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I.- Network Interaction 
• Consequences of interaction
• Connectors

II.- Competition 
• Centrality
• Strategies
• Competition parameter
• Generality of the results

III.- Cooperation 
• Synchronization
• Single networks
• Interacting networks

OVERVIEW
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Network Interaction               

21INTRODUCTION SCIENTIFIC IMPACT

Four widely read books, translated to over 
twenty languages, have brought network sci-
ence to the general public [34, 35, 36, 37].

Figure  1.11

Wide Impact





NETWORKS INTERACTING WITH OTHER 
NETWORKS

Example of interconnected networks (Madrid): (A) Suburban 
railway  network, (B) the underground and (C) the tram lines.

The three networks benefit from being interconnected but also compete for acquiring users. 



INTERACTION HAS CONSEQUENCES ON 
ALL NETWORKS

The case of the “savage strike”
Madrid, June 2010: A savage strike at the underground collapses all public transport networks.
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INTERACTION HAS CONSEQUENCES ON 
ALL NETWORKS

A more positive consequence: knowledge transfer



Interacting with other networks leads to changes in the structural/
dynamical properties of each network, which leads to a natural question:

How to create connections between networks?

!

NETWORKS INTERACTING BETWEEN THEM



CHOOSING THE ADEQUATE CONNECTORS: 
GENERAL STRATEGIES

We will focus on the way connector links are created:

Schematic representation of the different strategies 
for creating connection paths between two 
undirected networks: CC, PP, CP and PC.

Interconnecting networks: the role of connector links 3

In the remainder of this Chapter we first analyze how the eigenvector u1 of a NoN
can be obtained from the spectral properties of the networks forming the ensemble.
We then identify the optimal strategies that a network can follow when connecting
to other networks and apply this methodology to population dynamics and epidemic
spreading. We finally discuss the main concepts introduced in this Chapter and point
to possible problems to be tackled in the future.

2 The influence of interconnectivity on the spectral properties of

an ensemble network

In this Section we give analytical expressions for the spectral properties associated
to a generic connectivity matrix M, resulting from the connection of two initially
isolated networks A and B [26]. The connectivity matrix is a weighted version of the
classical adjacency matrix A, where the component M

i j

measures the strength of the
connection between nodes i and j (and M

i j

= 0 if i and j are not connected to each
other). The aim is to gain a priori knowledge of the main spectral properties of the
ensemble network by inspecting the structure of A and B, and the link(s) connecting
both networks. Specifically, we are interested in: (i) the highest eigenvalue of the
connectivity matrix and (ii) its associated eigenvector.

Figure 1 schematically represents two independent networks A and B, of N

A

and
N

B

nodes and L

A

and L

B

links respectively, which initially form the disconnected
network AB of N

A

+N

B

nodes and L

A

+L

B

links. Next, we connect both networks

Fig. 1 Schematic representation of the different strategies for connecting two networks, according
to the centrality of the connector nodes. The strong network is defined as the network with higher
l1 (first eigenvector of the connectivity matrix M). Central nodes C are those with the highest
eigenvector centrality, obtained from u1 (eigenvector associated to l1), while peripheral nodes
P have the lowest centrality. Initially, the networks remain disconnected and, next, we connect
them by adding connector links. According to the centrality of the connector nodes, four different
strategies can be followed: (a) peripheral-peripheral (PP), (b) peripheral-central (PC), (c) central-
central (CC) and (d) central-peripheral (CP).

* Links are not created randomly.

* We connect nodes according to 
their centrality (importance).

* Central nodes (C) and peripheral 
nodes (P).

* The strong (weak) network is the 
one with the highest (lowest) largest 
eigenvalue of the connection matrix.



CHOOSING THE ADEQUATE CONNECTORS: 
NODES ARE HETEROGENEOUS

 

 
!   Now, consider a dynamical process on a network described as: 

 

 
!   Importance of a node is quantified by the eigenvector centrality: 

!  The state vector can be expressed as: 

!  Normalizing the state vector such that n(t) =1

n(0): vector of initial conditions 

λi: eigenvalue i of the matrix M 

ui: eigenvector i of the matrix M 

 The final state is described by the eigenvector 

u1 associated to the largest eigenvalue λ1. 

M ij ≥ 0

x(t→∞) = u1

Low centrality 

High centrality 

 Interestingly, the eigenvector centrality xk, is given by the 

eigenvector u1 associated to the first eigenvalue λ1 of G. 



Competition               

(II-III)



NETWORKS COMPETING BETWEEN THEM

If we want to identify the most convenient strategies, first 
we have to define a …

TARGET

ACQUIRING CENTRALITY

COMPETITION PROCESS
Network A Network B

specifically, eigenvector centrality eigenvector u1 of the largest eigenvalue



We connect two Barabási-Albert networks with a unique link in all possible configurations, according to 
a weighted connection matrix M. Next, we calculate the eigenvector centrality acquired by each network:

 Network A 

(strong network) 

Network B 

(weak network) 

 

Two Barabási–Albert networks A and B of size N
A
 = N

B
 = 1,000 and L

A
 = L

B
 = 

2,000 links, connected by one single connector link in all possible configurations. 
C

A
 is the centrality accumulated by network A. The axes represent the 

connector nodes in networks A and B, and nodes are numbered according 
to their network centrality ranking. A is the strong network (λA,1 > λB,1). 

* In this example, the weighted connection matrix M 
represents a replication & mutation process of a population 
of RNA sequences, where M= (2-m)I + (m/3L)A. 

* CA is the centrality accumulated by network A and it is 
obtained from the eigenvector associated to the largest 
eigenvalue of the interconnected network, specifically 
from the centralities of nodes belonging to A.

NETWORKS COMPETING FOR CENTRALITY



It is possible to evaluate how the centrality of the whole network-
of-networks will distribute among each of the sub-networks:

A = NA,LA{ }

B = NB,LB{ }
T = NT ,LT{ }

NT = NA + NB

LT = LA + LB + L
A and B get connected 

to form T 

connector 
links {cl} 

uT ,1 = (c1,c2,c3,c4,....,cN−3,cN−2,cN−1,cN )
uA,1 = (c1,c2,c3,c4,...., 0, 0, 0, 0)

uB,1 = (0, 0, 0, 0,....,cN−3,cN−2,cN−1,cN )

CA = ( u1)k
k∈A
∑ / ( u1)k

k∈T
∑ CB =1−CA

λA,1 > λB,1

Pij = Pji ≠ 0 ij ∈ {cl}for 

MT =MAB +εP

A. The higher λA,1-λB,1, the higher CA  

(uA,1P
uB,1)

1 λA,1 −λB,1( )

B1. The larger the number of terms in P (connector links), the lower CA  
 

B2. The higher the centrality of the connector nodes, the lower CA  
 
 

uT ,1 ≈
uA,1 +ε

(uA,1P
uB,1)

λA,1 −λB,1

uB,1

A. Difference between largest eigenvalues

B. Centrality of the connector nodes

1.- Before the connection:

3.- Eigenvector centralities (before and after):

2.- We connect the two networks:

4.- We quantify the centrality of each network:

RESULTS & STRATEGIES

NETWORKS COMPETING FOR CENTRALITY



•  A strong network should connect through peripheral (P) nodes.

•  A weak network should connect through central (C) nodes.

•  The higher the number of inter-connections the better for the weak network.

•  Increasing the largest eigenvalue of a network increases its centrality.

It is possible to define general strategies according to the 
kind of network:

NETWORKS COMPETING FOR CENTRALITY



A star network A of m nodes competes, increasing its size (i.e., 
its λ1), against a star network B of mB=100 nodes. CA depends 
on the size m and on the strategy used to create the 
connections between both networks (CC or PP). The inset 
shows how the increase of CA at m=mB depends on the 
network size. 

NETWORKS COMPETING FOR CENTRALITY

PP 

CC 
mB=100 
(fixed) 

m 
(variable) 

Network B 

Network A 

The strategy used in the interconnection 
determines the smoothness of the transition.

We connect two star networks of 
sizes mB=100 and m (variable):

As we all know, size is important (since it is related to λ1):

CC

PP



a) Two connected Barabási-Albert (BA) (NA=NB=200 nodes, 
LA=LB=400 links), where network B reorganizes and overcomes 
network A (λA,1=6.76). b) Different initial structures for network B 
(CC strategy).

NETWORKS COMPETING FOR CENTRALITY

If a network cannot grow, it may 
reorganize (act locally, think globally!):

PP 

CC 

Network A reorganizes its internal 
structure to increase λA,1  

Network B 

a)

b)



EVALUATING THE COMPETITION IN REAL 
NETWORKS

Dolphin network of Doubtful Sound (Ω=0.7)

Ω =
2 CA −CA

min( )
CA
max −CA

min −1

It is possible to define a competition 
parameter that indicates which 
network benefited from the structure 
of connections in real cases:

REAL CASE (Ω=0.7)

STRONG NETWORK BEST CASE (Ω=1)

WEAK NETWORK BEST CASE (Ω=-1)

STRONG NETWORK BEST CASE (Ω=1)

WEAK NETWORK BEST CASE (Ω=-1)

BALANCE OF STRATEGIES (Ω=0)



EVALUATING THE COMPETITION IN REAL 
NETWORKS

• It is adaptable to M interacting networks.

• It also can be applied to directed networks.

•  Any process related with the first eigenvector of the 
transition matrix and, in general, network processes 
described by n(t+1)=Mn(t):

• Importance of nodes in a network (e.g., pagerank)

• Disease spreading (SI or SIR models)

• Rumor propagation (MT or DK models)

• Population dynamics (e.g., RNA evolutionary processes)

Maki-Thompson model 
(rumor propagation) 

y(t): Probability of hearing a rumor 

α: spreading rate 

β: blocking rate 

u1: first eigenvector (centrality) 

The same methodology can be extended to other cases and applications:



(III-III)

Cooperation              



FROM COMPETITION TO COOPERATION

Instead of competing, networks may be interested in 
collaborating…

COMPETITION 

COOPERATION 



NETWORKS COOPERATING TO ACHIEVE 
COMPLETE SYNCHRONIZATION

Suppose we are two networks, what is our best connection strategy to 
achieve complete synchronization? 

Schematic representation of the different 
strategies for creating connection paths 
between two undirected networks. High-
degree nodes (H) and Low-degree 
nodes (L).

Synchronization error ε(t) of two interconnected Barabási-Albert 
networks of N=200 Rössler oscillators at three different stages: isolated, 
interconnected following a LL strategy, and replacing the LL connection 
with a HH one. 



The Master Stability Function* (MSF) is a tool to evaluate the stability of 
the synchronized state of diffusively coupled dynamical systems:

(the lower, the better)

COMMON OBJECTIVE: COMPLETE SYNCHRONIZATION 
IN DIFFUSIVELY COUPLED IDENTICAL SYSTEMS

18

IV. STABILITY OF THE SYNCHRONIZED STATE IN
COMPLEX NETWORKS

In the previous section we have reviewed the synchro-
nization of various types of oscillators on complex net-
works. Another line of research on synchronization in
complex networks, developed in parallel to the studies of
synchronization in networks of phase oscillators, is the
investigation of the stability of the completely synchro-
nized state of populations of identical oscillators. The
seminal work by Barahona and Pecora (2002) initiated
this research line by analyzing the stability of synchro-
nization in SW networks using the Master Stability Func-
tion (MSF). The framework of MSF was developed earlier
for the study of synchronization of identical oscillators
on regular or other simple network configurations (Fink
et al., 2000; Pecora and Carroll, 1998). The extension
of the framework to complex topologies is natural and
important, because it relates the stability of the fully
synchronized state to the spectral properties of the un-
derlying structure. It provides with an objective crite-
rion to characterize the stability of the global synchro-
nization state, from now on called synchronizability of
networks independently of the particularities of the oscil-
lators. Relevant insights about the structure-dynamics
relationship has been obtained using this technique.

In this section, we review the MSF formalism and the
main results obtained so far. Note that the MSF ap-
proach assesses the linear stability of the completely syn-
chronized state, which is a necessary, but not a sufficient
condition for synchronization.

A. Master Stability Function formalism

To introduce the MSF formalism, we start with an ar-
bitrary connected network of coupled oscillators. The
assumption here for the stability analysis of synchroniza-
tion is that all the oscillators are identical, represented
by the state vector x in an m-dimensional space. The
equation of motion is described by the general form

ẋ = F(x). (51)

For simplicity, we consider time-continuous systems.
However, the formalism applies also to time-discrete
maps. We will also assume an identical output function
H(x) for all the oscillators, which generates the signal
from the state x and sends it to other oscillators in the
networks. In this representation, H is a vector function of
dimension m. For example, for the 3-dimensional system
x = (x, y, z), we can take H(x) = (x, 0, 0), which means
that the oscillators are coupled only through the compo-
nent x. H(x) can be any linear or nonlinear mapping of
the state vector x. The N oscillators, i = 1, . . . , N , are
coupled in a network specified by the adjacency matrix

A = (aij). We have

ẋi = F(xi) + σ
N

∑

i=1

aijwij [H(xj) − H(xi)] (52)

= F(xi) − σ
N

∑

j=1

GijH(xj), (53)

being wij the connection weights, i.e., the network is,
in general, weighted. The coupling matrix G is Gij =

−aijwij if i ̸= j and Gii =
∑N

j=1 aijwij . When the cou-
pling strength is uniform for all the connections (wij =
1), the network is unweighted, and the coupling matrix G
is just the usual Laplacian matrix L. By definition, the
coupling matrix G has zero row-sum. Thus there exists a
completely synchronized state in this network of identical
oscillators, i.e.,

x1(t) = x2(t) = . . . = xN (t) = s(t), (54)

which is a solution of Eq. (53). In this synchronized
state, s(t) also approaches the solution of Eq. (51), i.e.,
ṡ = F(s). This subspace in the state space of Eq. (53),
where all the oscillators evolve synchronously on the same
solution of the isolated oscillator F, is called the synchro-
nization manifold.

1. Linear Stability and Master Stability Function

When all the oscillators are initially set at the synchro-
nization manifold, they will remain synchronized. Now
the crucial question is whether the synchronization man-
ifold is stable in the presence of small perturbations δxi.
To assess the stability, we need to know whether the per-
turbations grow or decay in time. The linear evolution of
small δxi can be obtained by setting xi(t) = s(t)+δxi(t)
in Eq. (53), and expanding the functions F and H to first
order in a Taylor series, i.e., F(xi) = F(s) + DF(s)δxi

and H(xi) = H(s)+ DH(s)δxi. Here DF(s) and DH(s)
are the Jacobian matrices of F and H on s, respectively.
This expansion results in the following linear variational
equations for δxi,

δẋi = DF(s)δxi − σDH(s)
N

∑

j=1

Gijδxj . (55)

The variational equations display a block form, each
block (ij) having m components. The main idea here is
to project δx into the eigenspace spanned by the eigen-
vectors vi of the coupling matrix G. This projection
can operate in block form without affecting the structure
inside the blocks. By doing so, Eqs. (55) can be diago-
nalized into N decoupled eigenmodes in the block form

ξ̇l = [DF(s) − σλlDH(s)] ξl, l = 1, · · · , N, (56)

where ξl is the eigenmode associated with the eigenvalue
λl of G. The property λ1 = 0, associated to the eigen-
vector v1 = (1, 1, . . . , 1), follows naturally from the zero
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S5 Master Stability Function of two coupled star networks

We have obtained the Master Stability Function (MSF) [16] of the Rössler systems described in the main

text in order to determine the stability of NoN synchronization. Given a dynamical system i whose

(uncoupled) dynamics follows ẋi = Fi(xi), the evolution of N coupled oscillators (as those in a NoN) is

given by

ẋi = Fi(xi)� ⌦
N⌥

j=1

lijH(xj), i = 1, ..., N (S18)

where ⌦ is the coupling strength, H(x) is a vectorial output function and lij are the elements of the

Laplacian matrix L. For identical systems with the same coupling function H(x), the synchronized state

is a solution of ẋs = F(xs) with x1 = x2 = ... = xN ⇧ xs.

When the coupling is introduced through the x variable (see Eq. S15), the Rössler systems become

class III (red circles in Fig. S3) and the MSF has two zeroes, namely  1 = 0.107 and  2 = 2.863. Both

values define the complete synchronization region, since the topology of the network of networks (in

our case, two coupled star networks of N = 6) has to fulfill that ⌦⌥2 >  1 and ⌦⌥N <  2, where ⌦ is

the coupling strength and ⌥2 and ⌥N are, respectively, the smallest nonzero eigenvalue and the largest

eigenvalue of the Laplacian matrix L associated to the NoN [17]. If the coupling is introduced through

the y variable (see Eq. S17), the system turns into class II (black circles in Fig. S3). In this case,

the synchronization region is determined by the value  c = 0.0651 and the NoN only synchronizes for

⌦⌥2 >  c.
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−2000
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Class II
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Figure S3. (Color online). MSF of Rössler-like oscillators. When the coupling is introduced through

the x variable the system is class III (red circles), while it becomes class II when coupled through the y
variable (black circles). The zeroes of the MSF for the class III and II systems are, respectively,

 1 = 0.107 and  2 = 2.863, and  c = 0.0651.

Class III system: 
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In this Letter we identify the general rules that determine the synchronization properties of
interconnected networks. We study analytically, numerically, and experimentally how the degree of the
nodes through which two networks are connected influences the ability of the whole system to synchronize.
We show that connecting the high-degree (low-degree) nodes of each network turns out to be the most
(least) effective strategy to achieve synchronization. We find the functional relation between synchroniz-
ability and size for a given network of networks, and report the existence of the optimal connector link
weights for the different interconnection strategies. Finally, we perform an electronic experiment with two
coupled star networks and conclude that the analytical results are indeed valid in the presence of noise and
parameter mismatches.
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Real networks often interact with other networks of
similar or different natures, forming what is known as
networks of networks (NONs) [1]. By considering a NON,
new perspectives in the understanding of classical network
phenomena, such as robustness [2–4], spreading [5,6], or
interaction between modules [7,8], can be obtained, some-
times with counterintuitive results. Similarly, while syn-
chronization in complex networks has been widely studied
[9], very few works have investigated synchronization in
NONs. Huang et al. [10] showed that when two networks
interact through random connections an exact balance
between the weight of internal links in a network and
the weight of links between networks results in greater
synchronization between the two networks. It has also been
shown that for multiple interacting networks, random
connections between distant networks increase the syn-
chronization of the complete NON [11].
Real networks exhibit high heterogeneity of the node

degree, with hubs (i.e., high-degree) and peripheral (i.e.,
low-degree) nodes [12]. What happens if connector links
between the networks, termed interlinks, are not randomly
created, but are instead chosen according to a particular
connection strategy? Carlson et al. [13] analyzed the
influence that low-degree nodes may have on the collective
dynamics of networks. Wang et al. [14] showed that when
two neuron clusters get connected, both the heterogeneity
of the network and the degree (i.e., number of connections)
of the connector nodes, (the nodes reached by interlinks)
influence the coherent behavior of the whole system. A
recent study demonstrated that the proper selection of

connector nodes has strong implications on structural
(centrality) and dynamical properties (spreading or pop-
ulation dynamics) occurring in a NON [15].
In this Letter, we study in a systematic way how

connector nodes between a group of networks with
heterogeneous topology affect synchronization and stabil-
ity of the resulting NON, and provide general rules for
electing in a nonrandom fashion the connector nodes that
maximize the synchronizability.
The stability of the synchronized state of a group of

coupled identical dynamical units is given by the corre-
sponding master stability function (MSF) [16]. For a given
dynamical system and coupling form, the stability of
synchronization depends on the second lowest eigenvalue
λ2, usually called the spectral gap or algebraic connectivity,
and the largest eigenvalue λN [17] of the network Laplacian
matrix L [18]. Dynamical systems can then be classified
according to their MSF [19]: (a) class I systems never
synchronize irrespective of their network topology, (b) class
II systems synchronize for values of λ2 above a threshold
given by the MSF, and (c) class III systems synchronize for
eigenratios r ¼ λN=λ2 lower than a threshold determined
by the MSF.
For isolated networks, the eigenratio r has been used as

an indicator of synchronizability both in theoretical [20,21]
and in real systems such as functional brain networks
[22,23]. For class III systems, obtaining a maximally
synchronizable system is tantamount to minimizing the
eigenratio r. Nishikawa et al. [24] showed that when the
network structure and the link weights were adequately
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ν  is related with σλi where σ  is the coupling 
strength and λi are the eigenvalues of the 
Laplacian matrix (G=S-W)  and λ1< λ2<…< λN.

ν1 ν2

σ(λ1,λ2,…,λN)
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Fig. 5.1. Possible classes of master stability function for networked chaotic systems. In all cases !(" = 0) > 0 is the maximum Lyapunov exponent
of the single uncoupled system. The case I (II) corresponds to a monotonically increasing (decreasing) master stability function. Case III admits a
finite range of negative values for !(").

contains always the eigenvalue #1=0, whose corresponding eigenmode lies entirely within the synchronization manifold1
(in analogy with the properties of eigenvalues and eigenvectors of the Laplacian matrix already discussed in Section
2.1.6). The corresponding m conditional Lyapunov exponents equal those of the single uncoupled system ẋ = F(x),3
therefore no conditions on them will be imposed in all the remaining study.

For the sake of clarity, we will now distinguish the case of a symmetric coupling (a symmetric matrix C having a5
real spectrum) from the case of an asymmetric coupling configuration (for which, when diagonalization is allowed,
the spectrum can contain also pairs of complex conjugate eigenvalues). If C is symmetric, all its eigenvalues are real,7
and they can be ordered by size as 0 = #1 !#2 ! · · · !#N . Replacing $#i by " in Eq. (5.3), one obtain a parametric
m-dimensional equation:9

%̇ = K"% = [JF(xs) − "JH(xs)] % , (5.4)

from which one can extract the set of m conditional Lyapunov exponents at each value of the parameter ". The11
parametrical behavior of the largest of such exponents !(") is called Master Stability Function. From what said above,
the value of !(" = 0) will be either zero or larger than zero depending on whether ẋ = F(x) supports a periodic or13
chaotic dynamics.

For " > 0, three possible behaviors of !(") can be produced in the vicinity of the origin, defining three possible classes15
for the choice of the local function F(x) and of the coupling function H(x) : (I) !(") is a monotonically increasing
function, (II) !(") is a monotonically decreasing function that intercepts the abscissa at some "c "0, and (III) !(") is17
a V-shaped function admitting negative values in some range 0!"1 < "2. The three classes of master stability function
are sketched in Fig. 5.1.19

It is easy to understand that both cases (I) and (II) of Fig. 5.1 correspond to rather trivial situations. Indeed, case
(I) is tantamount to say that one never stabilizes synchronization in the network for that choice of F(x) and H(x)21
(for all $ values and for all possible eigenvalues’ distributions, the product $#i always leads to a positive maximum
Lyapunov exponent, and therefore the synchronization manifold S is always transversally unstable). The very opposite23
situation arises for functions F(x) and H(x) giving Master Stability curves as the one of the case II in Fig. 5.1. There,
the network admits always synchronization for a large enough coupling strength, regardless on the topology of the25
coupling configuration (given any eigenvalue distributions it is indeed sufficient to select $ > "c/#2 (where "c is the
intersection point of the master stability function with the " axis) to warrant that all transverse directions to S have27
associated negative Lyapunov exponents). In this latter case, once fixed ẋ = F(x) and H(x) (which fix the value of
"c) the effect of the connection topology is only to rescale (by means of #2) the threshold for the appearance of a29
synchronous state.

A non-trivial and interesting situation is case (III), which by the way corresponds to a very large class of functions31
F(x) and H(x) [433]. Here, !(") is negative in a finite parameter interval ("1, "2) (with "1 = 0 when F(x) supports
a periodic motion). The stability condition is then satisfied for some $ when #N/#2 < "2/"1. The network capability33
to give rise to a synchronized dynamics is fully accounted for by the ratio #N/#2 between the largest and the second
smallest eigenvalue in the spectrum of the coupling matrix: the more packed the eigenvalues of C are, the higher is the35
chance of having all Lyapunov exponents into the stability range for some $ [433].

[IIIIIIIIIIIIIIIIII]

* Pecora & Carroll, PRL 1998



If we are considering a single network, the best strategy is to 
connect peripheral nodes and to disconnect central nodes:

Networks reorganizing to enhance synchronization (i.e., to minimize the 
eigenratio Q):  no matter the initial structure, they become more homogeneous.
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A new family of graphs, entangled networks, with optimal properties in many respects, is introduced.
By definition, their topology is such that it optimizes synchronizability for many dynamical processes.
These networks are shown to have an extremely homogeneous structure: degree, node distance, betwe-
enness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven
(entangled) structure with short average distances, large loops, and no well-defined community structure.
This family of nets exhibits an excellent performance with respect to other flow properties such as
robustness against errors and attacks, minimal first-passage time of random walks, efficient communi-
cation, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost
optimal in many senses, and with plenty of potential applications in computer science or neuroscience.
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The ubiquitous presence of networks in nature and social
sciences is one of the main findings in the study of complex
systems. The topology of such networks has been profusely
studied [1] and some basic architectures have been discov-
ered. The scale-free one, characterized by a power-law
connectivity distribution, is probably the most widely
studied and celebrated, while other examples are small-
world, hierarchical, Apollonian, static networks, etc. [1].
Right after the first topological studies, the interest shifted
to the analysis of functional or dynamical aspects of
processes occurring on networks, the evolution of the net-
work topology, and the interplay between these last two
dynamical features. Indeed, this ‘‘network perspective’’
has become a new paradigmatic way to look at complex
systems. One particular issue that has attracted much in-
terest because of its conceptual relevance and practical
implications is the study of the synchronizability of indi-
vidual dynamical processes occurring at the vertices of a
given network. How does synchronizability depend upon
network topology? This problem is much more general
than it seems at first sight, as it is directly related to the
question of how difficult it is to transmit information across
the net or how difficult is for the sites to ‘‘talk’’ to each
other. For example, a recently addressed important task is
to determine the most efficient topology for communica-
tion networks both with and without traffic congestion [2].
Other problems such as the minimization of first-passage
times of random walkers on networks, the optimal topol-
ogy in social networks to reach consensus, or the perform-
ance optimization of Hopfield neural networks [3,4] are
also similar in essence. Hence, the issue of synchroniz-
ability is linked to many specific problems in such different
disciplines as computer science, biology, sociology, etc.
[2,5]. Some aspects of these problems have been already
tackled; a key contribution is due to Barahona and Pecora
[5] who established a criterion based on spectral tech-

niques to determine the stability of synchronized states
on networks.

The criterion is as follows. Consider a dynamical pro-
cess _xi ! F"xi# $ !

P
jLijH"xj#, where xi with i 2

1; 2; . . . ; N are dynamical variables, F and H are evolution
and coupling functions, respectively, ! is a constant, and
Lij is the Laplacian matrix, defined by Lii ! ki (the con-
nectivity degree of node i), Lij ! $1 if nodes i and j are
connected, and Lij ! 0 otherwise. A standard linear stabil-
ity analysis can be performed by (i) expanding around a
synchronized state x1 ! x2 ! . . . ! xN ! xs with xs solu-
tion of _xs ! F"xs#, (ii) diagonalizing L to find its N eigen-
values 0 ! "1 < "2 % . . . % "N , and (iii) writing
equations for the normal modes yi of perturbations _yi !
&F0"xs# $ !"iH0"xs#'yi which have all the same form but
different effective coupling # ! !"i. Barahona and
Pecora observed that the maximum Lyapunov exponent
is in general negative only within a bounded interval
&#A;#B', and a decreasing (increasing) function below
(above) (see Fig. 1 in Ref. [5]). Requiring all effective
couplings to lie within such an interval,#A < !"2 % . . . %
!"N < #B, it is straightforward to conclude that a syn-
chronized state is linearly stable on a network if and only if
"N="2 < #B=#A. Notice that the left hand side depends
only on the network topology while the right hand side
depends exclusively on the dynamics (through F and G,
and xs). Moreover, the interval in which the synchronized
state is stable is larger for smaller eigenratios "N="2,
whence one concludes that a network exhibits better syn-
chronizability if the ratio Q ! "N="2 is as small as pos-
sible, independently of the dynamics.

This Letter is devoted (i) to build up networks with a
fixed number of nodes N and average connectivity hki,
exhibiting a degree of synchronizability as high as possible
(i.e., minimizing Q), (ii) to explore the topological features
converting them into highly synchronizable networks, and
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(iii) to highlight their connection to networks optimizing
other flow or connectivity properties relevant in neuro-
computing, computer science, or graph theory.

First, we overview how Q behaves in some well-known
topologies. For networks with the small-world property [1]
Q is smaller than for deterministic graphs or purely random
networks [5]. This was attributed to the existence of short
characteristic paths between sites. However, Nishikawa
et al. in a study of other small-world networks concluded
thatQ decreases as some heterogeneity measures decrease,
even if the average distance increases [6]. Also, Hong et al.
concluded that Q decreases whenever the betweenness
heterogeneity decreases [7]. In order to extend and system-
atize these results and construct optimal synchronizable
networks, and in the absence of a better strategy, we define
a numerical algorithm able to minimize Q and search for
such optimal nets.

Our optimization algorithm is a modified simulated
annealing initialized with a random network with N nodes
and an average connectivity degree hki. At each step the
number of rewiring trials is randomly extracted from an
exponential distribution. Attempted rewirings are
(i) rejected if the updated network is disconnected,
and otherwise (ii) accepted if !Q ! Qfinal "Qinitial < 0,
or (iii) accepted with probability [8] p ! min#1; $1"
#1" q%!Q=T&1=#1"q%% (where T is a temperature-like pa-
rameter) if !Q ' 0. In the q! 1 limit the usual
Metropolis algorithm is recovered, while we choose q !
"3 as it gives the fastest convergence (though results do
not depend on this, as already verified in Ref. [8]). The first
N rewirings are performed at T ! 1, and they are used to
calculate a new T such that the largest !Q among the first
N ones would be accepted with large probability; in par-
ticular, we take T ! #1" q%#!Q%max. T is kept fixed for
100N rewiring trials or 10N accepted ones, whichever
occurs first. Then, T is decreased by 10% and the process
iterated until there is no change during 5 successive tem-
perature steps, assuming that a (relative) minimum of Q
has been found. Most of these details can be changed
without affecting significatively the final results, while
the main drawback of the algorithm is that the calculation
of eigenvalues is slow.

The network found by different runs of the algorithm is
unique (in most of the cases) as long as N is small enough
(N & 30), while they are slightly different if N is larger
(N ! 2000 is the larger size we optimized). This indicates
that the eigenvalue-ratio absolute minimum is not always
found, and that the evolving network can remain trapped in
some ‘‘metastable’’ state. Nevertheless, the final values of
Q are very similar from run to run as shown in Fig. 1. This
fact makes us confident that a reasonably good and robust
approximation of the optimal topology is obtained in gen-
eral, though, strictly speaking, we cannot guarantee that the
optimal solution has been actually found. To gain some
insight into the topological traits favoring a small Q, we
measure some quantities during the evolution and plot

them versus the changing eigenratio. It turns out (as shown
in Fig. 2) that there is a strong correlation between the
tendency of Q to decrease and an increase in the homoge-
neity (lowering variances) of the degree, average-distance,
and betweenness distributions. In a nutshell, the more
synchronizable the network the more homogeneous it is.
Also, the average distance and betweenness tend to dimin-
ish with Q, though these quantities are much less sensitive
than their corresponding standard deviations (Fig. 2). The
emerging narrow betweenness distribution is in sharp con-
trast with that of networks with a strong community struc-
ture [9]. Indeed, a well-known method to detect com-
munities consists in removing progressively links with
the largest betweenness [9]. The method leads to sound
results whenever the betweenness is broadly distributed.
Hence, well-defined communities do not exist in the
emerging optimal net.

Further inspection of these networks reveals another
significant trait: the absence of short loops. This can be
quantified by the girth (length of the shortest loop) or more
accurately by the average length, h‘i, of the shortest loop
passing through each node. In general, the clustering co-
efficient vanishes, as loops are larger than triangles.
Indeed, for small values ofN and k, it is possible to identify
the resulting optimized networks, as they have been
studied in the mathematical literature: some of them are
cage graphs. Let us recall that a #k; g%-cage graph is a
k-regular graph (i.e., with a delta-peaked connectivity
distribution) of girth g having the minimum possible num-
ber of nodes. For k ! 3 and N ! 10, 14, and 24, respec-
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FIG. 1 (color online). Eigenvalue ratio Q as a function of the
number of algorithmic iterations. Starting from different initial
conditions, with N ! 50, and hki ! 4, the algorithm converges
to networks, as the depicted one (b), with very similar values
of Q.
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FIG. 2 (color online). Relation between the ratio Q and
(i) node-connectivity standard deviation, (ii) betweenness stan-
dard deviation, (iii) average node distance, and (iv) average
betweenness. The subscript ‘‘norm’’ stands for normalization
with respect to the respective mean-values, centering all the
measured quantities around 1.
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(iii) to highlight their connection to networks optimizing
other flow or connectivity properties relevant in neuro-
computing, computer science, or graph theory.

First, we overview how Q behaves in some well-known
topologies. For networks with the small-world property [1]
Q is smaller than for deterministic graphs or purely random
networks [5]. This was attributed to the existence of short
characteristic paths between sites. However, Nishikawa
et al. in a study of other small-world networks concluded
thatQ decreases as some heterogeneity measures decrease,
even if the average distance increases [6]. Also, Hong et al.
concluded that Q decreases whenever the betweenness
heterogeneity decreases [7]. In order to extend and system-
atize these results and construct optimal synchronizable
networks, and in the absence of a better strategy, we define
a numerical algorithm able to minimize Q and search for
such optimal nets.

Our optimization algorithm is a modified simulated
annealing initialized with a random network with N nodes
and an average connectivity degree hki. At each step the
number of rewiring trials is randomly extracted from an
exponential distribution. Attempted rewirings are
(i) rejected if the updated network is disconnected,
and otherwise (ii) accepted if !Q ! Qfinal "Qinitial < 0,
or (iii) accepted with probability [8] p ! min#1; $1"
#1" q%!Q=T&1=#1"q%% (where T is a temperature-like pa-
rameter) if !Q ' 0. In the q! 1 limit the usual
Metropolis algorithm is recovered, while we choose q !
"3 as it gives the fastest convergence (though results do
not depend on this, as already verified in Ref. [8]). The first
N rewirings are performed at T ! 1, and they are used to
calculate a new T such that the largest !Q among the first
N ones would be accepted with large probability; in par-
ticular, we take T ! #1" q%#!Q%max. T is kept fixed for
100N rewiring trials or 10N accepted ones, whichever
occurs first. Then, T is decreased by 10% and the process
iterated until there is no change during 5 successive tem-
perature steps, assuming that a (relative) minimum of Q
has been found. Most of these details can be changed
without affecting significatively the final results, while
the main drawback of the algorithm is that the calculation
of eigenvalues is slow.

The network found by different runs of the algorithm is
unique (in most of the cases) as long as N is small enough
(N & 30), while they are slightly different if N is larger
(N ! 2000 is the larger size we optimized). This indicates
that the eigenvalue-ratio absolute minimum is not always
found, and that the evolving network can remain trapped in
some ‘‘metastable’’ state. Nevertheless, the final values of
Q are very similar from run to run as shown in Fig. 1. This
fact makes us confident that a reasonably good and robust
approximation of the optimal topology is obtained in gen-
eral, though, strictly speaking, we cannot guarantee that the
optimal solution has been actually found. To gain some
insight into the topological traits favoring a small Q, we
measure some quantities during the evolution and plot

them versus the changing eigenratio. It turns out (as shown
in Fig. 2) that there is a strong correlation between the
tendency of Q to decrease and an increase in the homoge-
neity (lowering variances) of the degree, average-distance,
and betweenness distributions. In a nutshell, the more
synchronizable the network the more homogeneous it is.
Also, the average distance and betweenness tend to dimin-
ish with Q, though these quantities are much less sensitive
than their corresponding standard deviations (Fig. 2). The
emerging narrow betweenness distribution is in sharp con-
trast with that of networks with a strong community struc-
ture [9]. Indeed, a well-known method to detect com-
munities consists in removing progressively links with
the largest betweenness [9]. The method leads to sound
results whenever the betweenness is broadly distributed.
Hence, well-defined communities do not exist in the
emerging optimal net.

Further inspection of these networks reveals another
significant trait: the absence of short loops. This can be
quantified by the girth (length of the shortest loop) or more
accurately by the average length, h‘i, of the shortest loop
passing through each node. In general, the clustering co-
efficient vanishes, as loops are larger than triangles.
Indeed, for small values ofN and k, it is possible to identify
the resulting optimized networks, as they have been
studied in the mathematical literature: some of them are
cage graphs. Let us recall that a #k; g%-cage graph is a
k-regular graph (i.e., with a delta-peaked connectivity
distribution) of girth g having the minimum possible num-
ber of nodes. For k ! 3 and N ! 10, 14, and 24, respec-
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to networks, as the depicted one (b), with very similar values
of Q.
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measured quantities around 1.
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(iii) to highlight their connection to networks optimizing
other flow or connectivity properties relevant in neuro-
computing, computer science, or graph theory.

First, we overview how Q behaves in some well-known
topologies. For networks with the small-world property [1]
Q is smaller than for deterministic graphs or purely random
networks [5]. This was attributed to the existence of short
characteristic paths between sites. However, Nishikawa
et al. in a study of other small-world networks concluded
thatQ decreases as some heterogeneity measures decrease,
even if the average distance increases [6]. Also, Hong et al.
concluded that Q decreases whenever the betweenness
heterogeneity decreases [7]. In order to extend and system-
atize these results and construct optimal synchronizable
networks, and in the absence of a better strategy, we define
a numerical algorithm able to minimize Q and search for
such optimal nets.

Our optimization algorithm is a modified simulated
annealing initialized with a random network with N nodes
and an average connectivity degree hki. At each step the
number of rewiring trials is randomly extracted from an
exponential distribution. Attempted rewirings are
(i) rejected if the updated network is disconnected,
and otherwise (ii) accepted if !Q ! Qfinal "Qinitial < 0,
or (iii) accepted with probability [8] p ! min#1; $1"
#1" q%!Q=T&1=#1"q%% (where T is a temperature-like pa-
rameter) if !Q ' 0. In the q! 1 limit the usual
Metropolis algorithm is recovered, while we choose q !
"3 as it gives the fastest convergence (though results do
not depend on this, as already verified in Ref. [8]). The first
N rewirings are performed at T ! 1, and they are used to
calculate a new T such that the largest !Q among the first
N ones would be accepted with large probability; in par-
ticular, we take T ! #1" q%#!Q%max. T is kept fixed for
100N rewiring trials or 10N accepted ones, whichever
occurs first. Then, T is decreased by 10% and the process
iterated until there is no change during 5 successive tem-
perature steps, assuming that a (relative) minimum of Q
has been found. Most of these details can be changed
without affecting significatively the final results, while
the main drawback of the algorithm is that the calculation
of eigenvalues is slow.

The network found by different runs of the algorithm is
unique (in most of the cases) as long as N is small enough
(N & 30), while they are slightly different if N is larger
(N ! 2000 is the larger size we optimized). This indicates
that the eigenvalue-ratio absolute minimum is not always
found, and that the evolving network can remain trapped in
some ‘‘metastable’’ state. Nevertheless, the final values of
Q are very similar from run to run as shown in Fig. 1. This
fact makes us confident that a reasonably good and robust
approximation of the optimal topology is obtained in gen-
eral, though, strictly speaking, we cannot guarantee that the
optimal solution has been actually found. To gain some
insight into the topological traits favoring a small Q, we
measure some quantities during the evolution and plot

them versus the changing eigenratio. It turns out (as shown
in Fig. 2) that there is a strong correlation between the
tendency of Q to decrease and an increase in the homoge-
neity (lowering variances) of the degree, average-distance,
and betweenness distributions. In a nutshell, the more
synchronizable the network the more homogeneous it is.
Also, the average distance and betweenness tend to dimin-
ish with Q, though these quantities are much less sensitive
than their corresponding standard deviations (Fig. 2). The
emerging narrow betweenness distribution is in sharp con-
trast with that of networks with a strong community struc-
ture [9]. Indeed, a well-known method to detect com-
munities consists in removing progressively links with
the largest betweenness [9]. The method leads to sound
results whenever the betweenness is broadly distributed.
Hence, well-defined communities do not exist in the
emerging optimal net.

Further inspection of these networks reveals another
significant trait: the absence of short loops. This can be
quantified by the girth (length of the shortest loop) or more
accurately by the average length, h‘i, of the shortest loop
passing through each node. In general, the clustering co-
efficient vanishes, as loops are larger than triangles.
Indeed, for small values ofN and k, it is possible to identify
the resulting optimized networks, as they have been
studied in the mathematical literature: some of them are
cage graphs. Let us recall that a #k; g%-cage graph is a
k-regular graph (i.e., with a delta-peaked connectivity
distribution) of girth g having the minimum possible num-
ber of nodes. For k ! 3 and N ! 10, 14, and 24, respec-
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FIG. 1 (color online). Eigenvalue ratio Q as a function of the
number of algorithmic iterations. Starting from different initial
conditions, with N ! 50, and hki ! 4, the algorithm converges
to networks, as the depicted one (b), with very similar values
of Q.
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FIG. 2 (color online). Relation between the ratio Q and
(i) node-connectivity standard deviation, (ii) betweenness stan-
dard deviation, (iii) average node distance, and (iv) average
betweenness. The subscript ‘‘norm’’ stands for normalization
with respect to the respective mean-values, centering all the
measured quantities around 1.
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STRATEGY FOR A NETWORK IN ISOLATION



Should we connect or disconnect the hubs? 

(a) λ2 of the network-of-networks obtained from connecting two Barabási-Albert networks (N=200) with 
one interlink, in all possible configurations. The node numbers are ordered according to the node degree and, 
when coinciding, the eigenvector centrality. (b) Eigenratio r =λN/λ2 for the same case as (a). 

NETWORKS COOPERATING TO ACHIEVE 
COMPLETE SYNCHRONIZATION

(a) (b)

λ2 r =λN/λ2



The strategy influences the ability to synchronize but also depends 
on the transition from a network-of-networks to a “single network”

a 
(coupling strength)

NETWORKS COOPERATING BETWEEN 
THEM

High-degree nodes (H) and Low-degree nodes (L).



Can we translate these conclusions to real systems?

Theoretical predictions 
hold on in experiments 
where a certain parameter 
mismatch exists. 

COOPERATION IN REAL SYSTEMS: 
ELECTRONIC CIRCUITS



TAKE HOME MESSAGE

Just one and simple message… 

… be aware of the way networks are connected 
between them!

Synchronization of Interconnected Networks: The Role of Connector Nodes
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In this Letter we identify the general rules that determine the synchronization properties of
interconnected networks. We study analytically, numerically, and experimentally how the degree of the
nodes through which two networks are connected influences the ability of the whole system to synchronize.
We show that connecting the high-degree (low-degree) nodes of each network turns out to be the most
(least) effective strategy to achieve synchronization. We find the functional relation between synchroniz-
ability and size for a given network of networks, and report the existence of the optimal connector link
weights for the different interconnection strategies. Finally, we perform an electronic experiment with two
coupled star networks and conclude that the analytical results are indeed valid in the presence of noise and
parameter mismatches.
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Real networks often interact with other networks of
similar or different natures, forming what is known as
networks of networks (NONs) [1]. By considering a NON,
new perspectives in the understanding of classical network
phenomena, such as robustness [2–4], spreading [5,6], or
interaction between modules [7,8], can be obtained, some-
times with counterintuitive results. Similarly, while syn-
chronization in complex networks has been widely studied
[9], very few works have investigated synchronization in
NONs. Huang et al. [10] showed that when two networks
interact through random connections an exact balance
between the weight of internal links in a network and
the weight of links between networks results in greater
synchronization between the two networks. It has also been
shown that for multiple interacting networks, random
connections between distant networks increase the syn-
chronization of the complete NON [11].
Real networks exhibit high heterogeneity of the node

degree, with hubs (i.e., high-degree) and peripheral (i.e.,
low-degree) nodes [12]. What happens if connector links
between the networks, termed interlinks, are not randomly
created, but are instead chosen according to a particular
connection strategy? Carlson et al. [13] analyzed the
influence that low-degree nodes may have on the collective
dynamics of networks. Wang et al. [14] showed that when
two neuron clusters get connected, both the heterogeneity
of the network and the degree (i.e., number of connections)
of the connector nodes, (the nodes reached by interlinks)
influence the coherent behavior of the whole system. A
recent study demonstrated that the proper selection of

connector nodes has strong implications on structural
(centrality) and dynamical properties (spreading or pop-
ulation dynamics) occurring in a NON [15].
In this Letter, we study in a systematic way how

connector nodes between a group of networks with
heterogeneous topology affect synchronization and stabil-
ity of the resulting NON, and provide general rules for
electing in a nonrandom fashion the connector nodes that
maximize the synchronizability.
The stability of the synchronized state of a group of

coupled identical dynamical units is given by the corre-
sponding master stability function (MSF) [16]. For a given
dynamical system and coupling form, the stability of
synchronization depends on the second lowest eigenvalue
λ2, usually called the spectral gap or algebraic connectivity,
and the largest eigenvalue λN [17] of the network Laplacian
matrix L [18]. Dynamical systems can then be classified
according to their MSF [19]: (a) class I systems never
synchronize irrespective of their network topology, (b) class
II systems synchronize for values of λ2 above a threshold
given by the MSF, and (c) class III systems synchronize for
eigenratios r ¼ λN=λ2 lower than a threshold determined
by the MSF.
For isolated networks, the eigenratio r has been used as

an indicator of synchronizability both in theoretical [20,21]
and in real systems such as functional brain networks
[22,23]. For class III systems, obtaining a maximally
synchronizable system is tantamount to minimizing the
eigenratio r. Nishikawa et al. [24] showed that when the
network structure and the link weights were adequately
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Successful strategies for competing networks
J. Aguirre1*, D. Papo2 and J. M. Buldú2,3*
Competitive interactions represent one of the driving forces
behind evolution and natural selection in biological and
sociological systems1,2. For example, animals in an ecosystem
may vie for food or mates; in a market economy, firms
may compete over the same group of customers; sensory
stimuli may compete for limited neural resources to enter
the focus of attention. Here, we derive rules based on the
spectral properties of the network governing the competitive
interactions between groups of agents organized in networks.
In the scenario studied here the winner of the competition, and
the time needed to prevail, essentially depend on the way a
given network connects to its competitors and on its internal
structure. Our results allow assessment of the extent to which
real networks optimize the outcome of their interaction, but
also provide strategies through which competing networks can
improve on their situation. The proposed approach is applicable
to awide range of systems that can bemodelled as networks3.

Often, the outcome of a competitive process between agents
is affected not only by their direct competitors but also by the
specific network of connections in which they operate. Complex
networks theory offers a large number of topological measures3,
which can be derived in a simple way from the adjacency matrix
G, containing the information on network connectivity. These
measures can then be used to explain important dynamical
and functional properties such as robustness4,5, synchronization6,
spreading7 or congestion8,9.

Hitherto, the emphasis has been on the properties of single
isolated networks. Typically, however, networks interact with
other networks, while simultaneously retaining their original
identity. Recently, a few studies have examined how global
structural properties or dynamical processes are affected by
the existence of connected networks, showing for instance that
robustness10–13, synchronization14, cooperation15,16, transport17 or
epidemic spreading18–21 change markedly when considering a
network of networks22. Interestingly, although certain types of
network interdependence may enhance vulnerability with respect
to the case of isolated networks10, the addition of links between
networks may also hinder cascading processes, such as failures
in a power grid, on interconnected networks23. This holistic view
requires a broad redefinition of classical network parameters24.
Even more importantly, one of the major challenges lies in the
identification of guidelines for how to best link networks25.

If one considers the outcome of interaction from the perspective
of a single network, which is either forced into or evaluates
the benefits from interacting with another one, an important
challenge arises: How can I make the most of my interaction
with another network? To answer this question, we consider two
separate networks competing for given limited resources, which in
general are related to the structural properties of the network and
to the outcome of a certain dynamical process. The two networks
interact by creating common links, but retain their original identity.

1Centro de Astrobiología, CSIC-INTA, ctra. de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain, 2Center for Biomedical Technology (UPM), Campus
de Montegancedo, 28223 Pozuelo de Alarcon, Madrid, Spain, 3Complex Systems Group, URJC, C/Tulipán s/n, 28923 Móstoles, Spain.
*e-mail: aguirreaj@cab.inta-csic.es; javier.buldu@urjc.es.
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Figure 1 | Connection strategies and outcomes: representative diagram
and numerical example of competition for centrality between networks.
a, Schematic representation of the different strategies for creating
connection paths between two undirected networks. Central nodes (C) and
peripheral nodes (P) are respectively those with higher and lower
eigenvector centrality, a measure of importance. Initially, networks remain
disconnected before one or more connector links are added. The role
played by the connector nodes, that is, the nodes reached by connector
links, determines four possible strategies. In this example, nodes’ sizes are
proportional to eigenvector centrality before connection. b, Competition
between two Barabási–Albert (BA) networks3 A and B of size
NA =NB = 1,000 and LA = LB = 2,000 links, connected by one single
connector link in all possible configurations (103 ⇥ 103). CA is the centrality
of network A (CB = 1�CA). Note that CB varies from 10�5 to 0.44
depending on the connector link. The axes represent the connector nodes
in networks A and B, and nodes are numbered according to their network
centrality rank. In this example, ⌦A,1 > ⌦B,1, indicating that A is the strong
network. Thus, connecting central nodes benefits the weak network B.

Inasmuch as the competition process can be thought of as a struggle
for importance, one way to quantify its outcome is in terms of
centrality, a network measure of importance. Here, we propose the
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