
Molecular Dynamics-
NBody system
William Fernando Oquendo woquendo@gmail.com
Bruno Guerrero guerrerobruce@gmail.com
Muhammad Umar umar593@hotmail.com
Luis Alfredo Nuñez muhon14@gmail.com

mailto:guerrerobruce@gmail.com
mailto:umar593@hotmail.com

The problem
From an existing c code (serial and parallel):
● Write a python interface, keeping in C only the critical

parts.
● Generalize the problem for more types of atoms.
● Include a new potential: Morse potential.
● Include documentation.
● Test against old results.
● ...

What we have learned
● Communication should be the first thing to be coordinated.
● Dialogue and interaction as soon as possible.
● A master/slave model is sometimes necessary.
● A clear vision of the final product is very helpful .
● Tasks should distributed according to each one strengths.
● Choosing a tool means using it (trello)
● Integration must happens as soon as possible.
● Working on someone' else code can be difficult.
● Learn when to say: done/stop

Python interface
● Isolates completely the c interface.

● Communication with c through ctypes.

● Reduces to the minimum the user

interaction.

● Plots in real time of some key data.

● Cpu runtime penalty should not be large.

● Allows for using the serial and parallel

version.

Old versus new interface

Time and memory
N C - ser C - par py - ser py - par

108 2.97/764 1.44/960 3.02/6572 1.36/6696

2916 18.88/1236 7.32/1620 19.54/9080 7.23/9396

78732 16.65/1513.2 9.31/22784 43.2+10.
2/1589626 68/1457560

For memory debugging, use memory_profiler and decorate the
important function with @profile

Morse Potential
● Development

○ Understand the Code
○ Find the best option to adapt the equations

■ Only we modification a function of the code
■ Input file is the same
■ Choose in the Python interface what potential

calculate

● Comparative

LJ Temp MP
Temp

LJ
Kin E

MP
Kin E

LJ
Pot E

MP
Pot E

LJ
Total E

LJ
Total E

108 53.819 53.192 17.1654 16.9655 -154.554 -132.088 -137.388 -115.122

2916 54.867 58.489 476.7512 508.2169 -4378.80 -3621.83 -3902.05 -3113.61

78732 64.754 63.784 15196.7 14969.1 -120405.5 -98934.3 -105208.8 -83965.2

 Morse Potential

 Lennard Jones Potencial

Morse Potential

Morse Potential
●

● Was possible assuming that each binary
interaction is defined by σ and ε.

Ιnclusion of different kind of particles

 j≠i

{σij,εij}

σ11ε11

 i

 i mi

mj

They interact between
particles of type:

equal σijεij

different σijεij

Main modifications to the original code

➢ Changed the way to read
input (in order to test)

➢ Redefined the struct of
data, added new
variables and modified
the functions associated
(force,ekin,velverlet)

struct _mdsys {
 double dt, *mass, *epsilon, *sigma, box, rcut;
 int *type,kind_potential,nodp;
 /* type[natoms] contain the type of all particles
 * kind_potential =1 (Lennard Jones) or =2 (Moore)
 * nodp is the Number Of Diferent Particles*/
 double ekin, epot, temp, _pad1;
 double *pos, *vel, *frc;
 cell_t *clist;
 int *plist, _pad2;
 int natoms, nfi, nsteps, nthreads;
 int ngrid, ncell, npair, nidx;
 double delta;
};

 With the original code With our generalization

Creating scripts to convert the original data file
and using Paraview to create animations

TODO

● Better documentation (currently using sphinx)
● Unit tests
● Python memory management
● Include the many types of particles generalization in the

Python wrapper and integrate with both potentials

Link of Repository

https://bitbucket.org/Bruce_Warrior/ljmd-
project-ictp

https://bitbucket.org/Bruce_Warrior/ljmd-project-ictp
https://bitbucket.org/Bruce_Warrior/ljmd-project-ictp
https://bitbucket.org/Bruce_Warrior/ljmd-project-ictp

