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Multieletrode recording in slices of rat cortex

60 electrodes
(in vitro)

Local Field Potential (LFP)
= “average” electrical activity

Beggs and Plenz, J. Neurosci., 23 11167 (2003)
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Multieletrode recording in slices of rat cortex�� ��Distribution of avalanche sizes is a power law

Beggs and Plenz, J. Neurosci., 23 11167 (2003)

�� ��P(s) ∼ s−3/2

fat tail =⇒


• mean size of an avalanche
• typical size of an avalanche
• "mean ± standard deviation"

meaningless

(non-trivial) scale-invariant statistics
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Multieletrode recording in slices of rat cortex

�� ��Branching ratio σ ≈ 1

Beggs and Plenz, J. Neurosci., 23 11167 (2003)



Anesthetized rats

Gireesh and Plenz, PNAS, 105 7576 (2008)



Unanesthetized (but resting) monkeys

Petermann et al., PNAS, 106 15921 (2009)



Forest fires

Malamud et al., Science, 281 1840 (1998)



Rice piles

Frette el al., Nature, 379 49 (1996)



Solar flares

Dennis, Solar Phys., 100 465 (1985)



Outline:
Part I: The rise

Neuronal avalanches in cortical slices, anesthetized or
resting animals
The critical brain hypothesis
Directed percolation, branching processes etc

An example of a (theoretical) critical brain at work
Summary of the pros

Part II: The fall
Fingerprints of brain criticality in freely-behaving animals
The undersampling issue
Summary of the cons

What next then?
Undersampling
Long-range time correlations

Concluding remarks



The critical brain hypothesis
The brain (as a dynamical system) operates near a critical point

Turing (50’s)
Bak & Chialvo (90’s)
Chialvo Nat. Phys. (2010)
Shew & Plenz Neuroscientist (2013)

Second order phase transition

Control parameter(s)?
Order parameter(s)?
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Example: ferromagnetism�� ��Iron atoms =⇒ Magnet

Phase transition at “critical temperature” Tc
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Two-slide course on phase transitions



Phase transition at a critical point (CP)

Nontrivial scale-invariant behavior near CP characterized by
critical exponents:

I F0 ∝ (σ − σc)β (order parameter near CP)

I F
σ=σc∝ h1/δh (response to stimulus h at CP)

I C(x) ∝ e−|x|/ξ, ξ ∝ |σ − σc |−ν⊥ (divergent correlation
length)

I P(s) ∼ s−τ (no characteristic avalanche size)
I . . .
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What is universality?

Let us imagine two different models, A and B:
Model A:

I F0 ∝ (σ − σc)β

I F
σ=σc∝ h1/δh

I ξ ∝ |σ − σc |−ν⊥
I P(s) ∼ s−τ

I . . .

Model B:

I F0 ∝ (σ − σ′c)β
′

I F
σ=σ′c∝ h1/δ′h

I ξ ∝ |σ − σ′c |−ν
′
⊥

I P(s) ∼ s−τ
′

I . . .
Models A and B belong to the same universality class if their
critical exponents are the same:

β = β′

δh = δ′h

ν⊥ = ν ′⊥

τ = τ ′

...
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End of two-slide course on phase transitions



The critical brain hypothesis
The brain (as a dynamical system) operates near a critical point

Why would you expect the hypothesis to be true?
Theory predicts that scale-invariant dynamics provide

I optimal transmission capacity
I optimal information processing
I largest "repertoire" (e.g. for memory storage) etc.
I optimal sensitivity and dynamic range to incoming stimuli

All highly desirable for a brain! (evolutionary pressure)
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A network of excitable cellular automata
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Random graph: 〈Ki〉 = K
(Erdős-Rényi)
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�� ��σ = 〈σi〉

Order parameter:
Firing rate�� ��F = 〈ρ〉 = limt→∞ Pt (1) :

Mean-field equation:

F =

P(quiet)︷ ︸︸ ︷
(1− (n − 1)F )×

[1− (1− σF/K )K︸ ︷︷ ︸
P(! from neighbors)

× (1− ph)︸ ︷︷ ︸
P(! external)

]

Without stimulus:
F0 = F (ph = 0)
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Branching process (Galton-Watson model, 1874)
Contact process (Harris, 1974), Directed percolation (DP) universality class

Connected excitable neurons:
phase transition at σ = σc = 1

σ < 1 σ = σc = 1 σ > 1

O. Kinouchi & M. Copelli, Nat. Phys. 2, 348 (2006); D. Chialvo, Nat. Phys. 2, 301 (2006)



Branching process (Galton-Watson model, 1874)
Contact process (Harris, 1974), Directed percolation (DP) universality class
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DP phase transition: between
absorbing and active
(but otherwise unstructured) phases

σ < 1 σ = σc = 1 σ > 1

O. Kinouchi & M. Copelli, Nat. Phys. 2, 348 (2006); D. Chialvo, Nat. Phys. 2, 301 (2006)



More rigorous criterion for criticality:
E.g. Scale-free networks etc.�� ��λ = largest eigenvalue of {pij} = 1 at criticality

(σc = 1 = λ for uncorrelated random graphs!)

Larremore et al., Phys. Rev. Lett. 106 058101 (2011)
Larremore et al., Phys. Rev. E 85 066131 (2012)



Theory vs. Experiments
(STS = Separation of Time Scales)

Theoretical prediction:

System at critical point +
STS by hand=

power-law distributed
avalanches!

Larremore et al. (2012)

Experimental results:

STS emerges!

Beggs & Plenz (2003)

�� ��Neuronal avalanches are compatible with critical dynamics
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Critical exponents interdependent via scaling theory
Directed percolation (DP) universality class for d = 4: upper critical dimension

Muñoz et al, Phys. Rev. E, 59 6175 (1999)
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Phase transition at a critical point (CP)

Nontrivial behavior near CP characterized by critical exponents:

I F0 ∝ (σ − σc)β (order parameter near CP)

I F
σ=σc∝ h1/δh (response to stimulus h at CP)

I C(t) ∝ e−t/τ , τ ∝ |σ − σc |−ν‖ (divergent correlation time)
I C(x) ∝ e−|x|/ξ, ξ ∝ |σ − σc |−ν⊥ (divergent correlation

length)
I . . .
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Psychophysics



Psychophysics
Founded in 1860: first experimental area of neuropsychology

I What is the human perception of the intensity of a sensory
stimulus?



Psychophysics: Nonlinear Response!



Stevens law: perception ∝ (stimulus intensity)m

m < 1
HOW?
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Stevens law: perception ∝ (stimulus intensity)m

Psychophysics

Continuum Measured Exponent Stimulus condition
Brightness 0.5 Point source

Visual length 1.0 Projected line
Visual area 0.7 Projected square

Taste 1.4 Salt
Taste 0.8 Sacarine
Smell 0.6 Heptane

Warmth 1.6 Metal contact on arm
Warmth 0.7 Irradiation of skin

S. S. Stevens, “Psychophysics: Introduction to its Perceptual,
Neural and Social Prospects” (1975)



Response to weak stimulus (no coupling, σ = 0)



Response to stronger stimulus (no coupling, σ = 0)



Response to very strong stimulus (no coupling, σ = 0)



Response to stimulus (weak coupling, σ & 0)



Response to stimulus (stronger coupling, σ . 1)



Response to stimulus (critical coupling, σ ' 1)



Response to stimulus (supercritical coupling, σ > 1)



Family of response curves
Random graphs:
critical exponent m = 1/δh ≤ 1/2 agrees with:

I psychophysical exponents (Stevens law)
I olfactory glomerulus responses to odorants
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Continuum Measured Exponent Stimulus condition
Brightness 0.5 Point source

Visual length 1.0 Projected line
Visual area 0.7 Projected square

Taste 1.4 Salt
Taste 0.8 Sacarine
Smell 0.6 Heptane

Warmth 1.6 Metal contact on arm
Warmth 0.7 Irradiation of skin

S. S. Stevens, “Psychophysics: Introduction to its Perceptual,
Neural and Social Prospects” (1975)



Supported by experimental data
Gap Junctions in the mouse retina

Deans et al., Neuron, 36 703 (2002)



Gap Junctions in the mouse retina

Deans et al., Neuron, 36 703 (2002)



Ganglion cell response has exponent m ' 0.58!
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Family of response curves

Firing rate vs stimulus
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Dynamic range is optimal at criticality
General property of excitable media

Theory
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Dynamic range is optimal at criticality
General property of excitable media

Supported by very different models:
I Probabilistic excitable models

I random graphs: Kinouchi & MC (Nat. Phys. 06)
I hypercubic lattices: Furtado & MC (PRE 06),

Assis & MC (PRE 08)
I scale-free networks: MC & Campos (EPJB 07),

Wu et al. (PRE 07), Larremore et al. (PRL 11)
I Deterministic excitable models

I cellular automata: MC et al (PRE 02),
MC & Kinouchi (Phys. A 05), MC et al (Neurocomput. 05)

I Morris-Lecar lattices: Ribeiro & MC (PRE 08)
I Detailed conductance-based retina model:

Publio et al (PLoS ONE 10)
I Active dendritic trees: Gollo et al (PLoS CB 09, PRE 12)
I Disinhibition transition in the antennal lobe:

Buckley & Nowotny (PRL 11)



Dynamic range is optimal at criticality
General property of excitable media

Is it true experimentally?
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Stimulated slices

Shew et al., J. Neurosci. 29 15595 (2009)
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Non-anesthetized and freely-behaving rats
In collaboration with Brain Institute UFRN (Natal)

Ribeiro et. al, Frontiers Neurosci. 1 43 (2007)

Main differences:
I Freely-behaving (FB) rats,

across the sleep-wake cycle
(WK, SWS, REM)

I 3 brain regions
(V1, S1 and HP)

I Exposure to novel objects
(PRE, EXP, POST)

I Spikes (not LFPs)
I Anesthesia (AN) as well



Spike avalanches in freely-behaving (FB) rats
I Separation of time scales in AN, but not in FB

(avalanches?)
I time bin = 〈ISI〉 (calculated for each situation)



Size distribution of spike avalanches
Not power laws. Well fit by lognormals.

Very similar across the sleep-wake cycle and brain regions!



Critical model + undersampling
= Lognormal-like size distributions

Ribeiro et al., PLoS One 5 e14129 (2010)



Avalanche size time series
Can we obtain fingerprints of criticality from the FB time series?
1) Fourier spectrum & DFA



Long-range time correlations
C(t) ∼ t−γ =⇒ γ = 2− 2α and S(f ) ∼ f−β =⇒ β = 1− γ = 2α− 1

1/f spectra Detrended Fluctuation Analysis



DFA = Detrended Fluctuation Analysis

�



�
	F (n) =

√
1
N

∑N
k=1 [y(k)− yn(k)]

If F (n) ∼ nα, then�� ��C(τ) ∼ τ−γ , with γ = 2− 2α�� ��S(f ) ∼ fβ , with β = 1− γ = 2α− 1

I 0 < α < 0.5⇒ anticorrelations
I α = 0.5⇒ white noise
I 0.5 < α < 1⇒ persistent

long-range power-law
correlations

I α = 1⇒ 1/f noise

Peng et al., Phys. Rev. E 49 1685 (1994)



Avalanche size time series
Can we obtain fingerprints of criticality from the FB time series?
2) Waiting-time distribution



Scaling in the distribution of waiting times

Waiting-time distribution

D(τ ; sc)

=

〈τ(sc)〉−1 F (τ/ 〈τ(sc)〉)
Scaling across brain
regions and behavioral
states!
(but not anesthesia...)
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Scaling in the distribution of waiting times

Waiting-time distribution

D(τ ; sc) =

〈τ(sc)〉−1 F (τ/ 〈τ(sc)〉)
Scaling across brain
regions and behavioral
states!
(but not anesthesia...)



Scaling in the distribution of waiting times

Universality: Single scaling function for 7 rats and 6 decades...
Well fit by double power law (like earthquakes!)



What is universality?
Let us imagine two different models, A and B:

Model A:

I F0 ∝ (σ − σc)β

I F
σ=σc∝ h1/δh

I ξ ∝ |σ − σc |−ν⊥
I P(s) ∼ s−τ

I . . .

Model B:

I F0 ∝ (σ − σ′c)β
′

I F
σ=σ′c∝ h1/δ′h

I ξ ∝ |σ − σ′c |−ν
′
⊥

I P(s) ∼ s−τ
′

I . . .
Models A and B belong to the same universality class if their
critical exponents are the same:

β = β′

δh = δ′h

ν⊥ = ν ′⊥

τ = τ ′

...



Scaling in the distribution of waiting times

Universality: very similar exponents across the sleep-wake cycle and
brain regions (but not shuffled data)



Scaling in the distribution of waiting times

STS = separation of time scales

Universality + Long-range time correlations in experiments!

But what about models?

Theoretical prediction:
System at critical point +

STS by hand=
power-law distributed

avalanches!

Larremore et al. (2012)

If STS has to be imposed by
hand in a model, by
construction it does not have
long-range time correlations.

Waiting-time distributions are
also arbitrarily chosen in the
simulation...
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Scaling in the distribution of waiting times
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Pros and cons so far...
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Spike avalanches in freely-behaving rats

Ribeiro et al., PLoS One 5 e14129 (2010)



Critical model + undersampling
= Lognormal-like size distributions

Ribeiro et al., PLoS One 5 e14129 (2010)



Undersampling changes avalanche statistics!

I Priesemann et al., BMC Neurosci. 10 40 (2009)
I Ribeiro et al., PLoS One 5 e14129 (2010)
I Priesemann et al., PLoS Comput. Biol. 9 e1002985 (2013)
I Priesemann et al., Front. Syst. Neurosci. 8 108 (2014)



Undersampling changes avalanche statistics!
•=neurons (7×7) ◦=measured neurons (3×3) red=active

• avalanche size measured with full sampling = 1
◦ avalanche size measured with undersampling = 0
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Undersampling changes avalanche statistics!
•=neurons (7×7) ◦=measured neurons (3×3) red=active

• avalanche size measured with full sampling = 5
◦ avalanche size measured with undersampling = 0 [1]



Undersampling changes avalanche statistics!
•=neurons (7×7) ◦=measured neurons (3×3) red=active

• avalanche size measured with full sampling = 8
◦ avalanche size measured with undersampling = 2 (finished!)
[1]



Undersampling changes avalanche statistics!
•=neurons (7×7) ◦=measured neurons (3×3) red=active

• avalanche size measured with full sampling = 10
◦ avalanche size measured with undersampling = 0 [1, 2]



Undersampling changes avalanche statistics!
•=neurons (7×7) ◦=measured neurons (3×3) red=active

• avalanche size measured with full sampling = 12
◦ avalanche size measured with undersampling = 1 [1, 2]



Undersampling changes avalanche statistics!
•=neurons (7×7) ◦=measured neurons (3×3) red=active

• avalanche size measured with full sampling = 12
◦ avalanche sizes measured with undersampling = 1, 2, 1



Undersampling solves one problem, but creates another...

Anesthetized rats with the the same undersampling:
=⇒ power-law size distributions!



Undersampling solves one problem, but creates another...

Anesthetized rats with the the same undersampling:
=⇒ power-law size distributions!



Spike avalanches in anesthetized rats
I 150 µm-500 µm

electrode spacing
I Anesthesia:

ketamine-xylazine
(8 mg/kg)

Ribeiro et al., PLoS One 5 e14129 (2010)



If the model is undersampled (LIKE THE DATA IS!), can it still
yield power-law size distributions?



Investigating undersampling in 3 topologies
pr =rewiring probability; Kout = 16

2D Small-world Random Graph
A

2D (pr = 0)

L=100

B

SW (pr = 0.01)
C

RG (pr = 1)
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Determining the critical point
p=transmission probability per link

2D Small-world Random Graph
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Varying the number of sampled sites (fixed spacing)
Lm = 2 (dm = 8)

A
Lm = 4 (dm = 8)
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typical arrays
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state of the art!

I Subcritical case:
nothing changes

I Supercritical case:
bumps for large
enough matrices

I Critical case:
power laws gone!



Varying the density of sampled sites (fixed number)
dm = 2 (Lm = 8)

A
dm = 4 (Lm = 8)
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Last resort: choosing a rescaled time bin
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�� ��Ribeiro et al. PLoS ONE 9 e94992 (2014)

I
�� ��∆t∗ = 〈ISI〉

I SW model and
data (4 rats):
Lm = 4 and
dm = 16 (500 µm)

I Fit is better, but not
much (e.g. wrong
cutoff)
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Is undersampling overcome with a different topology?

Disorder⇒ Rare active regions⇒ Generic power laws!�� ��Moretti & Muñoz, Nat. Commun. 4 2521 (2013)
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Are critical branching processes satisfactory models of
neuronal avalanches? Only if fully sampled!

Branching-process-like models (absorbing vs active phases):
I Pros:

I Neuronal avalanche exponents (τ = 3/2 and τt = 2)
I Response exponents (1/δh = 1/2: psychophysics, sensory

systems, ...) + optimal dynamic range at criticality
I Theoretical workhorse (useful picture) for over a decade

I Cons:
I STS has to be imposed by hand
I No time correlations between consecutive avalanches
I Fail with undersampling. We found no power laws.

Perspectives:
I Can power laws survive undersampling with different

topologies?
I K ∼ O(N1/2) instead of O(N0)

I Hierarchical networks (critical point or Griffiths phase??)
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Dynamic range is optimal at criticality

Theory
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Supercritical slices

Shew et al., J. Neurosci. 29 15595 (2009)



Supercritical slices: collective oscillations?
Directed percolation (DP) not fully compatible with
“supercritical” collective oscillations (coexistence?) in
experiment

Shew et al., J. Neurosci. 29 15595 (2009)



Oscillations in DP-like models, but avalanches?...

Increasing σ even more...
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A model with excitatory and inhibitory neurons
Spiking neurons, not excitable!

50× 50 grid
(interaction square: 7× 7)

Avalanche: above threshold

�� ��Poil et al., J. Neurosci. 32 9817 (2012)
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A model with excitatory and inhibitory neurons
Spiking neurons, not excitable!

I Avalanches with
power-law size
distribution!

I But only along a
transition line in
parameter space

I What kind of transition is
this?

�� ��Poil et al., J. Neurosci. 32 9817 (2012)



A model with excitatory and inhibitory neurons
Spiking neurons, not excitable!

I Oscillations emerge!
(8-16 Hz)

I Similar to MEG data

�� ��Poil et al., J. Neurosci. 32 9817 (2012)



A model with excitatory and inhibitory neurons
Spiking neurons, not excitable!

I Peak frequency
increases with excitatory
connectivity

I Transition from low to
high peak power

I DFA exponent α ' 1 at
the transition

�� ��Poil et al., J. Neurosci. 32 9817 (2012)



DFA = Detrended Fluctuation Analysis

�



�
	F (n) =

√
1
N

∑N
k=1 [y(k)− yn(k)]

If F (n) ∼ nα, then�� ��C(τ) ∼ τ−γ , with γ = 2− 2α�� ��S(f ) ∼ fβ , with β = 1− γ = 2α− 1

I 0 < α < 0.5⇒ anticorrelations
I α = 0.5⇒ white noise
I 0.5 < α < 1⇒ persistent

long-range power-law
correlations

I α = 1⇒ 1/f noise

Peng et al., Phys. Rev. E 49 1685 (1994)
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range power law correlations
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A model with excitatory and inhibitory neurons
Spiking neurons, not excitable!

But ...

I How robust is the model if system size is increased
(beyond 50× 50...)?

I Should the "interaction square" be scaled up as well?
I If so, is the system really two-dimensional? (Remember,
τ = 3/2 is a mean-field exponent!)

I What would be an appropriate order parameter to
characterize the transition?

I Does P(s) ∼ s−3/2 survive undersampling?

�� ��Poil et al., J. Neurosci. 32 9817 (2012)
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Are critical branching processes satisfactory models of
neuronal avalanches? Only if fully sampled!

Branching-process-like models (absorbing vs active phases):
I Pros:

I Neuronal avalanche exponents (τ = 3/2 and τt = 2)
I Response exponents (1/δh = 1/2: psychophysics, sensory

systems, ...) + optimal dynamic range at criticality
I Theoretical workhorse (useful picture) for over a decade

I Cons:
I STS has to be imposed by hand
I No time correlations between consecutive avalanches
I Fail with undersampling. We found no power laws.

Perspectives:
I Can power laws survive undersampling with different

topologies?
I K ∼ O(N1/2) instead of O(1)
I Hierarchical networks (critical point or Griffiths phase??)

[Moretti & Muñoz, Nat. Comm. (2013) ]
I Avalanches as collective excitations near oscillatory

behavior? [Poil et al, J. Neurosci. (2012) ]



Thank you!

New neuroelectrophysiology lab: students and post-docs
wanted!



Come visit us in Recife!
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