

Simulation of BSM Physics (II)

Olivier Mattelaer IPPP/Durham

Plan

•Today:

- Effective Field Theory
- Width computation
- Narrow width approximation (decaychain)
- Mass Production
- ReCasting

Which Model?

Available models

vailable mode	s								
Standard Mode	el	The SM implementation of FeynRules, included into the distribution of the FeynR	Rules package.	R.					
Simple extensions of the SM (18)		Several models based on the SM that include one or more additional particles, is doublet or additional colored scalars.	Several models based on the SM that include one or more additional particles, like a 4th generation, a secon doublet or additional colored scalars.						
Supersymmetr	ric Models (5)	Various supersymmetric extensions of the SM, including the MSSM, the NMSSM	and many more.	S A					
Extra-dimensio									
Strongly coupl	Model	Short Description	Contact	Status					
theories (8)	Axigluon model	The SM plus a scalar gluon field.	S. Krastanov	Available					
Miscellaneous	DY SM extension	The SM plus new spin-0, -1, and -2 bosons that contribute to Drell-Yan production of leptons at the LHC.	N. Christensen	Available					
	FCNC Higgs interactions	The SM plus higher-dimensional flavor changing Higgs interactions.	S. Krastanov	Available					
	Fourth generation model	A fourth generation model including a t' and a b'	C. Duhr	Available					
	General 2HDM	The most general 2HDM, including all flavor violation and mixing terms.	C. Duhr, M. Herquet	Available					
	Hidden Abelian Higgs Model	A Z' model where the Z' interacts with the SM through mixings, leading to very small non-SM like Z' couplings.	C. Duhr	Available					
	HiggsCharacterisation	The model file for the spin/parity characterisation of a 125 GeV resonance.	P. de Aquino, K. Mawatari	Available					
	Higgs effective theory	An add-on for the SM implementation containing the dimension 5 gluon fusion operator.	C. Duhr	Available					
	Higgs Effective Lagrangian	Higgs effective Lagrangian including operators up-to dimension 6.	A. Alloul, B. Fuks and V. Sanz	Available					
	Hill Model	A model with an unusual extension of the SM Higgs sector.	P. de Aquino, C. Duhr	Available					
	Inert Doublet Model	A model with an additional complex scalar SU(2)L doublet and an unbroken Z2 symmetry under which all SM particles are even while the extra doublet is odd.	A. Goudelis, B. Herrmann, O. Stal	Available					
	Minimal Zp models	The minimal Z' extension of the SM.	L. Basso	Available					
	Monotops	The SM plus monotop effective Lagrangian.	B. Fuks	Available					
	Sextet diquarks	The SM plus sextet diquark scalars.	J. Alwall, C. Duhr	Available					
	Standard model + Scalars	The SM, together with a set of singlet scalar particles coupling only to the SM Higgs, and allowing it to decay invisibly into this new scalar sector.	C. Duhr	Available					
	Triplet diquarks	The SM plus triplet diquark scalars.	J. Alwall, C. Duhr	Available					
	Type III See-Saw Model	The SM, including neutrino masses coming from a type III See-Saw mechanism.	C. Biggio, F. Bonnet	Available					
	VLQ	The SM, plus vector-like quarks, in a model-independent framework.	M. Buchkremer, G. Cacciapaglia, A. Deandrea, L. Panizzi	Available					
	Wprime	The SM a new spin-1 W' boson.	J. Donini, B. Fuks	Available					

Which Model?

Available models

Available models		6
Standard Model	The SM implementation of FeynRules, included into the distribution of the FeynRules package.	23
Simple extensions of the SM (18)	Several models based on the SM that include one or more additional particles, like a 4th generation, a secon doublet or additional colored scalars.	
Supersymmetric Models (5)	Various supersymmetric extensions of the SM, including the MSSM, the NMSSM and many more.	R
Extra-dimensional Models (4)	Extensions of the SM including KK excitations of the SM particles.	8
Strongly coupled and effective field theories (8)	Including Technicolor, Little Higgs, as well as SM higher-dimensional operators, vector-like quarks.	
Miscellaneous (0)		

• New Physics at (too?) High Energy

 $\widehat{\mathcal{L}} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$

Fermi Theory

- Effective Field Theory

Туре	Name	Dimension		
Bosons	H,G,W,B			
Fermion	L, Q, l_R, u_R, d_R	3/2		
Covariant derivative	D^{μ}			
Strength	$F^{\mu u}$	2		
tensor				

Effective Field Theory

Dimension 8

- Extra assumptions if first order does not vanishes
- Less convergence
 - more problem with unitarity

- Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \sum rac{c_i}{\Lambda^2} \mathcal{O}_i$$

Only few Operators for one process and different effects

 $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$ $\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$ $\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$

$$\mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi)$$

Benchmark

 After having choose the model of interests you need to choose a benchmark

SUSY Case

- Low Energy spectrum is calculable from High energy spectra.
- Based on the RGE
- Example:
 - SoftSUSY
 - FlexibleSUSY

EFT

- Free parameter
- Check the constraint on the parameter

What about the width?

 Need to be (re-)computed for each phase-space.

Need partial-width

2-body decay

N Body Decay

Example of code

•Herwig / Bridge / MadWidth

Speed comparison

Model	FEYNRULES BRIDGE		MadWidth	Bridge	
	Two-body	Two-body	Default	Three-body	
HEFT model	0.6 s	60s	40s	114 s	
SPS1a MSSM scenario	$12 \mathrm{\ s}$	$13\min 43s$	84 s	1h47	

- 100 times faster for 2body decay
- 3 to 75 times faster for 3body decay

Input				
DECAY	2000011	Auto	#	wsl4
DECAY	2000013	Auto	#	wsl5
DECAY	2000015	Auto	#	wsl6

Outpu	It					
DEC	CAY 25	1.8444	15e-0)2		
#	BR		NDA	ID1	I	
	7.5877710	e-01	2	-5	5 #	
	1.2145310	e-01	2	-4	4 #	
	9.108578	e-02	2	-15	15	
	5.920576	e-03	2	-4	6 #	
	5,920576	e-03	2	-6	4 #	
	4.8583420	e-03	2	-3	3 #	
	4.0700160	e-03	3	-24	-5	
	4.069040	e_03	ž	-6	5 2	
	1.0000400	0-05	5	-0	5 2	

- Need to be handle in a specific way
 - provide additional information for the shower
- Handling the color algebra to rewrite it in a product of δ_{ij} (i.e color flow)

color	disponibility
1	
3	
ϵ_{ijk}	\checkmark
6	\checkmark
8	
10	Whizard

Type of Interactions

Color sextet and ϵ^{ijk} implementations

Johan Alwall - The Vision of MG/FR

28

Spin-Color

Problem

Process complicated to have the full process
 Including off-shell contribution

Solution han Alwall - The Vision of MG/FR

25

Only keep on-shell contribution

Narrow-Width Approx.

$$\begin{aligned} \left. \begin{array}{l} \text{Theory} \\ \int dq^2 \left| \frac{1}{q^2 - M^2 - iM\Gamma} \right|^2 \approx \frac{\pi}{M\Gamma} \,\delta(q^2 - M^2) \\ \\ \sigma_{full} = \sigma_{prod} * \left(BR + \mathcal{O}(\frac{\Gamma}{M}) \right) \end{aligned} \right. \end{aligned} \end{aligned}$$

Comment

- This is an Approximation!
- This force the particle to be on-shell!
 - Recover by re-introducing the Breit-wigner up-to a cut-off

Spin-correlation

MadSpin

[Frixione, Leanen, Motylinski, Webber (2007)] offshell spin unweighted
One Event No YES

Mattelaer Olívíer

BSM simulation

plot from arXiv:1010.2506v1

25

Scan

Idea

- Reuse the sample (Only one Full Sim)
- Change the weight of the events

$$W_{new} = \frac{|M_{new}|^2}{|M_{old}|^2} * W_{old}$$

1405.0301

1404.7129

Examples HEFT

Systematics study

Idea

• Reweighting can also be used to study systematic uncertainty.

Implementation:

- Store additional information in the Event File
- Make the re-weighting on the flight

Non Definite positive

Mattelaer Olívíer

BSM: Sao Paolo 2015

Interference Plot

Re-Casting

Same idea but at the analysis level

plot from arXiv:1010.2506v1

Why is it interesting

Experimentalist

- Your analysis will be reuse to exclude new model without extra work
- You might gain feedback about the analysis
- You will get cited

Theorist

- Want to check your analysis
- Is the BSM model exclude?
- Is the BSM reduces fluctuations?
- The closer they are from your work the better

What do we need?

- Simplified way to compare theory/data
- Need to be outside of experimental control area
- Automatic running

Working Flow

VALIDATION

ATOM Validation, from arXiv:1402.0492

#	Cut Name	$\epsilon_{\mathrm{ATLAS}}$	ϵ_{Atom}	±	Stat	$\epsilon_{\rm Atom}/\epsilon_{\rm ATLAS}$	$(\epsilon_{\text{Atom}} - \epsilon_{\text{ATLAS}})/\text{Stat}$
1	No cut	100.	100.	±			
2	Muon veto	75.1	79.8	±	0.89	1.06	5.23
3	Electron veto	56.1	55.4	±	0.74	0.99	-0.93
4	MET > 130	51.9	47.9	±	0.69	0.92	-5.78
5	Jet multiplicity and pT	19.3	16.3	±	0.4	0.84	-7.41
6	$MET_track > 30$	19.	16.2	±	0.4	0.85	-6.99
7	delPhi(MET, MET_track) < pi/3	17.8	15.9	±	0.4	0.89	-4.77
8	delPhi(jet, MET) > pi/5	15.2	14.6	±	0.38	0.96	-1.5
9	Tau veto	13.3	13.5	±	0.37	1.01	0.53
10	>= 2-bjet	5.8	5.9	±	0.24	1.02	0.46
11	mT(bjet, MET) > 175	4.	3.8	±	0.2	0.97	-0.67
12	80 < m^0_jjj < 270	3.5	3.4	±	0.18	0.96	-0.7
13	80 < m^1_jjj < 270	2.1	2.2	±	0.15	1.02	0.31
14	SR1: MET > 200	2.	2.	±	0.14	1.	0.05
15	SR2: MET > 300	1.5	1.6	±	0.13	1.04	0.54
16	SR3: MET > 350	1.2	1.3	±	0.11	1.05	0.55

Non cut based method

•Some study are too specialised to be recast

Types of Technique

Few

assumptions

assumptions

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Types of Technique

Vague

conclusions

Missing transverse momentum

- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

conclusions

Slíde from Lester: arXív:1004.2732

Types of Technique

Robust

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Slíde from Lester: arXív:1004.2732

Fragile

Sensitivity to input

Code in inspire!

Conclusion

- BSM is now fully automated at LO
 - ➡ NLO is starting to be as well
- BSM is very large
 - various kind
 - various need
 - various way to generate
- It is your responsibility to use this wisely
 - You need to know the limitation of the tools