Molecular Dynamics-NBody system

William Fernando Oquendo Bruno Guerrero Muhammad Umar Luis Alfredo Nuñez woquendo@gmail.com guerrerobruce@gmail.com umar593@hotmail.com muhon14@gmail.com

The problem

From an existing c code (serial and parallel):

- Write a python interface, keeping in C only the critical parts.
- Generalize the problem for more types of atoms.
- Include a new potential: Morse potential.
- Include documentation.
- Test against old results.

What we have learned

- Communication should be the first thing to be coordinated.
- Dialogue and interaction as soon as possible.
- A master/slave model is sometimes necessary.
- A clear vision of the final product is very helpful .
- Tasks should distributed according to each one strengths.
- Choosing a tool means using it (trello)
- Integration must happens as soon as possible.
- Working on someone' else code can be difficult.
- Learn when to say: done/stop

Python interface

- Isolates completely the c interface.
- Communication with c through ctypes.
- Reduces to the minimum the user interaction.
- Plots in real time of some key data.
- Cpu runtime penalty should not be large.
- Allows for using the serial and parallel version.

🔤 🛨 🖈 🖲 🖬					* 🛱 31%	0 1:02
Window 1				(†) ×	Ē
root@localhost:	/root/WORK/group-pr	oject/ljmd-project-i	<pre>ictp/python# python 1</pre>	ljmd.pyinput argor	108.in	р
Cell list has 4	x4x4=64 cells with 72 64160016	2016/2016 pairs and 23 16879686	6 atoms/celllist. -160 48438434	-137 31558748		
3	72:04100010	23.10079000	-100.4040404	-137:31330740		
100	65.22359737	20.80284954	-158.21120604	-137.40835651		
						-
					• ** 🗊 42%	00:18
Window 1				9		Ē
root@localhost: ljmd-c AK v0.1 ncell = 512	/root/WORK/group-pr	oject/ljmd-project-i	<pre>ictp/python#/ljmd-</pre>	serial.x < argon_291	6.inp	
ngrid = 8 Cell list bas 8	v8v8=512 colls with	31711/130816 pairs	and 14 atoms/celllis	+		
Startup time:	0.841s	517447150610 paris				
:Starting simul	ation with 2916 ato	ms for 10 steps.	EBOT	ETOT		
0	71.99368194	625.55751531	-4527.08079059	-3901.52327528		
<u>^</u>						
== • ± ★ ● ⊑					** 30%	01:11
Window 1				$(\pm$	\rightarrow \times	Ē
root@localhost:	/root/WORK/group-pr	oject/ljmd-project-i	ctp/python# python 1	jmd.py -h		
usage: ıjmd.py	[-n]input INPOTE [plot] [paralle	ILE [ener ENERFILE 1]	:] [traj IRAJFILE]			
optional argume	nts:					
-h,help	show this hel	p message and exit	ters			
ener ENERFI	LE Output file t	o save energy inform	nation			
traj TRAJFI	LE Output file f	or trajectories				
plot	Optional. Wet	her or not make a pl	ot. Default is False			
root@localhost:	/root/WORK/group-pr	oject/ljmd-project-i	.ctp/python#			

Time and memory

Ν	C - ser	C - par	py - ser	py - par
108	2.97/764	1.44/960	3.02/6572	1.36/6696
2916	18.88/1236	7.32/1620	19.54 /9080	7.23 /9396
78732	16.65/1513.2	9.31/22784	43.2+10. 2/ 1589626	68/ 1457560

For memory debugging, use memory_profiler and decorate the important function with @profile

Morse Potential

• Development

- Understand the Code
- Find the best option to adapt the equations
 - Only we modification a function of the code
 - Input file is the same
 - Choose in the Python interface what potential calculate

Morse Potential

• Comparative

	Number V	tentiMP Pot E	LJ ,-a[Ptal_e])2	LJ Total E
5	-154,554rd	Jones Potenc	iat ^{137.388}	-115.122
;9	$-437\overline{8}.80^{4}$	$\Big)^{12} - 3 \left(\overline{3} \right)^{6} 1 \overline{3} \overline{8} \overline{3}^{6} \overline{2} \Big)^{6} 1 \overline{8} \overline{3}^{6} \overline{3}^{6} \overline{3} \overline{3}^{6} \overline{3} \overline{3}^{6} \overline{3}^$	$\left[\frac{r_m}{r}\right]_{3902}^{12}\left(\frac{r_m}{05}\right)^6$	-3113.61
1	-120405.5	-98934.3	-105208.8	-83965.2

Morse Potential

Inclusion of different kind of particles

 Was possible assuming that each binary interaction is defined by σ and ε.

Main modifications to the original code

```
struct mdsys {
double dt, *mass, *epsilon, *sigma, box, rcut;
int *type,kind potential,nodp;
/* type[natoms] contain the type of all particles
 * kind potential =1 (Lennard Jones) or =2 (Moore)
 * nodp is the Number Of Diferent Particles*/
double ekin, epot, temp, pad1;
double *pos, *vel, *frc;
cell t *clist;
int *plist, pad2;
int natoms, nfi, nsteps, nthreads;
int ngrid, ncell, npair, nidx;
double delta:
```

Changed the way to read input (in order to test)
 Redefined the struct of data, added new

variables and modified the functions associated (force,ekin,velverlet)

Creating scripts to convert the original data file and using Paraview to create animations

With the original code

With our generalization

TODO

- Better documentation (currently using sphinx)
- Unit tests
- Python memory management
- Include the many types of particles generalization in the Python wrapper and integrate with both potentials

Link of Repository

https://bitbucket.org/Bruce_Warrior/Ijmdproject-ictp