
Optimization and
Maintainability

David Grellscheid

Optimisation and Maintainability, David Grellscheid 2015-04-16

Typical scientific workflow
Correctness is main

concern

Start coding without
much planning

First version that looks
like it works is kept

Sub-optimal choices
only noticed later on 

(if at all)

What writing scientific codes looks like…

• Many of us write programs to
solve specific problems in
science
• We create and use models to

describe our problems
• These models are implemented

as code and produce results
• Evaluating these results allows

us to validate our models and
improve them

Physical Problem

Model

Implementation

Evaluation

Refinements

Optimisation and Maintainability, David Grellscheid 2015-04-16

Typical scientific workflow
Correctness is main

concern

Start coding without
much planning

First version that looks
like it works is kept

Sub-optimal choices
only noticed later on 

(if at all)

What writing scientific codes looks like…

• Many of us write programs to
solve specific problems in
science
• We create and use models to

describe our problems
• These models are implemented

as code and produce results
• Evaluating these results allows

us to validate our models and
improve them

Physical Problem

Model

Implementation

Evaluation

Refinements

 
A friend of my friend said that  

you should never do XYZ,  
because the code will be slower!

Optimisation and Maintainability, David Grellscheid 2015-04-16

Donald Knuth, December 1974:

Programmers waste enormous amounts of time
thinking about, or worrying about, the speed of
noncritical parts of their programs, and these
attempts at efficiency actually have a strong negative
impact when debugging and maintenance are
considered. We should forget about small
efficiencies, say about 97% of the time: premature
optimization is the root of all evil.
Yet we should not pass up our opportunities in that
critical 3%.

“Structured Programming with go to Statements”, Computing Surveys, Vol 6, No 4.

Optimisation and Maintainability, David Grellscheid 2015-04-16

Runtime is not the only factor to consider,
need to think about trade off between time spent in:

development
debugging
validation
portability

runtime in your own usage
other developers’ time (now/future)

total runtime for all users

Optimisation and Maintainability, David Grellscheid 2015-04-16

Runtime is not the only factor to consider,
need to think about trade off between time spent in:

development
debugging
validation
portability

runtime in your own usage
other developers’ time (now/future)

total runtime for all users

CPU time much cheaper than human time!

Optimisation and Maintainability, David Grellscheid 2015-04-16

Optimization points
Someone else already solved (part of) the problem:

LAPACK, BLAS
GNU scientific library

C++ Boost
Numpy, Scipy, Pandas

…

Develop googling skills, evaluate what exists.  
Quality often much better than self-written attempts

Optimisation and Maintainability, David Grellscheid 2015-04-16

Optimization points

Choice of programming language

Be aware of what exists

Know strengths / weaknesses

But: needs to fit rest of project

take a look at Haskell, Erlang, JS

Optimisation and Maintainability, David Grellscheid 2015-04-16

Optimization points

findLongestUpTo :: Int -> (Int,Int)
findLongestUpTo mx = maximum (map f [1 .. mx])
 where f x = (collatzLength x,x)

collatzLength :: Int -> Int
collatzLength 1 = 1
collatzLength n = 1 + collatzLength (collatzStep n)

collatzStep :: Int -> Int
collatzStep n
 | even n = n `div` 2
 | otherwise = 3 * n + 1

Optimisation and Maintainability, David Grellscheid 2015-04-16

Optimization points

Program design

First version: understand the problems

start again

Second version: you know what you’re doing

refactor / clean up / make reusable

Done :-)

Optimisation and Maintainability, David Grellscheid 2015-04-16

Optimization points

Algorithm / data structure choice

can get orders of magnitude in speed

Local and hardware-specific optimisations

- later lecture -

Optimisation and Maintainability, David Grellscheid 2015-04-16

Complexity basics

Much simplified, skipping formal derivation

Optimisation and Maintainability, David Grellscheid 2015-04-16

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Optimisation and Maintainability, David Grellscheid 2015-04-16

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Scaling behaviour with size N of problem set:
O(1) - constant time independent of N
O(N) - linear with N
O(N2) - quadratic in N

Optimisation and Maintainability, David Grellscheid 2015-04-16

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Scaling behaviour with size N of problem set:
O(1) - constant time independent of N
O(N) - linear with N
O(N2) - quadratic in N

O(N N!)

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

merge

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 1 5 4 3 6 8

2 7 5 1 4 3 6 8

merge merge

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 4 3 6 8

2 7 5 1 4 3 6 8

merge merge

merge

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

O(N log N)

Optimisation and Maintainability, David Grellscheid 2015-04-16

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

O(N log N)

15 Sorting Algorithms in 6 Minutes  
 http://youtu.be/kPRA0W1kECg

Optimisation and Maintainability, David Grellscheid 2015-04-16

http://bigocheatsheet.com/

Nicolai Josuttis, The C++ Standard Library.

http://bigocheatsheet.com/

Optimisation and Maintainability, David Grellscheid 2015-04-16

Data structure complexity

Data Structures

10 2 7 5 1 4 9 3 6 8

Sequence Associative

5 Alpha

key value

3 Beta

7 Gamma

e.g., C-Arrays, std::vector, std::deque, std::list e.g., C-Arrays, std::map, std::set, std::unordered_map

Data Structures

• Operations:
• Insertion
• Searching
• Deletion

• Variants:
• Ordered
• Unordered

Sequential Containers
Arrays, Lists, Queues, Stacks

10 2 7 5 1 4 9 3 6 8

10 2 5 7 8 6

STL Containers

• Sequence Containers
• vector (flexible sequence)
• deque (double-ended queue)
• list (double linked list)
• array (fixed sequence, C++11)
• forward_list (single linked list, C++11)

C-Arrays

• Simplest Sequence Data Structure

• Data stored in range [0, numElements)

• Fixed Size, Wasteful

• Consecutive Memory (efficient access)

10 2 7 5 1 4 9 3

int a[10000];
int numElements = 0;

// insertion at end O(1)
a[numElements++] = new_value;

// insertion at beginning O(n)
for(int i = numElements; i > 0; i--) a[i] = a[i-1];
a[0] = new_value;
numElements++;

Inserting at end is O(1)

5

5 10 2 7 5 1 4 9

Therefore inserting at beginning is O(n)

3

O(n) copy of previous values to new location

10 2 7 5 5 1 4 9 3

O(n) copy

inserting in the middle is O(n)

std::vector
#include <iostream>
#include <vector>

using namespace std;

// empty construction
vector<int> a;
// sized construction
vector<int> a(10);
// sized construction with initial value
vector<int> a(100, -1);
// C++ 11 initializer lists
vector<int> a { 3, 5, 7, 9, 11 };

// insertion at end
a.push_back(3);
a.push_back(5);
a.push_back(7);

// delete at end
a.pop_back();

// insertion at beginning
a.insert(a.begin(), new_value);

// accessing elements just like arrays
for(int i = 0; i < a.size(); i++) {

cout << a[i] << endl;
}

// using iterators
for(auto i = a.begin(); i != a.end(); ++i) {

cout << *i << endl;
}

// C++11 for each
for(auto element : a) {

cout << element << endl;
}

Linked-List

• List Elements connected through pointers
• First Element (head) and last element (tail)

are always known
• Insertion/Deletion at both ends in O(1)
• Insertion in the middle is also cheaper

• Finding insertion location is O(n) compared to
O(1) with C-Arrays

• But insertion itself happens in O(1) instead of
O(n) copies

• Dynamic Size
• Distributed in memory

10 2 5

head

10 2 5

head

struct Node {
Node * prev;
Node * next;
int data;

}

Single Linked-List:
only pointer of next element

Double Linked-List:
pointer of previous and next element

7

tail

7

tail

std::list
#include <iostream>
#include <list>

using namespace std;

// empty construction
list<int> a;
// sized construction
list<int> a(10);
// sized construction with initial value
list<int> a(100, -1);
// C++ 11 initializer lists
list<int> a { 3, 5, 7, 9, 11 };

// insertion at beginning
a.push_front(3);

// insertion at end
a.push_back(3);

// delete at beginning
a.pop_front();

// delete at end
a.pop_back();

// access front element
int first = a.front();

// access last element
int last = a.back();

// using iterators
for(auto i = a.begin(); i != a.end(); ++i) {

cout << *i << endl;
}

// C++11 for each
for(auto element : a) {

cout << element << endl;
}

Queue

• First-In-First-Out (FIFO) data structure

• Implementations:
• Double-Linked-List

• Operations:
• enqueue: put element in queue (insert at tail)
• dequeue: get first element in queue (remove head)

head

tail

enqueue

tail

head

dequeue

Stack

• Last-In-First-Out (LIFO) data structure

• Implementations:
• C-Array
• Single-Linked-List

• Operations:
• push: put element on stack (insert as first element)
• pop: get first element on stack (remove head)

head

head

push

pop

Associative Containers
Dictionaries, Maps, Sets

5 Alpha

key value

3 Beta

7 Gamma

Associative Containers

• Map a key to a value

• Searching for a specific element in
unsorted sequential containers
takes linear time O(n)

• Getting a specific element from an
associative container can be as fast
as constant time O(1)

STL Containers

• Associative Containers
• map
• set
• multimap
• multiset

• unordered_map (C++11)
• unordered_set (C++11)
• unordered_multimap (C++11)
• unordered_multiset (C++11)

C-Array as Associative Container

• Simplest associative data structure

• maps integer number to data
• 0 -> a[0]
• 1 -> a[1]
• …

• efficient access in O(1)
• inefficient storage
• limited to positive integer numbers as keys

10

2

7

5

1

4

9

3

int a[10000];

5

0

1

2

3

4

5

6

7

8

Ordered maps

• Maps arbitrary keys (objects, basic types) to
arbitrary values (objects, basic types)

• Basic idea: if keys are sortable, we can store
nodes in a data structure sorted by its keys.
Sorted data structures can be searched more
quickly, e.g. with binary search in O(log(n))

• Elements ordered by key

• Worst case lookup time is O(log(n))

std::map
#include <iostream>
#include <map>
#include <string>

using namespace std;

map<string, string> capitals;

// setting value for key
capitals["Austria"] = "Vienna";
capitals["France"] = "Paris";
capitals["Italy"] = "Rome";

// getting value from key
cout << "Capital of Austria: " << capitals["Austria"] << endl;
string & capital_of_france = capitals["France"];
cout << "Capital of France: " << capitals << endl;

// check if key is set
if (capitals.find("Spain") != capitals.end()) {

cout << "Capital of Spain is " << capitals["Spain"] << endl;
else {

cout << "Capital of Spain not found!" << endl;
}

std::map
// iterate over all elements
for (map<string, string>::iterator it = capitals.begin(); it != capitals.end(); ++it) {

string & key = it->first;
string & value = it->second;
cout << "The capitol of " << key << " is " << value << endl;

}

// C++11: iterate over all elements
for (auto it = capitals.begin(); it != capitals.end(); ++it) {

string & key = it->first;
string & value = it->second;
cout << "The capitol of " << key << " is " << value << endl;

}

// C++11: iterate over all elements
for (auto & kv : capitals) {

string & key = kv.first;
string & value = kv.second;
cout << "The capitol of " << key << " is " << value << endl;

}

Unordered maps / Hash maps

• Maps arbitrary keys (objects, basic types) to arbitrary values
(objects, basic types)

• On average accessing a hash map through keys takes O(1)
• In general unordered structure - you can’t get out objects in

the same order you inserted them.

• a number, called a hash code, is generated using a hash
function based on key in O(1)

• Each hash code can be mapped to a location called a bin

• A bin stores nodes with keys which map to the same hash
code

• Lookup therefore consists of:
• Determining the hash code of the key O(1)
• Selecting the correct node inside the bin is in the worst case O(n)

On average lookup times are
O(1). But this is only true if there
are only few hash collisions.

Hash maps require a good
hashing function, which reduces
the amount of hash collisions.

Value

hash code: 0x13456

“Somestring”

key: “Somestring”

Value“Otherstring”

Bin

Optimisation and Maintainability, David Grellscheid 2015-04-16

Reusability is an efficiency!

If the student after you has to start from 0,
nothing gained

