

Group: Fábio Köpp Nóbrega, Oscar Augusto de Aguiar Francisco, Cecilia Jarne

Implementation of a genetic algorithm to design a two dimensional bike with two wheels and two mass points

https://users.hepforge.org/~dgrell/ICTP14/ https://bitbucket.org/bicicletagenetica/bicicletagenetica

Statements of the problem

- The bike must have two wheels and two loads
- The initial positions of these masses and wheels can be freely chosen by the algorithm.
- The elements are connected by springs whose length, with fix damping constant and spring constant.
- The loads must never touch the ground.
- The optimality of a particular candidate solution (the fitness function) is determined by how far it travels before a mass touches the ground or reaches a fix maximum distance.

What we need to model?

- Geometry of the problem (two dimensions+time)
- Bicycle object
- Ground shape
- Physics (spring, masses, wheel, gravity)
- Time evolution (Runge-Kutta)
- Evolution (genetic algorithm to find the best bike)
- Visualization (visual interface)

How do we split the work?

How do we split the work?

How do we split the work?

Class Structure Definition and shearing code design

(♦) ♦ Atlassian, Inc. (US) https://bit	bucket.org/bicicletagenetica/bicicletagenetica/src	マ C C operators python	→ ☆ 自	♣ ⋒	9 =
Atlassian Bitbucket Features Pricing		Find a repository Q	▼ English -	Sign up	Log in
bicicletagenetica. bicicletagenetica	Source				
ACTIONS					
L. Clone	codeexamples				
℃ Compare	■ bike.py	2.6 KB			
-C Fork	■ bikecomponents.py	1.2 KB			
NAVIGATION	■ gb animation.py	4.1 KB			
	a genetic simple.pv	3.7 KB			
Source	spring force calculation all springs.py	1.6 KB			
¢ Commits		62 B			
🐓 Branches					
Pull requests					
Issues	Blog - Support - Plans & pricing - Documen	tation · API · Server status · Version info · Terms of service · Priva	icy policy		
🕒 Wiki	JIRA · Confluên	ce · Bamboo · Stash · SourceTree · HipChat			
Downloads		VAthesian			
		XAtlassian			
11					

Example: generating the random bikes

class Bike:

Example 2: the genetic algorithm

Documentation Example: using Pydoc at the genetic algorithm code

• NAME

- genetic_simple
- •
- FUNCTIONS
- avg_fitness(population)
- Average fitness of the population
- crossover(father, mother)
- Crossover (Mean)
- fitness(x)
- Fitness calculation
- max_fitness(population)
- Max fitness of the population

- DATA
- number_fittest = 20
- population_size = 200

Down the hill

To Do

- Improve the ground interaction.
- Implement the genetic algorithm for the bikes

Conclusion

- It was a great opportunity to learn more about numerical evaluation of a problem (Euler, Runge kutta forth order, leapfrog and genetic code.)
- Heterogeneous group

Thank you!

Back Up:

• The Euler problem

