
Concepts & Design
David Grellscheid

Python – Concepts and Design, David Grellscheid 2015-04-13

Why Python?

easy to learn

huge library

excellent science support

quick development turnaround

Python – Concepts and Design, David Grellscheid 2015-04-13

History

development started 1989 
main author Guido van Rossum (BDFL)

Python 2.0: October 2000 (now: 2.7.9)

Python 3.0: December 2008 (now 3.4.3)

Python – Concepts and Design, David Grellscheid 2015-04-13

Version Choice
Python 2 used to have better library support –
time to switch has come

Features from 3.0 ported to 2.6 
Features from 3.1 ported to 2.7

But: no more 2.x releases!

conversion tools available: 2to3 3to2 
largest visible change for beginners: print vs print() 

Python – Concepts and Design, David Grellscheid 2015-04-13

Design choices

Zen of Python, by Tim Peters (import this)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Readability counts.
There should be one—and preferably only one—
obvious way to do it.
If the implementation is hard to explain, it's a bad idea.

Python – Concepts and Design, David Grellscheid 2015-04-13

Design choices

Multi-paradigm language: 
structured, object oriented & functional
styles are all supported

Paradigms not enforced by language 
“We are all consenting adults here”

clean syntax, fun to use

Highly extensible:  
small core, large standard lib

Python – Concepts and Design, David Grellscheid 2015-04-13

Implementations

CPython: the reference implementation, 
interpreted bytecode (pyc files)

PyPy: just-in-time compiler to machine code

Jython targets Java JVM

IronPython: C# / .NET

Python – Concepts and Design, David Grellscheid 2015-04-13

Type system
strong typing

’foo’+5 is an error

dynamic typing

a = ’foo’
b = 2*a
a = 5
b = 2*a

“duck typing”
def foo(a,b):

 return a+b 
 

function calls will take any
argument types, 

runtime error if it doesn’t fit

Python – Concepts and Design, David Grellscheid 2015-04-13

Whitespace is significant!

if (a>b)

 foo();

 bar();

baz(); 
 

C/C++

if a>b:

 foo()

 bar()

baz() 
 

Python

Syntax

Python – Concepts and Design, David Grellscheid 2015-04-13

Syntax

Control flow

if a>b:

 foo()

elif b!=c:

 bar()

else:

 baz()

while a>b:

 foo()

 bar()

for i in list:  
 baz(i)

break

continue
pass

Python – Concepts and Design, David Grellscheid 2015-04-13

Syntax
Function definition
def stuff(a,b,c):

 a = 3*b

 return a+b-c

functions can be passed as values!

def timesN(N):

 def helper(x):

 return N*x

 return helper

times6 = timesN(6)

a = times6(7)

Python – Concepts and Design, David Grellscheid 2015-04-13

Exceptions
Use them!

try:

 a = read_my_data()

except:

 print(“Corrupted data”)

if consistent_data():

 a = read_my_data()

else:

 print(“Corrupted data”)

is almost always preferable to:

Python – Concepts and Design, David Grellscheid 2015-04-13

Boolean operators are written out:
and or not

True False 

Expressions
mostly as expected from other languages

transparent arbitrary-length integers!

Be careful with division in Python 2!

from __future__ import division

Can be “fixed” with this line at the top:

5/3 == 1 5./3. == 1.66666666667

Python – Concepts and Design, David Grellscheid 2015-04-13

Strings
String delimiters:

use ’ or ” as needed, no difference
 

a = ”Fred’s house”

b = ’He said “Hello!” to me’

Verbatim texts in triple quotes
”””can go

over several lines

like this

””” 

Python – Concepts and Design, David Grellscheid 2015-04-13

String formatting
Two styles:

The second option is more flexible:
text = “I ate {num} {food} today. Yes, really {num}.”

answer = text.format(num=12,food=”apples”)

”I ate %d %s today” % (12,”apples”)

”I ate {} {} today”.format(12,”apples”)

(like printf())

Python – Concepts and Design, David Grellscheid 2015-04-13

Collections

dict, set

d={‘name’:‘Monty’, ‘age’:42}

 d[‘name’] d[‘age’]

{3, 1, ‘foo’, 12.} unique elements, union, intersection, etc.

list, tuple

[3, 1, ‘foo’, 12.] mutable

(3, 1, ‘foo’) immutable

a[0] a[-1] a[2:5] a[2:10:2] index / slice access

[x**2 for x in range(1,11)] list comprehension

Python – Concepts and Design, David Grellscheid 2015-04-13

t = (3, 7+5j)

a, b = t

a, b = b, a

pts = [

 (1,3),

 (5,6),

]

for i in pts:

 print(i)

for x,y in pts:

 print(x,‘and’,y)

Some syntax niceties

Python – Concepts and Design, David Grellscheid 2015-04-13

Standard Library
Enormous variety:

Regular expressions, difflib, textwrap

datetime, calendar

synchronized queue

copy

math, decimal, fractions, random

os.path, stat, tempfile, shutil

pickle, sqlite3, zlib, bz2, tarfile, csv

Markup, internet protocols, multimedia, debugging, ...

Python – Concepts and Design, David Grellscheid 2015-04-13

External packages

~50000 available at PyPI

http://pypi.python.org/pypi

...,Numpy, Scipy, Matplotlib,...

Easy installation with pip

Quality varies a lot!

https://pypi.python.org/pypi

Python – Concepts and Design, David Grellscheid 2015-04-13

warm-up to get familiar with editors,
file handling, and of course Python

http://learnpythonthehardway.org/book/
Exercises 1–39

http://docs.python.org/2/tutorial/
Sections 3–8

http://projecteuler.net/problems

Python – Concepts and Design, David Grellscheid 2015-04-13

http://projecteuler.net/problems

A. 1, 2, 3 (to use basic language features)

B. 14, 17 (use dict), 57

C. 79 (file input), 102 (handle 2D points)

