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Table: (R,NS)-sector

α′M2 States and SO(8) repr Repr little group (−1)F (−1)F̃

0

|a >L ×bi−1/2|0 >R

(8)s (8)v

|ȧ >L ×bi−1/2|0 >R

(8)c (8)v

(8)c + (56)c

(8)s + (56)s

+1

−1

+1

+1
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Table: (NS, R)-sector

α′M2 States and SO(8) repr Repr. little group (−1)F (−1)F̃

0

b̃i−1/2|0 >L ×|a >R

(8)v (8)s

b̃i−1/2|0 >L ×|ȧ >R

(8)v (8)c

(8)c + (56)c

(8)s + (56)s

+1

+1

+1

−1
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Massive states and GSO projection

There are too many states at the first massive level to display, but
it is straightforward to work out.

Again we have to make the GSO projection. One way to perform it
is for the right- and left-movers separately.

For the NS states we require (−1)F = +1 and (−1)F̃ = +1 and
for the R sector states (−1)F = +1 or (−1)F = −1 and likewise

(−1)F̃ = +1.

This leads to two inequivalent possibilities: (−1)F = (−1)F̃ or

(−1)F = −(−1)F̃ .
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Massive states and GSO projection

There are too many states at the first massive level to display, but
it is straightforward to work out.

Again we have to make the GSO projection. One way to perform it
is for the right- and left-movers separately.

For the NS states we require (−1)F = +1 and (−1)F̃ = +1 and
for the R sector states (−1)F = +1 or (−1)F = −1 and likewise

(−1)F̃ = +1.

This leads to two inequivalent possibilities: (−1)F = (−1)F̃ or

(−1)F = −(−1)F̃ .
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Massive states and GSO projection

There are too many states at the first massive level to display, but
it is straightforward to work out.

Again we have to make the GSO projection. One way to perform it
is for the right- and left-movers separately.

For the NS states we require (−1)F = +1 and (−1)F̃ = +1 and
for the R sector states (−1)F = +1 or (−1)F = −1 and likewise

(−1)F̃ = +1.

This leads to two inequivalent possibilities: (−1)F = (−1)F̃ or

(−1)F = −(−1)F̃ .
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Massive states and GSO projection

There are too many states at the first massive level to display, but
it is straightforward to work out.

Again we have to make the GSO projection. One way to perform it
is for the right- and left-movers separately.

For the NS states we require (−1)F = +1 and (−1)F̃ = +1 and
for the R sector states (−1)F = +1 or (−1)F = −1 and likewise

(−1)F̃ = +1.

This leads to two inequivalent possibilities: (−1)F = (−1)F̃ or

(−1)F = −(−1)F̃ .
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Type IIB

The theory with (−1)F = (−1)F̃ has no tachyon and the following
massless states

Bos : [(1) + (28) + (35)v ](NS ,NS) + [(1) + (28) + (35)s ](R,R)

(IIB)

Fermi [(8)c + (56)c ](NS ,R) + [(8)c + (56)c ](R,NS)

128 bosonic and 128 fermionic states, indicating a supersymmetric
spectrum.

The massless spectrum is that of type IIB supergravity in ten
dimensions.
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Type IIB

The theory with (−1)F = (−1)F̃ has no tachyon and the following
massless states

Bos : [(1) + (28) + (35)v ](NS ,NS) + [(1) + (28) + (35)s ](R,R)

(IIB)

Fermi [(8)c + (56)c ](NS ,R) + [(8)c + (56)c ](R,NS)

128 bosonic and 128 fermionic states, indicating a supersymmetric
spectrum.

The massless spectrum is that of type IIB supergravity in ten
dimensions.
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Bosonic spectrum of type IIB SUGRA

[(1) + (28) + (35)v ](NS ,NS) + [(1) + (28) + (35)s ](R,R)

The (35)v represents the on-shell dof of a graviton.

The two (28)’s represent two antisymmetric tensor fields

The (35)s represents a rank four self-dual antisymmetric tensor

In addition there are two real scalars
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Fermionic spectrum of type IIB SUGRA

[(8)c + (56)c ](NS ,R) + [(8)c + (56)c ](R,NS)

The (56)c ’s are two on-shell gravitinos with spin 3/2 =⇒ N = 2
supersymmetry

The (8)c ’s are two spin 1/2 fermions, called dilatinos.

Since both gravitinos are of the same handedness, this is a chiral
theory

Together a gravitino and a dilatino form a reducible vector spinor
ψµ whose traceless part γµψµ = 0 is the gravitino and whose trace
part is the dilatino.
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Type IIA

The theory with (−1)F = −(−1)F̃ has no tachyon and the
following massless states

Bos : [(1) + (28) + (35)v ](NS,NS) + [(8v ) + (56)v ](R,R)

(IIA)

Fermi [(8)c + (56)c ](NS ,R) + [(8)s + (56)s ](R,NS)

again 128 bosonic and 128 fermionic states, indicating a
supersymmetric spectrum.

The massless spectrum is that of type IIA supergravity in ten
dimensions.
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Type IIA

The theory with (−1)F = −(−1)F̃ has no tachyon and the
following massless states

Bos : [(1) + (28) + (35)v ](NS,NS) + [(8v ) + (56)v ](R,R)

(IIA)

Fermi [(8)c + (56)c ](NS ,R) + [(8)s + (56)s ](R,NS)

again 128 bosonic and 128 fermionic states, indicating a
supersymmetric spectrum.

The massless spectrum is that of type IIA supergravity in ten
dimensions.
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Bosonic spectrum of type IIA SUGRA

[(1) + (28) + (35)v ](NS ,NS) + [(8v ) + (56)v ](R,R)

The (35)v represents the on-shell dof of a graviton.

The (56)v represents an antisymmetric rank three tensor

The (28) represents an antisymmetric rank two tensor field

One vector (8)v and one real scalar, the dilaton
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Fermionic spectrum of type IIA SUGRA

[(8)c + (56)c ](NS ,R) + [(8)s + (56)s ](R,NS)

The (56)’s are two on-shell gravitinos with spin 3/2 =⇒ N = 2
supersymmetry

The (8)’s are two spin 1/2 fermions, called dilatinos, one of each
handedness

Since both gravitinos are of opposite handedness, this is a
non-chiral theory

This massless spectrum can be obtained by dimensional reduction
of eleven-dimensional supergravity.
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Supercharges

Both supergravity theories, type IIA and IIB have N=2 susy. =⇒
there are two fermionic generators Q I , I = 1, 2 which are
Majorana-Weyl spinors of SO(1, 9).

Together they have 32 real components. Often this is expressed by
saying that the type II supergravities have 32 supercharges.

Compactifying on a torus to four dimensions → N=8 susy with
eight fermionic generators Q I , I = 1, . . . , 8 which are Majorana
spinors of SO(1, 3). Again the number of supercharges is 32.

Denoting the amount of susy by the number of supercharges is
independent of space-time dimension and is invariant under
compactification on a torus.
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Supercharges

Both supergravity theories, type IIA and IIB have N=2 susy. =⇒
there are two fermionic generators Q I , I = 1, 2 which are
Majorana-Weyl spinors of SO(1, 9).

Together they have 32 real components. Often this is expressed by
saying that the type II supergravities have 32 supercharges.

Compactifying on a torus to four dimensions → N=8 susy with
eight fermionic generators Q I , I = 1, . . . , 8 which are Majorana
spinors of SO(1, 3). Again the number of supercharges is 32.

Denoting the amount of susy by the number of supercharges is
independent of space-time dimension and is invariant under
compactification on a torus.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Other compactifications

Compactification on manifolds with curvature breaks some or all
supersymmetries and reduces the number of supercharges

Compactification on Calabi-Yau manifolds preserve one quarter, i.e.
eight supercharges, that is N=2 supersymmetry in d = 4.

The type I supergravity that we consider next has 16 supercharges
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Type I superstring

Let us look at the unoriented closed string.

Its states are a subset of those of the left-right symmetric type IIB
theory, i.e. those which are symmetric under world-sheet parity Ω
which interchanges left- and right-movers:

ΩXµ(σ, τ)Ω−1 = Xµ(l − σ, τ) ,

Ωψµ
±(σ, τ)Ω

−1 = ψµ
∓(l − σ, τ) .

In terms of oscilator modes:

Ωαµ
nΩ

−1 = α̃µ
n , Ωα̃µ

nΩ
−1 = αµ

n ,

Ωbµr Ω
−1 = e−2πir b̃µr , Ωb̃µr Ω

−1 = e−2πirbµr ,

with r ∈ Z for the R-sector and r ∈ Z+ 1
2 for the NS-sector
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Type I superstring

Ω interchanges the (NS, R) sector with the (R, NS) sector

We also have to define how Ω acts on closed string ground states.

Since the R ground states are space-time fermions with odd
Grassmann parity, one defines

(NS,NS) : Ω(|0 >L ×|0 >R) = |0 >L ×|0 >R

(R,R) : Ω(|a >L ×|b >R) = −|b >L ×|a >R

(NS,R) : Ω(|0 >L ×|a >R) = |a >L ×|0 >R

(R,NS) : Ω(|a >L ×|0 >R) = |0 >L ×|a >R
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Spectrum of Type I superstring

Among the massless (NS,NS) sector states the (1) + (35) survive,
and among the (R,R) states the (28).

Among the fermions a diagonal combination of the (8)c + (56)c
survives.

The massless closed string spectrum of the non-orientabe theory is

Bosons : [(1) + (35)v ](NS ,NS) + [(28)](R,R)

Fermions : [(8)c + (56)c ](NS ,R)+(R,NS)

These are the states of N=1 SUGRA in ten dimensions which is
the massless closed string sector of the type I superstring theory.

Consistency requires the addition of so-called twisted sectors which
are open strings giving rise to massless gauge bosons



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Path integral quantization


