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Outline of Lectures

◮ Lecture I: Basics of Monte Carlo methods, the event

generator strategy, matrix elements, LO/NLO, . . .

◮ Lecture II: Parton showers, initial/final state,

matching/merging, . . .

◮ Lecture III: Matching/merging (cntd.), underlying events,

multiple interactions, minimum bias, pile-up, hadronization,

decays, . . .

◮ Lecture IV: Protons vs. heavy ions, summary, . . .

Buckley et al. (MCnet collaboration), Phys. Rep. 504 (2011) 145.
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How do we numerically estimate an integral of an arbitrary

function f (x)?

I =

∫

Ω
dnx f (x)

Simple discretization (Simpsons rule, Gaussian quadrature)

can be extremely inefficient if

◮ n is large

◮ Ω is complicated

◮ f (x) has peaks and divergencies.
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Importance sampling

Assume we are able to generate random variables X i such that

P
(

x (j) < X
(j)
i < x (j) + dx (j)

)

= pX (x)

if p(x) > 0, ∀x ∈ Ω and zero outside, we can rewrite our integral

I =

∫

Ω
dnx

f (x)

pX (x)
pX (x).

Now, for any random variable Y and any function g, we know

that

1

N

N
∑

i=1

g(Yi) ≈ 〈g(Y )〉 =
∫

∞

−∞

dy pY (y)g(y)
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Hence
〈

f (X )

pX (X )

〉

=

∫

Ω
dnx

f (x)

pX (x)
pX (x) = I

So, we can numerically estimate our integral by generating N

points X i and take the average of f (X )/pX (X ).

In doing so we will get an error which we can estimate by

δ ≈ σ

(

f (X )

pX (X )

)

/
√

N

where the variance is given by σ2(Y ) = 〈Y 2〉 − 〈Y 〉2.

(cf. Simpsons rule δ ∝ 1/N4/d )
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Clearly if pX (x) = C|f (x)|, we get the smallest possible error

(if f (x) > 0 the error is zero).

However, with a bad choice of pX , the variance and the error

need not even be finite.

Numerically generating points directly according to

pX (x) = C|f (x)| is in general difficult, and typically involves

analytically solving the integral we want to estimate. But there

are some tricks. . .
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Normally we only have uniformly distributed (flat) random

numbers available on the computer

pR(r) =

{

1 0 < r < 1

0 otherwise

We can transform any distribution into any other by the a

transformation using the cumulative distributions

PY (y) =

∫ y

−∞

dt pY (t) =

∫ r

0

dt pR(t) = PR(r) = r

as long as P−1
Y (PR(r)) is a monotonically increasing

function.

(If P−1
Y (PR(r)) is not monotonous, we can divide up in

intervals.)
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0

0 1

y=
P Y

-1
(P

R
(r

))

r

Think of it as variable substitution:

∫ ymax

ymin

pY (y)f (y)dy =















PY (y) = r
dy
dr = 1

pY (y)

PY (ymin) = 0

PY (ymax) = 1















=

∫ 1

0

f (P−1
Y (r))dr

What if P−1
Y is hard to find . . .
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The Accept/Reject Method

Assume we want to generate random variables, Yi , according

to some difficult distribution pY (y). We already know how to

generate according to some other distribution, pY ′(y) such that

Cpy ′(y) ≥ pY (y) everywhere.

1. Generate Y ′ according to pY ′(y)

2. Generate R according to a flat distribution

3. ◮ If
pY (Y

′)
CpY ′ (Y ′) > R then accept Y = Y ′

◮ otherwise reject Y ′ and goto 1

The accepted Y will be distributed according to pY (y).

We need 2C random numbers to get one Y .
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Multi-channel

Sometimes it is difficult to find an overestimate. But there are

many tricks!

Assume p(x) ≤ g(x) =
∑

i gi(x) where we know how to

generate random variables according to each gi .

1. select i with relative probability Ai =
∫

gi(x)dx

2. select x according to gi(x)
3. throw away x and i with probability f (x)/

∑

i gi(x)
∫

f (x)dx =

∫

f (x)

g(x)

∑

i

gi(x) =
∑

Ai

∫

gi(x)dx

Ai

f (x)

g(x)

Alternatively we can divide up the integration region into

sub-regions, where we can find a suitable overestimate. Again

we first choose region according to the integral of the

overestimate, and then generate in there.
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How do we get random numbers?

There are ways of getting truly random numbers, but we will

use (and actually prefer) pseudo-random numbers.

There are many algorithms around for producing

pseudo-random numbers.

The simplest one is called Linear congruential:

◮ Pick integers a, b, m, and a seed R0
◮ generate random numbers according to

Ri = aRi−1 + b (mod m)

DON’T USE THIS
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The Marsaglia Effect

Take successive d-tuplets from a congruential generator with t

bits (m = 2t ).

Interpret them as point coordinates in a d-dimensional

hypercube.

Then they all fall on at most (d !2t)1/d parallel hyperplanes.

t d = 3 d = 4 d = 6 d = 10

16 73 35 19 13

32 2 953 566 120 41

48 119 086 9 065 766 126

64 4 801 280 145 055 4 866 382

Disastrous for any repetitive application.

Has lead to explosion of new tests and new generators.
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Don’t worry, there are several good pseudo random generators

out there:

http://en.wikipedia.org/wiki/List_of_random_number_generators
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Predicting an Observable

To calculate the expectation value of an observable, O, in a

pp → X collision we need to evaluate an integral looking like

〈O〉 =
∑

n

∑

Q

∫

d4np |Mn(Q,p)|2 On(Q,p)Φn(p)

◮ p are the momenta of the n particles

◮ Q are their quantum numbers

◮ M is the matrix element

◮ Φn is the phase space density etc.
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So now, all we need to do is to find a probability distribution

p(n,Q,p) such that

C p(n,Q,p) = |Mn(Q,p)|2 Φn(p)

Then we generate N points, (ni ,Qi ,pi) according to this and get

〈O〉 = C

N

N
∑

i

On(Qi ,pi)

In the same way as we do when measuring the observable

experimentally.

We are generating events. And we can measure several

observables in one go. Life is simple!
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The First Commandment of Event Generation

Thou shalt never believe

event generation is easy
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There are no free lunches

◮ M can typically only be calculated perturbatively to leading

and maybe next-to-leading order for a small number of

particles.

◮ Φn is not trivial

◮ finding p(n,Q,p) may be very difficult
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Weighted vs. Unweighted Events

We can, of course, use any probability distribution and get

〈O〉 = C

N

N
∑

i

|Mn(Qi ,pi)|2 Φn(pi)

p(ni ,Qi ,pi)
On(Qi ,pi)

which means we get weighted events.

This is OK as long as the variance is not too big.
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Everything is QCD

Factorization - Divide and conquer!

〈O〉 =
∑

nq ,Qq

∫

d4nq q
∣

∣Mnq
(Qq ,q)

∣

∣

2
Φnq

(q)×





∑

nk ,Qk

∫

d4nk k PS(Qq ,q;Qk ,k)×











∑

np,Qp

∫

d4np p H(Qk ,k ;Qp,p)Onp
(Qp,p)

















◮ M now only gives a few partons

◮ PS is a parton shower giving more partons with unit

probability

◮ H is hadronization and decays giving final state

hadrons with unit probability
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Everything is QCD

Factorization

Relies on the factorization ansatz.

The cross section and main structure of the event is determined

by the hard partonic sub process.

Parton showers and hadronization happens at lower (softer)

scales and dresses the events without influencing the cross

section.
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Everything is QCD

The structure of a proton collision

p

p/p̄
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Everything is QCD

The hard/primary scattering

p

p/p̄

u

g

W+

d
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Everything is QCD

Immediate decay of unstable elementary particles

p

p/p̄

u

g

W+

d

c s̄
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Everything is QCD

Radiation from particles before primary interaction

p

p/p̄

uu

g

W+

d

c s̄
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Everything is QCD

Radiation from produced particles

p

p/p̄

uu

g

W+

d

c s̄
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Everything is QCD

Additional sub-scatterings

p

p/p̄

uu

g

W+

d

c s̄
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Everything is QCD

. . . with accompanying radiation

p

p/p̄

uu

g

W+

d

c s̄

Event Generators I 22 Leif Lönnblad Lund University



Monte Carlo Integration

The Generic Event Generator

Matrix Element Generation

Factorization

The Generation Steps

Everything is QCD

Formation of colour strings
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Everything is QCD

Fragmentation of strings into hadrons
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Everything is QCD

Decay of unstable hadrons
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Everything at the LHC is QCD

◮ Any measurement at the LHC requires understanding of

QCD

◮ Electro-weak processes or BSM processes are easy

(although sometimes tedious)

◮ Even golden signals such as H → 4µ are influenced by

QCD

◮ Any observable prediction will have QCD corrections

〈O〉 = σ0(1 + αsC1 + α2
s C2 + . . .)

◮ Any signal will have a QCD background

◮ QCD is difficult
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Everything is QCD

Everything at the LHC is QCD

◮ Any measurement at the LHC requires understanding of

QCD

◮ Electro-weak processes or BSM processes are easy

(although sometimes tedious)

◮ Even golden signals such as H → 4µ are influenced by

QCD

◮ Any observable prediction will have QCD corrections

〈O〉 = σ0(1 + αsC1 + α2
s C2 + . . .)

◮ Any signal will have a QCD background

◮ QCD is difficult

Event Generators are all about QCD.
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Everything is QCD

Why is QCD difficult?

◮ αs is not very small ( >∼ 0.1)

◮ The gluon has a self-coupling and we get a lot of gluons

◮ Even if αs is small the phase space for emitting gluons is

large. In any αs expansion the coefficients may be large.

◮ In the end we need hadrons, which are produced in a

non-perturbative process.

We need models for parton showers and hadronization
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Matrix Element Generation

We always need to start with a 2 → n matrix element. This can

in principle be obtained from the standard model (or BSM)

Lagrange density in a straight-forward manner.

However,

◮ On tree-level we have divergencies if the scale (∼ p⊥) is

small. Soft or collinear partons.

◮ Beyond leading order we get nasty loops and infinities

◮ If n is large, the number of diagrams grows factorially

◮ If n is large, it is difficult to find a suitable probability

distribution for the momenta
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The Second Commandment of Event Generation

Thou shalt always cover

the whole of phase space
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Simple 2 → 2 Matrix Elements

p

p/p̄

u

g

W+

d

Can in principle be written down by hand from relevant

Feynman diagrams.

σ =

∫

dx1dx2dt̂ fi(x1,Q
2)fj(x2,Q

2)
d σ̂ij

dt̂

With the parton densities sampled at a scale Q2 ∼ |̂t | ∼ p2
⊥

.
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Also fairly easy to generate as the integrand is fairly flat in

d ln(x1) d ln(x2) d ln(p2
⊥)

Note however that σ̂ may be divergent as t̂ → 0.

Eg. Standard QCD ME:

σ̂gg→gg

dt̂
=

9πα2
s

4ŝ2

(

ŝ2

t̂2
+ 2

ŝ

t̂
+ 3 + 2

t̂

ŝ
+

t̂2

ŝ2

+
û2

ŝ2
+ 2

û

ŝ
+ 3 + 2

ŝ

û
+

ŝ2

û2

+
t̂2

û2
+ 2

t̂

û
+ 3 + 2

û

t̂
+

û2

t̂2

)

Event Generators I 29 Leif Lönnblad Lund University



Monte Carlo Integration

The Generic Event Generator

Matrix Element Generation

Tree-Level Matrix Elements

Next-to-Leading Order

All-Order Resummation

We clearly need a cutoff.

Typically this is given as a jet resolution scale, which for this

simple process typically means a p⊥-cut.

Eg. the k⊥-algorithm:

Find the pair of particles with smallest

k⊥ij =
min(k⊥i , k⊥j)

R

√

∆φ2
ij +∆η2

ij

and cluster them together into one. Or if any k⊥i is smaller

cluster it to the beam.

Continue until all clusters have k⊥ij and k⊥i above some cut.

These remaining jets are then close to the original partons.
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The Third Commandment of Event Generation

Thou shalt never assume

that a jet is a parton

or a jet
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Higher Order Tree-Level Matrix Elements

We can go on to higher order 2 → n Matrix Elements. This is in

principle straight forward and can even be automated. However

the number of diagrams grows ∝ n! which makes generation of

events forbiddingly slow for n >∼ 8.

Remember also the difficulty in constructing a reasonable

probability distribution for the momenta to sample the phase

space, especially since there are divergencies everywhere.

Multi-channel sampling helps:

σ ∝
∣

∣

∣

∣

∣

∑

i

Mi

∣

∣

∣

∣

∣

2

=
∑

i

|Mi |2
∣

∣

∣

∑

j Mj

∣

∣

∣

2

∑

j

∣

∣Mj

∣

∣

2
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Available Tree-Level Generators

◮ AlpGen

http://mlm.web.cern.ch/mlm/alpgen

◮ AMEGIC++

http://projects.hepforge.org/sherpa

◮ CompHep

http://comphep.sinp.msu.ru

◮ Helac/Phegas

http://helac-phegas.web.cern.ch/helac-phegas

◮ MadGraph/MadEvent

http://madgraph.hep.uiuc.edu

◮ . . .
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p

p/p̄

u

g

W+

d

We can use a tree-level 2 → 2 ME to predict an observable

such as the rapidity distribution of a jet in a W -event.

We can try to get a better estimate by going to higher order

tree-level MEs

〈O〉1j = σ→W+1j(µ)⊗O(W + j)

〈O〉2j = σ→W+2j(µ)⊗O(W + j)

〈O〉3j = σ→W+3j(µ)⊗O(W + j)

...

Where we use some jet-resolution scale µ to cut off

divergencies.
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But we cannot simply add these together, since each cross

section is inclusive

The tree-level ab → W + 1j matrix element gives the cross

section for the production of a W plus at least one jet.

Hence it includes also a part of the tree-level ab → W + 2j

matrix element.
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The Fourth Commandment of Event Generation

Thou shalt never

double-count emissions

Event Generators I 36 Leif Lönnblad Lund University



Monte Carlo Integration

The Generic Event Generator

Matrix Element Generation

Tree-Level Matrix Elements

Next-to-Leading Order

All-Order Resummation

Next-to-Leading Order

To correctly sum W + 1j and W + 2j contributions to an

observable, we need to add virtual contributions to the

generated W + 1j states. In that way we get a consistent

expansion of the observable.

〈O〉1j = αsC11(µ) + α2
s C12(µ)

〈O〉2j = α2
s C22(µ)

〈O〉NLO = 〈O〉1j + 〈O〉2j
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Here the jet resolution scale µ is

essential, since the virtual

corrections are infinite and

negative. But if we add together

the 1j virtual terms and the

unresolved 2j contributions, (the

contributions below µ) the sum,

α2
s C12(µ) is finite.

0

0 µ
k⊥

virtual

real
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Today there are several NLO generators available

(cf. next lecture).

They produce few-parton events and you can measure jet

observables

Clearly if you have a generator producing W + 1j to NLO, any

observable you measure which depends on two jets will only be

predicted to leading order.

This can sometimes be tricky. . .
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Today there are several NLO generators available

(cf. next lecture).

They produce few-parton events and you can measure jet

observables (assuming a parton is a jet)

Clearly if you have a generator producing W + 1j to NLO, any

observable you measure which depends on two jets will only be

predicted to leading order.

This can sometimes be tricky. . .
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Today there are several NLO generators available

(cf. next lecture).

They produce few-parton events and you can measure jet

observables (assuming a parton is a jet (which it isn’t)).

Clearly if you have a generator producing W + 1j to NLO, any

observable you measure which depends on two jets will only be

predicted to leading order.

This can sometimes be tricky. . .
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◮ Leading order is the first order in αs which gives a non-zero

result for a given observable.

◮ If NLO corrections are large, we need NNLO.

◮ However, chances are that we have a poorly converging

series in αs.

◮ This means we need to resum.
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All-Order Resummation

Rather than calculating a few terms in the αs expansion exactly,

we can try to approximate all terms.

It turns out that if we just consider the leading divergent part of

the cross section, everything exponentiates

σ0j = C00 + αsC01 + α2
s C02 + . . . ≈ C00 exp(αsC

′

01/C00)

σ1j = αsC11 + α2
s C12 + α3

s C13 + . . . ≈ αsC11 exp(αsC
′

12/C11)

...

Even if the coefficients diverge as µ → 0

the exponentiation is finite.
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The resummation corresponds to obtaining the leading

logarithmic contributions to the coefficients

∝ αn
s ln(µ)2n

This can be done analytically even to next-to-leading log

∝ αn
s ln(µ)2n−1 and higher.

Or by using parton showers. . .
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Outline of Lectures

◮ Lecture I: Basics of Monte Carlo methods, the event

generator strategy, matrix elements, LO/NLO, . . .

◮ Lecture II: Parton showers, initial/final state,

matching/merging, . . .

◮ Lecture III: Matching/merging (cntd.), underlying events,

multiple interactions, minimum bias, pile-up, hadronization,

decays, . . .

◮ Lecture IV: Protons vs. heavy ions, summary, . . .

Buckley et al. (MCnet collaboration), Phys. Rep. 504 (2011) 145.
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