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Complex network representation 
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 Network measures 

 Degree ki and degree distribution P(k) 

 Node clustering coefficient ci=2ni/ki(ki-1) and C = <ci> 

 Average path-length <d> 

 Diameter D 

 Edge betweenness centrality B 

 Degree assortativity 

 Modularity 

 Fractal dimension 

 

 

Complex network representation 
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Complex network representation 
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Adjacency matrix, neighborhood matrix 

 Adjacency matrix: 
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Adjacency matrix, neighborhood matrix 

Numbering dependent 
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Adjacency matrix, neighborhood matrix 

Numbering dependent 



 Higher order ℓ neighborhood evaluation 

 Description by matrices M(ℓ) 

  ℓ = 1                               ℓ = 2                         ℓ = 3 
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Adjacency matrix, neighborhood matrix 
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Adjacency matrix, neighborhood matrix 
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Adjacency matrix, neighborhood matrix 



        Ordered (100)                     Smallworld(15) 

         Erdös-Rényi(3)                      Scale-free (5) 
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Complex network representation 
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           Ordered (100)                  Ordered + Shuffled(100)  
 
 
 
 
 
 
 
 
 
 
 

Complex network representation 



                  Cayley(10)                       Apollonian(4) 
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Complex network representation 



 

 

 Define a neighborhood based distance (,) 

 

 

 

 

 

 Minimize (,)  by Monte-Carlo procedure 
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 Monte-Carlo time evolution of (,) 
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Distance between networks 
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Distance between networks 



 ER network with N nodes. 

 Choose random weight matrix 0<Wi,j<1. 

 For given threshold p=Wth define adjacency matrix:  

 Mi,j(p)=1, if Wi,j<p. 

 Mi,j(p)=0, if Wi,j>p. 

 Giant percolating cluster at p=pc. 

 Extend framework to any regular or random lattice. 

 Distance between neighboring weighted networks 
(p,p+p) detects relevant changes in network 
structure as function of p.  
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Distance between weighted networks 



 

 

 

 Square lattice  
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Distance between weighted networks 
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Phylogeny and evolution 

 Phylogenetic trees as “periodic tables” of biologic 
diversity. 
 

 Usual classification:  
 species, genus, family,  
 order, class, phylum,  
 kingdom. 

 

 Recently introduced  
 domains  (archea, bacteria, 
 eukarya) as basic roots of 
 biologic evolution. 
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Phylogeny and evolution 

 Classical methods of phylogeny and evolution  
based on grouping analysis criteria:  

 Bayesian analysis;  

 Maximum likelihood; 

 Neighbor joining distance;  

 Parsimony. 

 Take into account different 
 features, from morphologic 
 to molecular composition,  
 structure and interactions 

 Comparatively large computational efforts 
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Phylogeny and evolution 

 Molecular features intensively used in phylogeny 
and evolution of mitochondria and chloroplasts.  

 Proteins encoded by  
 nuclear or mitochondrial  
 DNA 

 Conserved sequences 
  suitable for ancestry  
 investigations. 

 Phylogenetic studies:  

    important also for  

    understanding evolutionary relationships 
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Phylogeny and evolution 

 Our proposal: classify organisms based on similarity 
of components involved in basic molecular syntheses 

 Several basic purpose 

 bio-molecules present  

 in large number of  

 organisms 

 Their synthesis require 
 presence of enzymes  

 Organisms use own sets 
 of enzyme (pathways) to  
 obtain “same” molecule 
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Phylogeny and evolution 

 Basic steps: protein structure from NCBI data base 

 Weighted network  BLAST 
 similarity score Sij  

 Complete sequences of  
 extant organisms only 

 Modularity properties 
 Newman-Girvan or … 

 Network modules  
 species, genus, family… 

 Network -distance locates 
 best modularity expression 
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Phylogeny and evolution 

 Results obtained so far: 

 Chitin synthesis enzymes (pathways) 

 Chitin synthase in Fungi:  
 comparison to other  
 methods 

 Evolutionary origins of  

    mitochondria 

 Evolutionary history  

    recovery 
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Results: Chitin synthesis pathway 

 First system: Devise, implement and test method 

 Classification source: enzymes in chitin synthesis 

 Chitin: 

 Structural endogenous carbohydrate,  major component of 
fungal cell walls and arthropod exoskeletons. 

 Second most abundant polysaccharide in nature after 
cellulose 

 Method can use any other molecular synthesis  
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Results: Chitin synthesis pathway 

 Database: Protein sequences from NCBI 

  Extract 1695 protein sequences for 13 enzymes  
within chitin metabolic pathway, e.g.  

 UDP-acetylglucosamine pyrophosphorylase 

 Acetylglucosamine phosphate deacetylase 

 Hexosaminidase 

 Phosphoglucoisomerase 

 Glucosaminephosphateisomerase 

 Choose one of them along with the subset of 
organisms that include this or similar enzymes in 
the pathway 
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Results: Chitin synthesis pathway 

 Comparison of  protein sequences for organism 
sequences based on similarity index (S) BLAST (v. 
2.2.15)  similarity matrix (SM) 

 Symmetrization of SM 

 Symmetrized SM leads to undirected network  
adjacency matrix AM 

 Network nodes i represent sequenced organisms 

 Nodes i,j are connected if similarity index Sij is 
above a pre-established threshold  =Sth 
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Results: Chitin synthesis pathway 

 Network measures: 

Degree distribution P(k) 

Clustering coefficient C 

Average path-length <d> 

Edge betwenness B 

Network distance (,) 
 Networks depend on   

 Judicious choice of value of  optimizes reliability of 
classification scheme 

 NG community finding method 
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Results: Chitin synthesis pathway 

 Enzyme UDP 

 Sth= 51%:sudden transition in network properties 

 Sharp decrease in <d> 

 Clustering C remains relatively unchanged 

 Sharp change in dendrogram based on B 

 Peak in the distance (,+) 
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D,+1 is reflected in the 
dendrogram structure 

At Sth=51%, main groups 
identified are reproduced in 
neighborhood matrix 

Moduli C1-C6 with precise   
biologic meaning.  

Results: Chitin synthesis pathway 

SAIFR 2015 - Recovering evolutionary history by complex network modularity analysis 35 



Results: Chitin synthesis pathway 

 C1 – Cyanobacteria      C2  – Firmicutes 
C3  –  and  Proteobacteria   C4  – -Proteobacteria  
C5  – Actinobacteria        C6 –  -Proteobacteria  
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Results: Chitin synthesis pathway 
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Identification of these 
modules in the network. 

Crossing results   from our 
approach with taxonomic 
and phylogenetic data: the 
modules correspond in  clear 
and rather precise way to 
bacterial phyla and/or 
classes 



Results: Chitin synthesis pathway 

 Same method was applied to other networks (with 
no. of vertices  100)  accurately defined  
grouping suggests  robustness of the method. 
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Results: Chitin synthesis pathway 
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 Network distance D  x threshold Sth 
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Results: Chitin synthesis pathway 
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 Hexo: Dependence of network on  Sth 
                    37%                                      40%  

 

 

 

 

 

                     44%                                      56% 



Results: Chitin synthesis pathway 

 Number of distinct sequences in different networks 
totalize 1645 (out of 1695 in data set)  

 Each sequence belongs to only one network 

 Identification of 382 distinct organisms 

 More than one sequence can be present in the same 
organism 

 Congruence  of classification by distinct networks  
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Results: Chitin synthesis pathway 

 Congruence  of classification by distinct networks  

 Networks with different sizes and communities 
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Results: Chitin synthesis pathway 
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 Congruence  of classification by distinct networks  

 Networks with different sizes and communities 

 

 



Results: Chitin synthesis pathway 

 Congruence scores for pair-wise phylogeny 
comparison provided by two different networks.  

 Average table score: 0.84.  
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A G H P U 

A 0.79 0.73 0.93 0.91 

G 0.79 0.69 0.83 0.87 

H 0.73 0.69 0.90 0.79 

P 0.93 0.83 0.90 0.95 

U 0.91 0.87 0.79 0.95 



Results: Fungi chitin synthase 

 Second system – Compare with other phylogenetic 
methods 

 Fungal cell wall controls interaction of fungi with 
surroundings, protects cell environmental stresses.  

 Directly involved in important biological processes: 
morphogenesis, antigenic expression, adhesion, ...  

 Chitin is crucial to the architecture and integrity of 
the fungal cell wall.  

 Disruption of chitin synthesis leads to malformed, 
osmotically unstable cells, resulting in cell death  
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Chitin: β-1,4-linked linear 
homopolymer of N-
acetylglucosamine 

Chitin Synthases (CHS) 
EC 2.4.1.16 
Glucosyltransferase 
 

Converts UDP-N-acetyl-D-
glucosamine into chitin 
and UDP (irreversible) 
 

Multiple isoforms 
 

Different expression levels (stage of 
the life cycle and cellular location)  

Results: Chitin synthesis pathway 
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Results: Fungi chitin synthase 

 Previous studies addressed to Ascomycota CHS. 

 CHSBasidio database: data mining from NCBI on 
10/01/2011, with 347 sequences, 72 distinct species. 

 Relational database of all CHSBasidio protein and 
nucleotide sequences constructed and validated 

 62 complete protein sequences (18% entries) 

 Excluding redundancies  42 unique sequences. 

 Sequences with 864-1271 aminoacids. 

  Chemically basic, Division I (class II and III) 
enzymes, with six to seven transmembrane helices 

 Conserved domains PF01644 and PF08407. 
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Dendrogram of sequence similarity analysis 
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Results: Fungi chitin synthase 
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Results: Fungi chitin synthase 

 -distance network approach 
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Results: Fungi chitin synthase 
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 Neighborhood matrix 

                = 0.46                                   = 0.47 

 

 

 

 

 

 

 

Results: Fungi chitin synthase 
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 NG community finding method 

  

 

 

 

 

 

 

 

Results: Fungi chitin synthase 
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 Phylogenetic tree Bayesian tree - Posterior 
Probabilities values above 50% are exhibited above 
the branches for the main groups. 

Results: Fungi chitin synthase 
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 Congruence obtained after pairwise comparison of 
the phylogenetic analysis based on chitin synthase 
sequences provided by five different methods 

Results: Fungi chitin synthase 
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Groups MP D ML B CN 

MP 1 1 1 1 1 

D 1 1 1 1 1 

ML 1 1 1 1 1 

B 1 1 1 1 1 

CN 1 1 1 1 1 



 Endosymbiotic theory: all organelles in eukaryotic 
cells have their origin by the inclusion of pre-
existent organisms, together with their complete 
genomes. 

 Mitochondria and chloroplasts, with own genome, 
have undergone gene transfer to the eukaryotic host 
cell nucleus  

 Horizontal or lateral gene transfer phenomenon  

 Horizontal transfer favored by endosymbiotic origin 
of these organelles. 

 Conserved sequences suitable for ancestry studies. 

 

Results: Origins of mitochondria 
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Results: Origins of mitochondria 

 Phylogenetic relationship between mitochondria 
and bacteria. 

 Investigation related to evolutionary aspects. 

 From prokaryotic anaerobic cell to eukaryotic 
aerobic cell and multi-cellular organisms. 

 Find evidences of the common ancestor of bacteria 
and mitochondria. 

 Which class, order, family of extant organisms are 
closer to common ancestor. 
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Results: Origins of mitochondria 

 Basic steps of endosymbiotic dynamics  
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 Study based on ATP synthase complex: responsible 
for ATP synthesis in mitochondria, chloroplasts and 
bacteria. 

Results: Origins of mitochondria 
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 Study based on ATP synthase complex: responsible 
for ATP synthesis in mitochondria, chloroplasts and 
bacteria. 

Results: Origins of mitochondria 

62 SAIFR 2015 - Recovering evolutionary history by complex network modularity analysis 



 ATP synthase complex:  

 formed by two modules F0 and F1 

Results: Origins of mitochondria 
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 ATP synthase complex: subunits 9 and c act in the 
proton channel mechanism in mitochondria and 
prokaryotes 

 

Results: Origins of mitochondria 
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 ATP synthase complex: subunits 4 and b act as 
connecting rod between F0 and F1 

 

Results: Origins of mitochondria 
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 ATP synthase complex: subunits 6 and a constitute 
the proton channel in mitochondria and 
prokaryotes 

 

Results: Origins of mitochondria 
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Results: Origins of mitochondria 

 Mitochondria originated endosymbiotically from an 
Alphaproteobacteria-like ancestor.  

 Relationship between mitochondria within eukarya 
and bacteria. 

 Protein sequences of ATP synthase: subunits 4, 6, 
and 9 (eukarya), and  b, a, and c (bacteria). 

 BLAST similarity scores between sequences;  

 -distance locates best phylogenetic relationship;  

 NG community finding method 

 Distribution of mitochondrial and bacteria 
sequences in different network communities 
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 Complete data base: downloaded from NCBI on 
08/04/2011. 

 Filtered bank   

 sub-unities 4 and b: 597 sequences   

 nuclear encoded 

 sub-unities 6 and a: 2945 sequences   

  mitochondrialy encoded 

 sub-unities 9 and c: 890 sequences   

 mitochondrialy  encoded 

 Similarity evaluation by BLAST 2.2.21 StandAlone 

Results: Origins of mitochondria 
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 Extant group of Alphaproteobacteria phylogenetic- 
ally closer to the mitochondrial ancestor is uncertain 

 Proposed groups:  

 the order Rickettsiales  

 the family Rhodospirillaceae  

 the genus Rickettsia.  

 For all subunits, results do not support hypothesis 
that Rickettsiales are closely related to the 
mitochondrial ancestor.  

Results: Origins of mitochondria 
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 Mitochondrial ATP synthase far less related to the 
bacterial homologs in Rickettsiales × Rhizobiales, 
Rhodobacterales, Rhodospirillales, Sphingomona-
dales, and clusters SAR11 and SAR116.  

 Agree better with proposal that Rhodospirillaceae 
includes closest extant relatives to mitochondria. 

 Agree with results that Alphaproteobacteria other 
than in the Ricketsialles show closer relationships to 
mitochondria 

 Confirm that Rhodobacterales, Rhizobiales and 
Rhodospirillales are sister groups of mitochondria.   

 

Results: Origins of mitochondria - details 
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 Other results show that trees for alphaproteo-
bacterial orders may differ if different methods or 
models are used to infer phylogenetic placement. 

 Rickettsiales appears as an order diverging earlier 
than the other orders in most of the phylogenies for 
the Alphaproteobacteria.  

 Combining results provided herein with other 
phylogenetic analyses support hypothesis that 
mitochondria share a common ancestor with alpha-
proteobacterial orders other than Rickettsiales. 

 

Results: Origins of mitochondria - details 
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 Work to measure the reliability of used procedure 
to treat proteomic data of actual extant organisms 

 Simple evolutionary model where parameter set 
controls mutation probability and population of 
different species.  

 Phylogeny produced by framework accurately 
reproduces classification resulting from actual 
evolutionary history for parameter values where 
species originated by the evolutionary dynamics 
have clear community structure. 

 Corroborate previous reliability tests of framework. 

Results: Evolutionary history recovery 
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 Microscopic evolutionary dynamics of organism set 
characterized by a genetic strand of binary bases.  

 Organisms differentiate from a single common 
ancestor through a cumulative process of random 
changes in the strand.  

 Neutral model no explicit selection acts on species. 

 Phylogenetic classification based on same 
framework used for actual data. 

 

 

 

Results: Evolutionary history recovery 
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 Model initialized with one species (S0) with a single 
individual.  

 At each time step T, update number of individuals 
of an existing species i according to a function     
ni(t-Ti), with Ti the generation at which the species Si 
appeared 

 Each living individual can make a transition to a 
random neighbor species with probability X. 

 Evolutionary link between two species registered in 
the evolutionary history.  

 Model stops at generation Tf.  

Results: Evolutionary history recovery 
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 Model outputs: set of species, their evolutionary 
history, similarity between each pair of species. 

 Focus on genomes and the precise genealogy of the 
various species. 

 Differs to works based on fixed-population Wright-
Fisher model, where statistics of distances between 
species or time to the most recent common ancestor 
are main features. 

Results: Evolutionary history recovery 
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Results: Evolutionary history recovery 
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 (a) 

 A species is represented by a strand of N genes 
(here 6), on active (black) or inactive (white) state. 

 In each step, this species can mutate with 
probability X to a neighbor species.  

 (b) 

 Set of all species S divided into sub-sets S, with   a 
numeric sequence identifying each subset.  

 Numbers in the sequence indicate all generations at 
which species belonging to that subset suffered a 
mutation.  

 

 

 

Results: Evolutionary history recovery 
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 T=0; single species in the subset identified as 0=0. 

 For T>1, there are 2T-1 new subsets, labelled by 2T-1 
new sequences k, k=2T-1, 2T-1+1, ..., 2T-1. 

 At T=1, there is the 0 subset, and 1=0,1. 

 N denotes the number of different species in S 
with N0=1.  

 N depends on the random introduction of changes 
in the genome of the species ancestor.  

 If no change occurs, N=0 for that particular 
sequence and for all sequences resulting by adding 
new numbers to this sequence.  

   

Results: Evolutionary history recovery 
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 Dendrogram, growth 
n(t), and similarity 
matrix using dendro-
gram numbering.  

 N=10000, X = 0.005, 
Tf=30, r=0.5, k=1000.  

 Well-defined modular 
structures.  

 

Results: Evolutionary history recovery 
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Results: Evolutionary history recovery 
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 Dendrogram, growth 
n(t), and similarity 
matrix using dendro-
gram numbering.  

 N=10000, X = 0.005, 
Tf=45, r=0.5, k=100.  

 Modular structure is 
not well developed.  

 



Results: Evolutionary history recovery 
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 Dendrogram, growth 
n(t), and similarity 
matrix using dendro-
gram numbering.  

 N=10000, X = 0.005, 
Tf=110, r=0.1, k=1000.  

 Large community 
comprising neighbors 
of original species.  

 



 

 

 

 

 

 

 Similarity matrix  

 (a) original numbering.  

 (b) NG numbering.  

 (c) dendrogram numbering. 

Results: Evolutionary history recovery 
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 (a) from 1 to 34  

 (b) from 197 to 221;  

 (c) from 222 to 250;  

 (d) from 251 to 304;  

 (e) from 305 to 361;  

 (f) from 362 to 441. 

 Community comprising species in the NG and  
dendrogram similarity matrix; 

Results: Evolutionary history recovery 
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 Networks based on similarity of protein structure 
successfully used for phylogenetic analysis 

 Identification of similarity threshold where 
modularity is likely to be expressed 

 Community identification at a set of optimal 
threshold values 

 Results for different sets of issues 

 Chitin synthesis enzymes (pathways) 

 Chitin pathways in fungi: comparison to other methods  

 Evolutionary origins of mitochondria 

 Evolutionary history recovery 
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Conclusions 



 Phylogenetic groups revealed by community 
finding algorithms (NG) 

 Significant and remarkably agreement between 
communities and validated phylogenetic methods 
(ML, parsimony, Bayesian, distance). 

 Able to address relevant biological issues as 
mitochondria evolutionary history. 

 Recovers evolutionary dynamics of simple models. 
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Conclusions 
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Thank you for your attention 


