Today

Lecture 1
Using Machine Learning to Explore Neural Data

Lecture 2
Magnets, Machines, Brains

Friday

Lecture 3
Deep Learning
Using Machine Learning to Explore Neural Data

Raul Vicente
Institute of Computer Science, University of Tartu
| 08 | 02 | 22 | 97 | 38 | 15 | 00 | 40 | 00 | 75 | 04 | 05 | 07 | 78 | 52 | 12 | 50 | 77 | 91 | 08 |
|----|
| 49 | 49 | 99 | 40 | 17 | 81 | 18 | 57 | 60 | 87 | 17 | 40 | 98 | 43 | 69 | 48 | 04 | 56 | 62 | 00 |
| 81 | 49 | 31 | 73 | 55 | 79 | 14 | 29 | 93 | 71 | 40 | 67 | 53 | 88 | 30 | 03 | 49 | 13 | 36 | 65 |
| 52 | 70 | 95 | 23 | 04 | 60 | 11 | 42 | 69 | 24 | 68 | 56 | 01 | 32 | 56 | 71 | 37 | 02 | 36 | 91 |
| 22 | 31 | 16 | 71 | 51 | 67 | 63 | 89 | 41 | 92 | 36 | 54 | 22 | 40 | 40 | 28 | 66 | 33 | 13 | 80 |
| 24 | 47 | 32 | 60 | 99 | 03 | 45 | 02 | 44 | 75 | 33 | 53 | 78 | 36 | 84 | 20 | 35 | 17 | 12 | 50 |
| 32 | 98 | 81 | 28 | 64 | 23 | 67 | 10 | 26 | 38 | 40 | 67 | 59 | 54 | 70 | 66 | 18 | 38 | 64 | 70 |
| 67 | 26 | 20 | 68 | 02 | 62 | 12 | 20 | 95 | 63 | 94 | 39 | 63 | 08 | 40 | 91 | 66 | 49 | 94 | 21 |
| 24 | 55 | 58 | 05 | 66 | 73 | 99 | 26 | 97 | 17 | 78 | 78 | 96 | 83 | 14 | 88 | 34 | 89 | 69 | 72 |
| 21 | 36 | 23 | 09 | 75 | 00 | 76 | 44 | 40 | 45 | 35 | 14 | 00 | 61 | 33 | 97 | 34 | 31 | 33 | 95 |
| 78 | 17 | 53 | 28 | 22 | 75 | 31 | 67 | 15 | 94 | 03 | 80 | 04 | 62 | 16 | 40 | 09 | 53 | 56 | 92 |
| 16 | 39 | 05 | 42 | 96 | 35 | 31 | 47 | 55 | 58 | 88 | 24 | 00 | 17 | 54 | 24 | 36 | 29 | 85 | 57 |
| 86 | 56 | 00 | 48 | 35 | 71 | 99 | 07 | 05 | 44 | 44 | 74 | 44 | 60 | 21 | 58 | 51 | 54 | 17 | 58 |
| 19 | 80 | 81 | 68 | 05 | 94 | 47 | 69 | 28 | 73 | 92 | 13 | 86 | 52 | 17 | 77 | 04 | 89 | 55 | 40 |
| 04 | 52 | 08 | 83 | 97 | 35 | 99 | 16 | 07 | 97 | 57 | 32 | 16 | 26 | 26 | 79 | 33 | 27 | 98 | 66 |
| 88 | 36 | 68 | 87 | 57 | 62 | 20 | 72 | 03 | 46 | 33 | 67 | 46 | 55 | 12 | 32 | 63 | 93 | 53 | 69 |
| 04 | 42 | 16 | 73 | 38 | 25 | 39 | 11 | 24 | 94 | 72 | 18 | 08 | 46 | 29 | 32 | 40 | 62 | 76 | 36 |
| 20 | 69 | 36 | 41 | 72 | 30 | 23 | 88 | 34 | 62 | 99 | 69 | 82 | 67 | 59 | 85 | 74 | 04 | 36 | 16 |
| 20 | 73 | 35 | 29 | 78 | 31 | 90 | 01 | 74 | 31 | 49 | 71 | 48 | 86 | 81 | 16 | 23 | 57 | 05 | 54 |
| 01 | 70 | 54 | 71 | 83 | 51 | 54 | 69 | 16 | 92 | 33 | 48 | 61 | 43 | 52 | 01 | 89 | 19 | 67 | 48 |
jueves, 15 de octubre de 15
Go and read this book!
Stimuli
- Photons
- Pressure
- Chemicals

Neuroimaging
- EEG / LFP / MEG
- SUA / MUA
- Ca^{++} / VSD
- (f)MRI

Behavior
- Movement
- Disease state
Decoding & IT

Extracting information from neuronal populations: information theory and decoding approaches
Rodrigo Quian Quiroga & Stefano Panzeri
Nature Reviews Neuroscience 10, 173-185 (March 2009)
Decoding & IT

D: predict which stimulus or behavior elicits an observed neural response (ex., classifiers in % accuracy)

IT: reduction of uncertainty about the stimulus obtained by knowing the neural response (ex., mutual information in bits)

Extracting information from neuronal populations: information theory and decoding approaches
Rodrigo Quian Quiroga & Stefano Panzeri
Why decoding?

Basic

• What aspects of a stimulus are important for each brain area?
• Where? When?

Practical

• Neural prosthetics
 neural signals into movements
 stimuli into neural signals
3 themes
Machine learning

Dimensionality reduction

Caveats
Machine learning

Dimensionality reduction

Caveats

Output
Hidden
Input
Machine Learning: algorithms that learn from data

- Supervised
Machine Learning: algorithms that learn from data

- Supervised

{“cat”, “dog”}
Machine Learning: algorithms that learn from data

- **Supervised**
Machine Learning: algorithms that learn from data

- Supervised
Machine Learning: algorithms that learn from data

- Supervised
Machine Learning: algorithms that learn from data

- Supervised
Machine Learning: algorithms that learn from data

- Supervised
Machine Learning: algorithms that learn from data

- Supervised

Parkinson tested from phone calls... >95% accuracy
Machine Learning: algorithms that learn from data

- Supervised
- Unsupervised
Machine Learning: algorithms that learn from data

- Supervised
- Unsupervised
- Reinforcement
Supervised learning task
Supervised learning task

Prediction: given the firing rate of the two neurons...which class was the stimulus?
Supervised learning task

Prediction: given the firing rate of the two neurons...which class was the stimulus?

Features: \(\{r_1, r_2\} \)
Supervised learning task

Prediction: given the firing rate of the two neurons...which class was the stimulus?

Features: \(\{ r_1, r_2 \} \)

Labels: \(\{ 0, 1 \} \) (animal, building)
Supervised learning task

Prediction: given the firing rate of the two neurons...which class was the stimulus?

Features: \(\{r_1, r_2\} \)

Labels: \(\{0, 1\} \) (animal, building)
Idea: train a classifier to discriminate between different classes of stimuli (or decisions) and used to predict novel examples
Basic pipeline

1. Defining features and classes
2. Feature selection
3. Choosing a classifier
4. Training and testing a classifier
5. Examining results
1) Feature and classes

Features: could be firing rates in intracranial recordings, power of oscillations in EEG, voxel activity in fMRI,...

\[\mathbf{x} = (x_1, x_2, ..., x_v) \]

Classes: can type of stimuli, movement, disease,...

E.g. Vision:

- features: voxels in visual region
- classes: object shown
2) Feature selection

Too many features: overfitting & curse of dimensionality

Solution: select only the most informative features (2nd part of the talk)

\[\text{#features} < 20 \times \text{#samples} \]

E.g. Vision:

100000 voxels: select only those modulated by the stimuli
3) Choose a classifier

Classifier: a function $f(.)$ that takes the values of the observed features (ex., voxels) and predicts to which class y the observation belongs

$$y = f(x)$$
3) Choose a classifier

Classifier: a function $f(.)$ that takes the values of the observed features (ex., voxels) and predicts to which class y the observation belongs

$$y = f(x,u)$$
- Decision trees
- C4.5
- Random forests
- Bayesian networks
- Hidden Markov models
- Artificial neural network
- Data clustering
- Expectation-maximization algorithm
- Self-organizing map
- Radial basis function network
- Vector Quantization
- Generative topographic map
- Information bottleneck method
- IBSEAD
- Apriori algorithm
- Eclat algorithm
- FP-growth algorithm
- Single-linkage clustering
- Conceptual clustering
- K-means algorithm
- Fuzzy clustering
- Temporal difference learning
- Q-learning
- Learning Automata
- AOIDE
- Artificial neural network
- Backpropagation
- Naive Bayes classifier
- Bayesian network
- Bayesian knowledge base
- Case-based reasoning
- Decision trees
- Inductive logic programming
- Gaussian process regression
- Gene expression programming
- Group method of data handling (GMDH)
- Learning Automata
- Learning Vector Quantization
- Logistic Model Tree
- Decision trees
- Decision graphs
- Lazy learning
- Monte Carlo Method
- SARSA
- Instance-based learning
- Nearest Neighbor Algorithm
- Analogical modeling
- Probably approximately correct learning (PAC)
- Symbolic machine learning algorithms
- Subsymbolic machine learning algorithms
- Support vector machines
- Random Forests
- Ensembles of classifiers
- Bootstrap aggregating (bagging)
- Boosting (meta-algorithm)
- Ordinal classification
- Regression analysis
- Information fuzzy networks (IFN)
- Linear classifiers
- Fisher's linear discriminant
- Logistic regression
- Naive Bayes classifier
- Perceptron
- Support vector machines
- Quadratic classifiers
- k-nearest neighbor
- Boosting
Linear:

Naive Bayes (NB)
Support Vector Machines (SVM)
Logistic Regression (LR)
Linear Discrimination Analysis (LDA)

Non-linear:

Kernel SVM
Random Forests
Artificial Neural Networks (ANN)
4) Training & testing

Training data

A classifier has a number of parameters that have to be learned

A learned classifiers models the relation between features and class labels in the training data set

Test data

If the classifiers truly captures the relation between features and labels, it should predict the class label for data it has not seen before

Once trained the classifier is evaluated using an independent set of observations (test data)
Features (voxels)

$\mathbf{x} = (x_1, \ldots, x_V)$

Class Labels

\mathbf{y}

Data

Observations
Training Data

Test Data

Classifier

Predicted labels

True labels
5) Examining results

Confusion matrix
5) Examining results

Confusion matrix

Precision
Recall
Accuracy
F-score
5) Examining results

Confusion matrix

Picture presented

Picture predicted

voxel 1

voxel 2

linear discriminant A

linear discriminant B

tools1

tools2

tools3

buildings1

buildings2

buildings3
Basic pipeline

1. Defining features and classes
2. Feature selection
3. Choosing a classifier
4. Training and testing a classifier
5. Examining results
Data =

Full data

Train Validation Test
Cross-Validation and Testing

Full data

Cross-validation

Test

Choose the best hyper-parameters with cross-validation

Train 1 Validation 1 ... Train n Validation n

Hyper-parameters

Train

Test

Publish hyper-parameters and parameters
Nested Cross-Validation

- Full data
- Outer cross-validation

Estimate predictability with cross-validation

Inner cross-validation 1 → Test 1
Choose the best hyper-parameters with cross-validation

Train 1, Validation 1, ... Train n, Validation n
Hyper-parameters

Train 1 → Test 1

Inner cross-validation m → Test m
Choose the best hyper-parameters with cross-validation

Train 1, Validation 1, ... Train n, Validation n
Hyper-parameters

Train m → Test m

Report predictability
What now?

Cross-Validation and Testing

- Full data
- Cross-validation
- Test

Choose the best hyper-parameters with cross-validation

- Train 1
- Validation 1
- ...
- Train n
- Validation n

Hyper-parameters

- Hyper-parameters I
- Hyper-parameters II

Train
- Test

Publish hyper-parameters and parameters

Group confusion matrix

Predicted label

% predicted

0 25 50 75 100
Open the box & look into f!

Neuroscience: what, where, when?
Open the box & look into f!

Law: government & banks need to use criteria for decision making that are human readable

Medicine: doctors speak a different language, they would like to know on what is any criteria based

Parkinson tested from phone calls... >95% accuracy
Machine learning

Dimensionality reduction

Caveats
Dream of an experimentalist neuroscientist?
Dream of an experimentalist neuroscientist?

Every spike from every neuron in the brain of a behaving organism.
jueves, 15 de octubre de 15
This is our director's pet project.
Slowly getting there...

Dense array EEG (256 channels)
Slowly getting there...

Dense array EEG (256 channels)

fMRI (130000 voxels)
Nightmare of the analyst
Nightmare of the analyst

How would YOU start exploring a high-dimensional data set?
When less is more

- What is dimensionality reduction?
- The zoo of dimensionality reduction
- Some applications
Dimension reduction

High-dimensional data

Dimension reduction

Low-dimensional data

Processing/Display
What about neuronal data?

\[D(\text{EEG}) = \# \text{ channels} \]

\[D(\text{spike_trains}) = \# \text{ neurons} \]

\[D(\text{fMRI}) = \# \text{ voxels} \]
Geometric view

set of recordings \rightarrow set of vectors

sample = 1 point/vector in a D-dimensional space

data set = cloud of points in a D-dimensional space
What about neuronal data?

In neural recordings one obtains a different point every time!

neuronal dynamics = trajectory in a D-dimensional space
What is the problem with high-dimensional data?

The curse of dimensionality: sample size to estimate a function of several variables grows exponentially with number of variables (D)
What is the problem with high-dimensional data?

Our intuition fails in high dimensional spaces: empty space phenomena!
What is the problem with high-dimensional data?

Our intuition fails in high dimensional spaces: we are sampling from tails!

Tail probability of the multivariate Gaussian distributions for different dimensions (P(|x| > 2))

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.04550</td>
<td>0.13534</td>
<td>0.54942</td>
<td>0.94734</td>
<td>0.99995</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
What is the problem with high-dimensional data?

Our intuition fails in high dimensional spaces: **distances have weak discriminative power!**

Euclidean distance between random vectors (I.I.D.) in high dimensions is approximately constant (k-NN is risky in very high dim.)
What is the problem with high-dimensional data?

Visualization!

Not very insightful perspective for human processing...
What is the problem with high-dimensional data?

Visualization!

Not very insightful perspective for human processing...
What is the problem with high-dimensional data?

Visualization!

\[X \text{ vs time} \]
\[Y \text{ vs time} \]

Our brains are great pattern analyzers. It makes a huge difference when data can be visualized in 2d or 3d.
The hope

Reducing the dimension of our data in a sensible manner can make an unfeasible problem become feasible.

We might to find simplifying assumptions that allow to reduce the effective dimension of the data.
Geometric structure

How would be that data cloud if dataset would contain...

• noisy neurons?

• neurons driven by a common source?

• neurons interacting with each other?
Example from Physics
Example from Physics
dimension reduction

Problem: Given an observed high-dimensional dataset

\[X = \{ x_1, \cdots, x_m \} \in \mathbb{R}^D \]

find a low-dimensional dataset

\[Y = \{ y_1, \cdots, y_m \} \in \mathbb{R}^d \quad (d << D) \]

such that certain tasks of data analysis of the high dimensional data \(X \) can be realized on the low dimensional data \(Y \) with tolerable error.
dimension reduction

Reward:

• Data visualization

• Extracting key low dimensional features
When less is more

- What is dimensionality reduction?
- The zoo of dimensionality reduction
- Some applications
The zoo
Our division

• Methods that rely on **projections**

• Methods that attempt to **model the manifold** on which data lies
Projective methods

Attempt to find low dimensional projections that extract useful information from the data, by maximizing some objective function

Example: **Projection Pursuit**

How are interesting directions in multidimensional data found?

Search for projections such that the projected data departs from normality
ICA

Independent Component Analysis: searches for projections such that the probability distributions of the data along those projections are statistically independent

- Applied for Blind Source Separation. Views data generated by a mixture of unknown latent variables
- Finds maximally non-Gaussian components (minimal mutual information components)
PCA

Principal Component Analysis: searches for projections along which the projected data has maximal variance
PCA

Principal Component Analysis: searches for projections along which the projected data has maximal variance

• If unbeknownst your data in fact lies along a line, PCA gives you the direction you are looking for

• PCA for feature extraction amounts to project the data to a lower dimensional space

• PCA decorrelates the data

• PCA maximizes mutual information ($I(X,Y)$) on Gaussian data
Kernel Principal Component Analysis: applies the kernel trick to create a non-linear version of PCA in sample space by performing PCA on a feature space.
Canonical Correlation Analysis: suppose we have two paired data sets X and Y (ex. different views of the same object)

CCA finds paired directions such that the projection of the first data set along the first direction is maximally correlated with the projection of the second data set along the second direction.
LDA

Linear Discrimination Analysis: natural extension of PCA to the case of labeled data

LDA searches projections where two classes are well separated (maximizes inter-class while minimizing intra-class variance)
Random projections

Johnson-Lindenstrauss lemma:

Lemma 7.1. Let $\varepsilon > 0$ and integer n be given. Then for all positive integers $k \geq k_0 = O(\varepsilon^{-2} \log n)$ and a set \mathcal{X} of n points, which are randomly selected in \mathbb{R}^D, there exists a projection $f : \mathbb{R}^D \to \mathbb{R}^k$, which satisfies

$$
(1 - \varepsilon) \|u - v\|^2 \leq \|f(u) - f(v)\|^2 \leq (1 + \varepsilon) \|u - v\|^2,
$$

for all $u, v \in \mathcal{X}$.
Random projections: as opposed to PCA which measures data distortion globally, random projections can be used to guarantee that distances between all pairs are approximately maintained.

\[f_r : \mathcal{X} \rightarrow \mathcal{Y} \subset \mathbb{R}^k, Y = R'X \]
Our division

- Methods that rely on projections
- Methods that attempt to model the manifold on which data lies
Manifold Learning

Attempt to find the underlying geometric structure of data
MDS

Multi-dimensional scaling: given a measure of dissimilarity between each pair of data points, MDS searches for a mapping of the dissimilarities to a low dimensional Euclidean space such that dissimilarities become squared distances

- Used in representational similarity analysis
- Input is only a matrix of dissimilarities
- Equivalent to PCA in some cases
- Visualization
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSTON</td>
<td>0</td>
<td>206</td>
<td>429</td>
<td>1504</td>
<td>963</td>
<td>2976</td>
<td>3095</td>
<td>2979</td>
<td>1949</td>
</tr>
<tr>
<td>NY</td>
<td>206</td>
<td>0</td>
<td>233</td>
<td>1308</td>
<td>802</td>
<td>2815</td>
<td>2934</td>
<td>2786</td>
<td>1771</td>
</tr>
<tr>
<td>DC</td>
<td>429</td>
<td>233</td>
<td>0</td>
<td>1075</td>
<td>671</td>
<td>2684</td>
<td>2799</td>
<td>2631</td>
<td>1616</td>
</tr>
<tr>
<td>MIAMI</td>
<td>1504</td>
<td>1308</td>
<td>1075</td>
<td>0</td>
<td>1329</td>
<td>3273</td>
<td>3053</td>
<td>2687</td>
<td>2037</td>
</tr>
<tr>
<td>CHICAGO</td>
<td>963</td>
<td>802</td>
<td>671</td>
<td>1329</td>
<td>0</td>
<td>2013</td>
<td>2142</td>
<td>2054</td>
<td>996</td>
</tr>
<tr>
<td>SEATTLE</td>
<td>2976</td>
<td>2815</td>
<td>2684</td>
<td>3273</td>
<td>2013</td>
<td>0</td>
<td>808</td>
<td>1131</td>
<td>1307</td>
</tr>
<tr>
<td>SF</td>
<td>3095</td>
<td>2934</td>
<td>2799</td>
<td>3053</td>
<td>2142</td>
<td>808</td>
<td>0</td>
<td>379</td>
<td>1235</td>
</tr>
<tr>
<td>LA</td>
<td>2979</td>
<td>2786</td>
<td>2631</td>
<td>2687</td>
<td>2054</td>
<td>1131</td>
<td>379</td>
<td>0</td>
<td>1059</td>
</tr>
<tr>
<td>DENVER</td>
<td>1949</td>
<td>1771</td>
<td>1616</td>
<td>2037</td>
<td>996</td>
<td>1307</td>
<td>1235</td>
<td>1059</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>BOST</td>
<td>0</td>
<td>206</td>
<td>429</td>
<td>1504</td>
<td>963</td>
<td>2976</td>
<td>3095</td>
<td>2979</td>
<td>1949</td>
</tr>
<tr>
<td>NY</td>
<td>206</td>
<td>0</td>
<td>233</td>
<td>1308</td>
<td>802</td>
<td>2815</td>
<td>2934</td>
<td>2786</td>
<td>1771</td>
</tr>
<tr>
<td>DC</td>
<td>429</td>
<td>233</td>
<td>0</td>
<td>1075</td>
<td>671</td>
<td>2684</td>
<td>2799</td>
<td>2631</td>
<td>1616</td>
</tr>
<tr>
<td>MIAMI</td>
<td>1504</td>
<td>1308</td>
<td>1075</td>
<td>0</td>
<td>1329</td>
<td>3273</td>
<td>3053</td>
<td>2687</td>
<td>2037</td>
</tr>
<tr>
<td>CHICAGO</td>
<td>963</td>
<td>802</td>
<td>671</td>
<td>1329</td>
<td>0</td>
<td>2013</td>
<td>2142</td>
<td>2054</td>
<td>996</td>
</tr>
<tr>
<td>SEATTLE</td>
<td>2976</td>
<td>2815</td>
<td>2684</td>
<td>3273</td>
<td>2013</td>
<td>0</td>
<td>808</td>
<td>1131</td>
<td>1307</td>
</tr>
<tr>
<td>SF</td>
<td>3095</td>
<td>2934</td>
<td>2799</td>
<td>3053</td>
<td>2142</td>
<td>808</td>
<td>0</td>
<td>379</td>
<td>1235</td>
</tr>
<tr>
<td>LA</td>
<td>2979</td>
<td>2786</td>
<td>2631</td>
<td>2687</td>
<td>2054</td>
<td>1131</td>
<td>379</td>
<td>0</td>
<td>1059</td>
</tr>
<tr>
<td>DENVER</td>
<td>1949</td>
<td>1771</td>
<td>1616</td>
<td>2037</td>
<td>996</td>
<td>1307</td>
<td>1235</td>
<td>1059</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagrama 2D

- **BOST**: Boston
- **NY**: New York
- **DC**: Washington D.C.
- **MIAMI**: Miami
- **CHICAGO**: Chicago
- **SEATTLE**: Seattle
- **SF**: San Francisco
- **LA**: Los Angeles
- **DENVER**: Denver

Ejes de coordenadas

- **X**: -0.40 a 0.35
- **Y**: -0.39 a 0.43

Lugar: MIAMI

Figura 2D: La ubicación de las ciudades se representa en un diagrama 2D con ejes de coordenadas. Las ciudades están dispuestas en la gráfica de acuerdo con sus coordenadas respectivas.
Isomap: key assumption is that the quantity of interest, when comparing two points, is the distance along the curve.

- Example: if data lies on a curve PCA and MDS will fail to discover that data is 1 dim.

- Isomap uses geodesic distance as input dissimilarities in a MDS to find a low dimensional representation (preserving global structure)
Isomap

Isomap: key assumption is that the quantity of interest, when comparing two points, is the distance along the curve

1. Cloud of points to graph
2. Geodesic distance matrix
3. MDS
Isomap

Isomap: unfolds a manifold by keeping the geodesic metric of the original data set.
When less is more

• What is dimensionality reduction?
• The zoo of dimensionality reduction
• Some applications
Some applications

Population response: neural code and processing involve the coordination of responses across neurons

- Dimension reduction can help to interpret all variables simultaneously and discover latent variables

Dimensionality reduction for large-scale neural recordings, Cunningham, J.P., Yu, B

Some applications

Exploratory analysis: visualization in 2d or 3d has an enormous impact in interpreting and generating hypothesis

- Example: motor cortex
Some applications

Exploratory analysis: visualization in 2d or 3d has an enormous impact in interpreting and generating hypothesis

- Example: motor cortex

108 neurons
Some applications

Exploratory analysis: visualization in 2d or 3d has an enormous impact in interpreting and generating hypothesis

- Example: motor cortex
Some applications

Exploratory analysis: visualization in 2d or 3d has an enormous impact in interpreting and generating hypothesis

- Example: motor cortex
Dimension reduction can be useful in Neuroscience but most data is still analyzed only classically

• A lot of work to be done by just applying the techniques we have seen today to interesting data sets (Visualization)

• Compressed sensing (faster fMRI scans)
Take home messages

• Sometimes less is more
• Both the brain and the analyst would like to implement dimension reduction
• There are a lot of data sets waiting
Machine learning

Dimensionality reduction

Caveats
“The brain is a very generous organ, it offers enough data to fit almost every theory”

- Nikos Logothetis
“If you torture the data enough it will confess to anything”

- Ronald Coase
confirmation bias

20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked
Bruno A. Olshausen (2010)
confirmation bias

20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked
Bruno A. Olshausen (2010)

too early for hypothesis driven research in systems neuroscience?
confirmation bias

20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked
Bruno A. Olshausen (2010)

too early for hypothesis driven research in systems neuroscience?
- Story telling findings are compelling
20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked
Bruno A. Olshausen (2010)

too early for hypothesis driven research in systems neuroscience?

- Story telling findings are compelling
- A “must” to publish in glamorous journals
confirmation bias

20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked
Bruno A. Olshausen (2010)

too early for hypothesis driven research in systems neuroscience?

- Story telling findings are compelling
- A “must” to publish in glamorous journals
- Most of our hypothesis are probably wrong
confirmation bias

20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked
Bruno A. Olshausen (2010)

too early for hypothesis driven research in systems neuroscience?

- Story telling findings are compelling
- A “must” to publish in glamorous journals
- Most of our hypothesis are probably wrong
- Negative results disappear out of view
confirmation bias

20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked
Bruno A. Olshausen (2010)

too early for hypothesis driven research in systems neuroscience?
- Story telling findings are compelling
- A “must” to publish in glamorous journals
- Most of our hypothesis are probably wrong
- Negative results disappear out of view

Huge multiple comparison problem not accounted for!
Analysis is what lies between your data and results and it is very easy to contaminate

Confirmation bias

Circular analysis in systems neuroscience: the dangers of double dipping
Nikolaus Kriegeskorte et al. (2009)

134 fMRI papers, 42% (57 papers) contained at least one nonindependent selective analysis
confirmation bias

Selection criteria depends on results

analysis (sensitivity)
channels (neurons, regions, animals)
parameters (uncertainty, scanning)
statistics (+/- conservative)
confirmation bias

Selection criteria depends on results

- analysis (sensitivity)
- channels (neurons, regions, animals)
- parameters (uncertainty, scanning)
- statistics (+/- conservative)

Computational models can fit almost anything!
confirmation bias

Selection criteria depends on results

- **analysis** (sensitivity)
- **channels** (neurons, regions, animals)
- **parameters** (uncertainty, scanning)
- **statistics** (+/- conservative)

Computational models can fit almost anything!

- **connectivity**
- **currents**
- **input**
confirmation bias

Selection criteria depends on results

- **analysis** (sensitivity)
- **channels** (neurons, regions, animals)
- **parameters** (uncertainty, scanning)
- **statistics** (+/- conservative)

Computational models can fit almost anything!

- **connectivity**
- **currents**
- **input**
- **amplitude**
- **frequency**
- **phase relation**
confirmation bias

Selection criteria depends on results

- analysis (sensitivity)
- channels (neurons, regions, animals)
- parameters (uncertainty, scanning)
- statistics (+/- conservative)

Computational models can fit almost anything!

- connectivity
- currents
- input
- amplitude
- frequency
- phase relation
- calibration
AAAARGH!

What's wrong?

Hey, I remember this! I tried it over a year ago but it gave me negative data. Since I couldn't publish, I just filed it away and never told anyone.

What's wrong? I've been testing this stupid protocol for over a year now and it doesn't work! I've wasted my entire grant and I have nothing to show for it!

Let me see that.

NEGATIVE DATA IS STILL DATA.
PUBLISH IT.
(For everyone's sake)
Registered Report
Go and read this book!
goal-oriented

curiosity-driven

Source: T.W. Hänsch, Nobel lecture
Thanks!

Luiz Lana
Michael Wibral