The Abdus Salam
International Centre
(CTP for Theoretical Physics

Debugging & Profiling with
Open Source SW Tools

Ivan Girotto — igirotto@ictp.it
Information & Communication Technology Section (ICTS)
International Centre for Theoretical Physics (ICTP)



The Abdus Salam
International Centre
(CTP for Theoretical Physics

What is Debugging ?!

* Identifying the cause of an error and correcting it

* Once you have identified defects, you need to:

— find and understand the cause
— remove the defect from your code

* Inalarge number of cases bug fixes are wrong:
— they remove the symptom, but not the cause

* Improve productivity by getting it right the first time

* Alot of programmers don't know how to debug!
— Doesn't add functionality & doesn't improve the science

 Debugging needs practice and experience:
— understand the science and the tools

Ivan Girotto
igirotto@ictp.it

Debugging & Profiling with Open Source SW Tools



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Lot of time debugging. We did learn also from it,
but | have the feeling we could have learnt more
things about Quantum Espresso if we hadn't had
to be debugging for so long (some of the bugs
we had were due to our lack of excellence in
programming skills and were not specific to QE
issues) (Cit. from ICTP Activity evaluation)



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Errors are Opportunities

* Learn from the program you're working on:

— Errors mean you didn't understand the program. If you knew it
better, it wouldn't have an error. You would have fixed it already

e Learn about the kinds of mistakes you make:

— If you wrote the program, you inserted the error
— Once you find a mistake, ask yourself:

* Why did you make it?

* How could you have found it more quickly?

* How could you have prevented it?

* Are there other similar mistakes in the code?



The Abdus Salam
International Centre
(CTP for Theoretical Physics

The Nature of Bugs

* Straightforward bug to intercept and solve

 The program crashes unexpectedly
— the problem can be easily reproduced (lucky)

— bug whose causes are too complex to be reliably reproduced; it
thus defies repair

— bug disappears when debugging a problem (compiling with -g or
adding prints)
* The produced numbers differ from what we expected
— bug generated by an invalid operations

— bug disappears when debugging a problem (compiling with -g
or adding prints)



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Main Reasons of Debugging

* Floating Point Exceptions (FPE)
— Overflow

— Invalid Number
— Division by Zero

e Out of bound
 Segmentation Fault

* Not expected execution flow
* The Program Hangs



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Purpose of a Debugger

 More information than print statements
* Allows to stop/start/single step execution
* Look at data and modify it

e 'Post mortem' analysis from core dumps

* Prove / disprove hypotheses

* No substitute for good thinking

* But, sometimes good thinking is not a substitute for
effectively using a debugger!

e Easier to use with modular code



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Approaches

* Print Messages and Variables ©

* Compiler Debug Options

e Core analysis

 Run the Program with a Debugger

* Attach Debugger to a running process
* Ask for help!



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Using a Debugger

* When compiling use -g option to include debug info in
object (.0) and executable (and possibly -O0)

* 1:1 mapping of execution and source code only when
optimization is turned off
— problem when optimization uncovers bug
* GNU compilers allow -g with optimization
— not always correct line numbers
— variables/code can be 'optimized away’
— progress confusing with loop unrolling



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Using gdb as a Debugger

e gdb ex01-c launches debugger, loads binary, stops with
(gdb) prompt waiting for input:

* run starts executable, arguments are passed Running
program can be interrupted (ctrl-c)

« gdb ./prog --args argl -flag passes all arguments to the run
command inside gdb

* continue continues stopped program

* finish continues until the end of a subroutine

» step single steps through program line by line

* next single steps but doesn't step into subroutines



The Abdus Salam
International Centre
(CTP for Theoretical Physics

More Basic gdb Commands

e print displays contents of a known data object

* display is like print but shows updates every step
* where shows stack trace (of function calls)

* up/down allows to move up/down on the stack

* break sets break point (unconditional stop), location
indicated by file name+line no. or function

e watch sets a conditional break point (breaks when an
expression changes, e.g. a variable)

* delete removes display or break points



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Post Mortem Analysis

* Enable core dumps: ulimit -c unlimited

* Run executable until it crashes; will generate a
file core or core.<pid> with memory image

* Load executable and core dump into debugger
gdb myexe core.<pid>

* Inspect location of crash through commands:
where, up, down, list

e Use directory to point to location of sources



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Using valgrind

* Run valgrind -v ./exe to instrument and run
e --leak-check=full --track-origins=yes
e Qutput will list individual errors and summary

* With debug info present can resolve problems to line
of code, otherwise to name of function

* Also monitors memory allocation / deallocation to flag
memory leaks (“forgotten” allocations)

* |nstrumentation slows down execution
e Can produce “false positives” (flag non-errors)



The Abdus Salam
International Centre
(CTP for Theoretical Physics

How to NOT do Debugging

* Find the error by guessing

e Change things randomly until it works (again)
 Don't keep track of what you changed
 Don't make a backup of the original

* Fix the error with the most obvious fix

* |f wrong code gives the correct result,
and changing it doesn't work, don't correct it.

* |f the erroris gone, the problem is solved.
Trying to understand the problem, is a waste of time



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Debugging Tools

* Source code comparison and management tools: diff,
vimdiff, emacs/ediff, cvs/svn/git
— Help you to find differences, origins of changes
* Source code analysis tools: compiler warnings, ftnchek, lint

— Help you to find problematic code
* Always enable warnings when programming
* Always take warnings seriously (but not all)
* Always compile/test on multiple platforms

* Bounds checking allows checking of (static) memory
allocation violations (no malloc)



The Abdus Salam
International Centre
(CTP for Theoretical Physics

More Debugging Tools

« Using different compilers (Intel, GCC, Clang, ...)

 Debuggers and debugger frontends:
gdb (GNU compilers), idb (Intel compilers), ddd (GUI),
eclipse (IDE), and many more...
e gprof (profiler) as it can generate call graphs
e valgrind, an instrumentation framework
— Memcheck: detects memory management problems
— Cachegrind: cache profiler, detects cache misses
— Callgrind: call graph creation tool



The Abdus Salam
International Centre
(CTP for Theoretical Physics

How to Report a Bug(?) to Others

* Research whether bug is known/fixed
— web search, mailing list archive, bugzilla

* Provide description on how to reproduce the
problem. Find a minimal input to show bug.

» Always state hardware/software you are using
(distribution, compilers, code version)

 Demonstrate, that you have invested effort
* Make it easy for others to help you!



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Profiling
* Essential operation for code optimization

* Profiling usually means:
— Instrumentation of code (e.g. during compilation)
— Automated collection of timing data during execution
— Analysis of collected data, breakdown by function
 Example: gcc -0 some_exe.x -pg some_code.c
— ./some_exe.x
— gprof some_exe.x gmon.out

* Profiling is often incompatible with code optimization or
can be misleading (inlining)



[1girotto@argo-loging C_source]$ icc -03 transport_serial.c -pg -g
[1girotto@argo-loginZ C_source]$ . /a.out

initialization done
cpu time 1n seconds 0.000751

evolution done
cpu time 1n seconds 0.8

save_data done
I0 time 1n seconds 1.49

total cpu time 1n seconds Z2.29

[igirotto@argo-loginZ C_source]$ gprof ./a.out gmon.out

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative  self

time seconds seconds calls
93.69 B.74 .74 156000
e @.76 0.02
1.27 B.77 0.01 30RO
1.27 B.78 0.01 15001
1.27 @.79 0.01
0.00 @.79 0.00 300
®.00 @.79 0.00 8
@.00 @.79 0.00 i
0.00 @.79 0.00 1

sel f
ms/ca
Q.

= =2

o0 e ®

11
@5

.00
.00

.00
.00
.00
.00

total
ms/cal l

0.

= =2

ww e

05

.00
.00

.00
.00
.33
.33

name

evol wve
__1ntel_ssse3_rep_memcpy
1XZX
update_boundaries_FBC
_1ntel _fast_memcpy

1y2y

seconds

save_gnuplot
1nlt_transport



The Abdus Salam
International Centre
(CTP for Theoretical Physics

PERF — Hardware Assisted Profiling

* Modern x86 CPUs contain performance monitor
tools included in their hardware

* Linux kernel versions support this feature which
allows for very low overhead profiling without
instrumentation of binaries

 perf stat ./a.out -> profile summary
» perf record ./a.out; perf report -i perf.data

e gprof like function level profiling (with coverage
report and disassembly, if debug info present)



Samples: 3K of ewvent 'cycles', Event count (approx.): 1847839734

a.oUt a.out [.] evolwe

a.oUt a.out .] __1ntel_ssse3_rep_memcpy
1.29% a.out libc-Z2.12.s0 .| __printf_fp
2.65% a.out [kernel.kallsyms] k] Oxtfrfrfff8103batba

_1intel_fast_memcpy

L
B.0l% a.out a.out
L update_boundaries_PBC

P.55% a.out a.out

0Ut T li1bc-2.1Z2.50
0Ut = libc-Z2.1Z2.s50

__mpn_extract_double
_I0_file_xsputn@@GLIBC_Z.2.5

L]

L]

Lk]

[.]

L.]
0.41% a.out libc-Z.1Z2.s0 [.] __mpn_mul_1
0.25% a.out libc-Z.1Z2.s0 [.] hack_digit.15673
©.15% a.out libc-Z.1Z2.s0 [.] vfprintf
©.13% a.out libc-Z.1Z2.s0 [.] __1s1nf
0.12% a.out a.out [.] _intel_fast_memcpy.P
0.12% a.out libc-Z.1Z2.s0 [.] __mpn_rshift
0.09% a.out libc-Z.1Z2.s0 [.] __mcount_internal
0.09% a.out libc-Z.1Z2.s0 [.] __strlen_sse’
0.08% a.out a.out [.] exp.L
0.07% a.out libc-Z.1Z2.s0 [.] __strchrnul
B.00% a.out a.out [.] 1xZx
B.03% a.out libc-Z.1Z2.s0 [.] __mpn_diwvrem
0.03% a.out libc-Z.1Z2.s0 [.] _mcount
0.03% a.out libc-Z.1Z2.s0 [.] __mpn_lshift
0. a [.]
@. a

[ [
I

lvan Girotto

e Debugging & Profiling with Open Source SW Tools 21



The Abdus Salam

{CTP) International Centre

for Theoretical Physics

Function for Internal Profiling

#include <time.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/time.h>

double seconds ()
/* Returns elepsed seconds past from the last call to timer rest */

{

struct timeval tmp;

double sec;

gettimeofday( &tmp, (struct timezone *)0 );

sec = tmp.tv_sec + ((double)tmp.tv usec)/1000000.0;
return sec;



The Abdus Salam
International Centre
for Theoretical Physics

et Natirn
Eovcatons. Soemic ad |
O ;

__IAEA

(CTP

-

convergence NOT achieved after 5 iterations: stopping convergence NOT achieved after 5 iterations: stopping

Writing output data file <8_atm213_k111.save Writing output data file <8_atm213_k111.save

init_run s 119.48s CPU
electrons - 1369.53s (PU

init_run
electrons

93.79s CPU 93.79s WALL calls)
961.37s CPU 961.37s WALL calls)

119.48s WALL calls)
1369.53s WALL calls)

Called by init_run:

wfcinit : 69.
potinit - 4.

Called by electrons:

calls)
calls)

Called by init_run:

wfcinit : 98.
potinit H 2

Called by electrons:

_bands . 1289.

CPU
CPU

calls)
calls)

¢_bands : 883. ; calls)
sum_band : 49. . calls)
v_of_rho 9 ila . calls)
mix_rho : ilg 5 calls)

CPU . calls)
sum_band g 56. CPU o [ RED]
v_of_rho g ila CPU 3 calls)
mix_rho d i1 CPU E calls)

Called by c_bands:
init_us_2 : 0. 3 calls)
cegterg 2 882. ; calls)

Called by c_bands:
init_us_2 : 0. CPU . calls)
cegterg S L2 SRE CPU 3 calls)

Called by *egterg: Called by *egterg:

h_psi : 259. ' calls) h_psi s 409. CPU 3 calls)
g_psi q 9. g calls) g_psi s 28 CPU 5 calls)
cdiaghg : 401. z calls) cdiaghg 5 8 CPU 5 calls)

Called by h_psi:
add_vuspsi 22.44s 22. WALL calls)

Called by h_psi:
add_vuspsi 28 . calls)

General routines General routines

calbec H .25s (PU 17.25s WALL calls) calbec H .22s (PU .22s WALL calls)
fft : .52s (PU 0.52s WALL calls) fft H .62s (PU .62s WALL calls)
ffts q .63s (PU 0.63s WALL calls) ffts q .86s (PU .86 WALL calls)
fftw B .61s (PU 231.61s WALL calls) fftw s .02s (PU .04s WALL calls)
davcio 4 .72s (PU 4.72s WALL calls) davcio H .38s (PU .38s WALL [ REY]

Parallel routines
fft_scatter : 81.64s (PU 81.65s WALL calls)

Parallel routines

fft_scatter : 63.50s CPU 63.51s WALL calls)
ALLTOALL g 10.66s CPU 10.67s WALL calls)
EXX routines PWSCF

i 24m57.48s (PU 24m57.48s WALL

PWSCF ¢ 17m42.94s CPU 17m42.94s WALL

This run was terminated on: 12:25:36 120ct2012

lvan Girotto

D Debugging & Profiling with Open Source SW Tools 23



The Abdus Salam

(CTP) International Centre

for Theoretical Physics

Profiling in Python

* individual functions:
— import cProfile
— cProfile.run('some_func()', 'profile.tmp’)
e whole script:
— python -m cProfile [-o0 output_file] [-s sort_order] myscript.py
* Analyze profile file:
— import pstats
— p = pstats.Stats('profile.tmp’)
— p.strip_dirs().sort_stats(-1).print_stats()
* More info at http://docs.python.org/2/library/profile.html




The Abdus Salam
International Centre
(CTP for Theoretical Physics

Debugging Python

* typically very easy to do interactively with
"print()" and "exit()" statements in the code

* More featureful debugger available in module
"pdb", see:
— http://docs.python.org/2.7/library/pdb.html




The Abdus Salam
> International Centre
(CTP for Theoretical Physics

References

* PERF wiki




