
Genetic BikeGenetic Bike

Group:
Fábio Köpp Nóbrega, Oscar Augusto de Aguiar Francisco,

Cecilia Jarne

Implementation of a genetic algorithm to design a two
dimensional bike with two wheels and two mass

points

https://users.hepforge.org/~dgrell/ICTP14/
https://bitbucket.org/bicicletagenetica/bicicletagenetica

https://users.hepforge.org/~dgrell/ICTP14/

2

Statements of the problem

● The bike must have two wheels and two loads
● The initial positions of these masses and wheels can be

freely chosen by the algorithm.
● The elements are connected by springs whose length, with

fix damping constant and spring constant.
● The loads must never touch the ground.
● The optimality of a particular candidate solution (the fitness

function) is determined by how far it travels before a mass
touches the ground or reaches a fix maximum distance.

3

What we need to model?

● Geometry of the problem (two dimensions+time)
● Bicycle object
● Ground shape
● Physics (spring, masses, wheel, gravity)
● Time evolution (Runge-Kutta)
● Evolution (genetic algorithm to find the best bike)
● Visualization (visual interface)

4

How do we split the work?

Bike
creation

Bike
Component

Animation

Cecilia

Oscar

Fabio

Meeting

Starting point

5

How do we split the work?

Bike
creation

Bike
Component

Animation

Cecilia

Oscar

Fabio

Meeting

Starting point

Bike
creation

Animation

6

How do we split the work?

Bike
creation

Bike
Component

Animation

Cecilia

Oscar

Fabio

Meeting

Starting point

Animation

Runge
-Kutta

M
e

et
in

g
M

e
et

in
g

Genetic
Algorithm

Force
(spring

interaction)

M
e

et
in

g

Bike
creation

7

How do we split the work?

Bike
creation

Bike
Component

Animation

Cecilia

Oscar

Fabio

Meeting

Starting point

Animation

Runge
-Kutta

M
e

et
in

g
M

e
et

in
g

Genetic
Algorithm

Force
(spring

interaction)

MAIN

Bike
creation

M
e

et
in

g

8

Class Structure Definition and shearing
code design

9

Example: generating the random bikes
● class Bike:

● """Bike class"""

● def __init__(self, wheels_tmp = [],

mass_points_tmp = []):
● self.wheels = wheels_tmp
● self.mass_points = mass_points_tmp
● self.spring = (spring_constant,Damping)
● self.fitness_value = fitness_value_tmp

● def random_bike():

● mp1 =MassPoint(x0 = random_position(), y0 =
random_position())

● print "First one set"
● mp2 = MassPoint()
● mp2.Position = mp1.Position

● while np.linalg.norm(mp1.Position - mp2.Position) <
0.5:

● mp2 = MassPoint(x0 = random_position(), y0 =
random_position())

● print "Second one set"

● w1 = Wheel(x0 = random_position(), y0 =
random_position())

● while np.linalg.norm(mp1.Position - w1.Position) < 0.5
or np.linalg.norm(w1.Position - mp2.Position) < 0.75:

● w1 = Wheel(x0 = random_position(), y0 =
random_position())

● print "Third one set"

● w2 = Wheel(x0 = random_position(), y0 =
random_position())

● while np.linalg.norm(w2.Position - w1.Position) < 1. or
np.linalg.norm(w2.Position - mp1.Position) < 0.75 or
np.linalg.norm(w2.Position - mp2.Position) < 0.75:

● w2 = Wheel(x0 = random_position(), y0 =
random_position())

● random_bike = Bike([w1,w2],[mp1,mp2])
● return random_bike

10

Example 2: the genetic algorithm
import numpy as np
from operator import itemgetter

import matplotlib.pyplot as plt
from math import sqrt

number_fittest = 20
population_size = 200

def fitness (x):
 return sqrt(x)

def avg_fitness(population):
 fit_sum = 0
 for i in population: fit_sum += fitness(i)
 return fit_sum/len(population)

def max_fitness(population):

 map_pop_fitness = []
 for i in population:
 /
…....

11

Documentation Example: using Pydoc
at the genetic algorithm code

● NAME

● genetic_simple

●

● FUNCTIONS

● avg_fitness(population)

● Average fitness of the population

● crossover(father, mother)

● Crossover (Mean)

● fitness(x)

● Fitness calculation

● max_fitness(population)

● Max fitness of the population

● DATA

● number_fittest = 20

● population_size = 200

12

Down the hill

13

How far we get

Bike
creation

Bike
Component

Animation

Cecilia

Oscar

Fabio

Meeting

Starting point

Animation

Runge-Kutta /
leapfrog

M
e

et
in

g
M

e
et

in
g

Genetic
Algorithm

Force
(spring

interaction)

MAIN

Bike
creation

OK

OK

OK

OK

OK

Not yet... (adhoc)

OK

M
e

et
in

g

14

To Do

● Improve the ground interaction.
● Implement the genetic algorithm for the bikes

15

Conclusion

● It was a great opportunity to learn more about
numerical evaluation of a problem (Euler,
Runge kutta forth order, leapfrog and genetic
code.)

● Heterogeneous group

16

Thank you!

17

Back Up:

● The Euler problem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

