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Why Python?

easy to learn

huge library

excellent science support

quick development turnaround
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History

development started 1989 
main author Guido van Rossum (BDFL)

Python 2.0: October 2000 (now: 2.7.9)

Python 3.0: December 2008 (now 3.4.3)
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Version Choice
Python 2 used to have better library support – 
time to switch has come

Features from 3.0 ported to 2.6 
Features from 3.1 ported to 2.7

But: no more 2.x releases!

conversion tools available:  2to3 3to2 
largest visible change for beginners:  print vs   print() 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Design choices

Zen of Python, by Tim Peters  (import this)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Readability counts.
There should be one—and preferably only one—
obvious way to do it.
If the implementation is hard to explain, it's a bad idea.
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Design choices

Multi-paradigm language: 
structured, object oriented & functional 
styles are all supported

Paradigms not enforced by language 
“We are all consenting adults here”

clean syntax, fun to use

Highly extensible:  
small core, large standard lib
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Implementations

CPython: the reference implementation, 
interpreted bytecode (pyc files)

PyPy: just-in-time compiler to machine code

Jython targets Java JVM

IronPython: C# / .NET
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Type system
strong typing

’foo’+5 is an error

dynamic typing

a = ’foo’ 
b = 2*a 
a = 5 
b = 2*a

“duck typing”
def foo(a,b): 

  return a+b 
 

function calls will take any 
argument types, 

runtime error if it doesn’t fit
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Whitespace is significant!

if (a>b) 

   foo(); 

   bar(); 

baz(); 
 

C/C++

if a>b: 

   foo() 

   bar() 

baz() 
 

Python

Syntax
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Syntax

Control flow

if a>b: 

   foo() 

elif b!=c: 

   bar() 

else: 

   baz()

while a>b: 

   foo() 

   bar()

for i in list:       
   baz(i)

break 

continue
pass
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Syntax
Function definition
def stuff(a,b,c): 

   a = 3*b 

   return a+b-c

functions can be passed as values!

def timesN(N): 

    def helper(x): 

        return N*x 

    return helper 

times6 = timesN(6) 

a = times6(7)
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Exceptions
Use them!

try: 

    a = read_my_data() 

except: 

    print(“Corrupted data”)

if consistent_data(): 

    a = read_my_data() 

else: 

    print(“Corrupted data”)

is almost always preferable to: 



Python – Concepts and Design, David Grellscheid 2015-04-13

Boolean operators are written out: 
and     or     not 

True   False 

Expressions
mostly as expected from other languages

transparent arbitrary-length integers!

Be careful with division in Python 2!

from __future__ import division

Can be “fixed” with this line at the top:

5/3 == 1   5./3. == 1.66666666667
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Strings
String delimiters: 

use ’ or ” as needed, no difference
 

a = ”Fred’s house” 

b = ’He said “Hello!” to me’

Verbatim texts in triple quotes 
”””can go 

over several lines 

like this 

””” 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String formatting
Two styles: 

The second option is more flexible:
text = “I ate {num} {food} today. Yes, really {num}.” 

answer = text.format(num=12,food=”apples”)

”I ate %d %s today” % (12,”apples”) 

”I ate {} {} today”.format(12,”apples”)

(like printf())
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Collections

dict, set

d={‘name’:‘Monty’, ‘age’:42} 

   d[‘name’]    d[‘age’]

{3, 1, ‘foo’, 12.} unique elements, union, intersection, etc.

list, tuple

[3, 1, ‘foo’, 12.]    mutable

(3, 1, ‘foo’)        immutable

a[0]   a[-1]   a[2:5]  a[2:10:2]    index / slice access

[ x**2 for x in range(1,11) ]    list comprehension
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t = (3, 7+5j) 

a, b  =  t 

a, b  =  b, a 

pts = [ 

       (1,3), 

       (5,6), 

      ] 

for i in pts: 

    print(i)  

for x,y in pts: 

    print(x,‘and’,y)

Some syntax niceties
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Standard Library
Enormous variety:

Regular expressions, difflib, textwrap 

datetime, calendar 

synchronized queue

copy 

math, decimal, fractions, random 

os.path, stat, tempfile, shutil 

pickle, sqlite3, zlib, bz2, tarfile, csv 

Markup, internet protocols, multimedia, debugging, ...
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External packages

~50000 available at PyPI 

http://pypi.python.org/pypi 

...,Numpy, Scipy, Matplotlib,...

Easy installation with pip 

Quality varies a lot!

https://pypi.python.org/pypi
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warm-up to get familiar with editors, 
file handling, and of course Python

http://learnpythonthehardway.org/book/ 
Exercises 1–39

http://docs.python.org/2/tutorial/ 
Sections 3–8

http://projecteuler.net/problems



Python – Concepts and Design, David Grellscheid 2015-04-13

http://projecteuler.net/problems

A. 1, 2, 3 (to use basic language features)

B. 14, 17 (use dict), 57

C. 79 (file input), 102 (handle 2D points)


