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Definitions and Motivation



Zero and Minimum Bias measurements

I the “interesting” (high
transverse momentum, high
mass...) events are often quite a
small fraction of the total
number of collisions.

I most of interactions are “soft“
I and also underlying event is

assumed to be mostly soft
I pile-up interactions are “soft“ as

well



Zero and Minimum Bias measurements

I “Zero bias” - Every event in a perfect 4π detector (or maybe almost
perfect FELIX - A full acceptance detector at the LHC by Bjorken).

I A “minimum bias“ event is what one would see with a totally inclusive
trigger. All events, with a minimum bias from restricted trigger
conditions.

I In practice this definition depends on the experiment’s trigger!
Two examples:

1. ATLAS, Minimum Bias Trigger Scintillator (2.1 < |η| < 3.8), single arm
MBTS trigger fired, primary vertex reconstructed, phase spece:
pT > 500(100) MeV, |η| < 2.5, nch ≥ 1 (2, 6, 20)

2. CDF (2009), Minimum bias trigg. BBC (3.2 < |η| < 5.9), coincidence in
time of signals in both forward and backward modules, primary vertex
reconstructed, phase spece: pT > 400 MeV, |η| < 1.0

I Typical observables:

1
Nev
· dNch

dη
,

1
Nev
· 1

2πpT
· d2Nch

dηdpT
,

1
Nev
· dNev

dnch
and 〈pT〉 vs. nch,



Underlying Event

I We define an interesting hard process
I Underlying Event = Everything except the hard/interesting process

(and initial- and final-state showers)

I Underlying event model (MPI) integral part of event model
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I Underlying event model (MPI) integral part of event model



Motivation - how do we know MPI exists?

UA5 experiment at the SPS - proton-antiproton 540 GeV c.m.
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Motivation - how do we know MPI exists?

Direct observation of multiple interactions

Five studies: AFS (1987), UA2 (1991), CDF (1993, 1997), D0 (2009)

Order 4 jets p⊥1 > p⊥2 > p⊥3 > p⊥4 and define ϕ

as angle between p⊥1 ∓ p⊥2 and p⊥3 ∓ p⊥4 for AFS/CDF

Double Parton Scattering

1

2

3

4

|p⊥1 + p⊥2| ≈ 0

|p⊥3 + p⊥4| ≈ 0

dσ/dϕ flat

Double BremsStrahlung

12

34

|p⊥1 + p⊥2| � 0

|p⊥3 + p⊥4| � 0

dσ/dϕ peaked at ϕ ≈ 0/π for AFS/CDF

AFS 4-jet analysis (pp at 63 GeV): observe 6 times Poissonian prediction,

with impact parameter expect 3.7 times Poissonian,

but big errors⇒ low acceptance, also UA2

CDF: Double parton scattering in pp̄ collisions at
√

s = 1.8
[Phys. Rev. D 56, 3811-3832 (1997)]
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Why should we be interested?

1. Quantum Chromodynamics (QCD)
I Can we predict/understand the

properties of hadrons?

I Connection with:

I diffraction
I saturation
I confinement
I total cross section

2. Experiments
I These effects are often formally

suppressed for inclusive cross
sections.

I In practice, their significance can
be enhanced by

I experimental acceptance
I cuts to suppress

backgrounds
I their impact on detector

calibration
I the need to measure

more exclusive
quantities

I missing ET
reconstruction

I Photon/lepton isolation
I Mass reconstruction (see

Jon’s talk on Friday)



Example: Jet Energy Scale

I Leptonic energy scale typically much better known than the
hadronic/jet energy scale.

I To determine response to hadronic jets, typically look for well measured
leptonic processes (e.g. Z→ e+e− ) and balance leptons against jets.

I This balance is affected by the environment of the event.



Example: Jet Energy Scale

Title: ”Effects of the Underlying Event“ by Jonathan Butterworth



Example: Minijet veto

I In some processes there is no colour exchange between the protons.
I Suppression of QCD radiation in the event;

Important signature for reducing backgrounds.
I No suppression in activity from MPI
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Example: Minijet veto

Title: ”Effects of the Underlying Event“ by Jonathan Butterworth



Motivation - is it really important?

Motivation:
I The minimum bias/underlying event is an unavoidable background to

most collider observables and having good understand of it leads to
more precise collider measurements!

I First LHC results are Minimum Bias and Underlying Event!
Alice: [0911.5430], CMS [1002.0621], ATLAS [1003.3124] so it must be
important ;)

I These will be particularly relevant for the LHC as, when it is operated at
design luminosity, rare signal events will be embedded in a background
of more than 20 near-simultaneous minimum-bias collisions.

I Any realistic experiment simulation event generator needs to be able to
model these effects.

I “Don’t worry, we will measure and subtract it” But... fluctuations and
correlations crucial



Motivation - is it really important?

Underlying Events Mike Seymour TeV4LHC

log σ

pt

I Steep distribution⇒ small sideways shift = large vertical
I Rare fluctuations can have a huge influence



Modeling the Underlying Event

Expect impact parameter (b) dependence:



Semi hard underlying event
Taken from Peter Skands:
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Evolution of MPI model in Herwig++

Semihard UE

I Default from Herwig++ 2.1. [Herwig++, 0711.3137]

I Multiple hard interactions, pt > pmin
t [Bähr, Gieseke, Seymour, JHEP 0807:076]

I Similar to JIMMY [J. M. Butterworth, J. R. Forshaw and M. H. Seymour, Zeit. fur Phys. C72]

I Good description of harder Run I UE data (Jet20).



Eikonal model basics

Starting point: hard inclusive jet cross section.

σinc(s; pmin
t ) =

∑
i,j

∫
pmin

t
2

dp2
t fi/h1 (x1, µ

2)⊗
dσ̂i,j

dp2
t
⊗ fj/h2 (x2, µ

2) ,

σinc > σtot eventually (for moderately small pmin
t ).
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Eikonal model basics

Starting point: hard inclusive jet cross section.

σinc(s; pmin
t ) =

∑
i,j

∫
pmin

t
2

dp2
t fi/h1 (x1, µ

2)⊗
dσ̂i,j

dp2
t
⊗ fj/h2 (x2, µ

2) ,

σinc > σtot eventually (for moderately small pmin
t ).

Interpretation: σinc counts all partonic scatters that happen during a single pp
collision⇒more than a single interaction.

σinc = n̄σinel.

where σinel is the cross section for having one or more jet pairs above pmin
t .



Eikonal model basics

Use eikonal approximation (= independent scatters1). Leads to Poisson
distribution, at fixed impact parameter, b ≡ |b|, the probability for m partonic
interactions:

Pm(~b, s) =
n̄(~b, s)m

m!
e−n̄(~b,s) .

Then we get σinel:

σinel =

∫
d2~b

∞∑
n=1

Pm(~b, s) =

∫
d2~b

(
1− e−n̄(~b,s)

)
.

Cf. σinel from scattering theory in eikonal approx. with scattering amplitude
a(~b, s) = 1

2i (e−χ(~b,s) − 1)

σinel =

∫
d2~b

(
1− e−2χ(~b,s)

)
⇒ χ(~b, s) = 1

2 n̄(~b, s) .

χ(~b, s) is called eikonal function.

1Real life momentum/flavor conservation suppresses high-m tail + other
physical correlations
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Eikonal model basics

Calculation of n̄(~b, s) from parton model assumptions:

n̄(~b, s) = Lpartons(x1, x2,~b)⊗
∑

ij

∫
dp2

t
dσ̂ij

dp2
t

=
∑

ij

1
1 + δij

∫
dx1dx2

∫
d2~b′

∫
dp2

t
dσ̂ij

dp2
t

×Di/A(x1, p2
t , |~b′|)Dj/B(x2, p2

t , |~b−~b′|)

=
∑

ij

1
1 + δij

∫
dx1dx2

∫
d2~b′

∫
dp2

t
dσ̂ij

dp2
t

× fi/A(x1, p2
t )GA(|~b′|)fj/B(x2, p2

t )GB(|~b−~b′|)

= A(~b)σinc(s; pmin
t ) .

⇒ χ(~b, s) = 1
2 n̄(~b, s) = 1

2 A(~b)σinc(s; pmin
t ) .
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Eikonal model basics

From assumptions:
I at fixed impact parameter b, individual scatterings are independent,
I the distribution of partons in hadrons factorizes with respect to the b

and x dependence.
we get the average number of partonic collisions at a given b value is

n̄(b, s) = A(b)σinc(s; pmin
t ) = 2χ(b, s)

where A(b) is the partonic overlap function of the colliding hadrons



Semi hard underlying event



Evolution of MPI model in Herwig++

Semihard+Soft UE

I Default from Herwig++ 2.3. [Herwig++, 0812.0529]

I Extension to soft interactions, pt 6 pmin
t [Bähr, Gieseke, Seymour, JHEP 0807:076]

I Theoretical work with simplest possible extension.
[Bähr, Butterworth, Seymour, JHEP 0901:065]

I “Hot Spot” model. [Bähr, Butterworth, Gieseke, Seymour, 0905.4671]



Soft eikonal

So far only hard MPI.
Now extend to soft interactions with

χtot = χQCD + χsoft.

Similar structures of eikonal functions:

χsoft =
1
2

Asoft(~b)σinc
soft

Simplest possible choice:
Asoft(~b;µ) = Ahard(~b;µ) = A(~b;µ).
Then

χtot =
A(~b;µ)

2

(
σinc

hard + σinc
soft

)
.

One new parameter σinc
soft.



Fixing σinc
soft

Exploit knowledge of σtot in eikonal model:

σtot = 2
∫

d2~b
(

1− e−χtot(~b,s)
)

= 2
∫

d2~b
(

1− e−
A(~b;µ)

2 (σinc
hard+σinc

soft)

)
σtot well measured. Fixes σinc

soft.

Energy extrapolation from Donnachie–Landshoff
I DL ’92 [D&L, PLB296, 227 (1992)]

I DL ’92 normalized at TVT
I DL ’04 [D&L, PLB595, 393 (2004)]

Model turned out to be too simple.
→ Relax the constraint of identical overlap

Asoft(b) = A(b, µsoft)
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Hot Spot model

Extension to soft MPI, pt < pmin
t

Fix the two parameters µsoft and σinc
soft in

χtot(~b, s) =
1
2

(
A(~b;µ)σinchard(s; pmin

t ) + A(~b;µsoft)σ
inc
soft

)
from two constraints. Require simultaneous description of σtot and bel

(measured/well predicted),

σtot(s) !
= 2

∫
d2~b

(
1− e−χtot(~b,s)

)
,

bel(s) !
=

∫
d2~b

b2

σtot

(
1− e−χtot(~b,s)

)
.



Extension to soft MPI, pt < pmin
t

Continuation of the differential cross section into the soft region pt < pmin
t

(here: pt integral kept fixed)

0 2 4 6 8 10

pt(GeV)

0

1

2

3

4

5

1
/

�(5GeV
)
d

�/dp t(1/
G
eV

)

d�soft
dpt
�pt e��(p 2

t�pmin,2
t )

pmin
t =3 GeV,�=�0.5 GeV�2

pmin
t =5 GeV,�=0.06 GeV�2



Tevatron Run I final states

I So far: only indirect constraints from σtot and σel.

I Now use model in Herwig++ with n̄(~b, s) as input for MPI.
I Remaining free parameters (pmin

t , µ2).
I Look at χ2/dof for Tevatron Run I data

in the (pmin
t , µ2) plane.



Parameter space at Tevatron

I χ2 for Rick’s Run1 Jet
analysis for all regions
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Detailed look at observables: Transverse Region
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On to the LHC

What we have so far:
I Unitarized jet cross sections
I Fulfil constaints from σtot and σel.
I Simple model with similar overlap functions.
I No additional (explicit) energy dependence.
I Left with freedom in parameter space.

=⇒ Look at LHC results (900 GeV).

I ATLAS charged particles in Min Bias.
I Convenient as the analysis was quickly available in RIVET ;-)
I Three points from ‘valley’

(pmin
t /GeV, µ2/GeV2) = (3.0, 1.0); (4.0, 1.5); (5.0, 2.0)
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Look at LHC results (900 GeV)

I ATLAS charged particles in Min Bias (Nch ≥ 1, pT > 500MeV, |η| < 2.5)
I Convenient as the analysis was quickly available in RIVET.
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I oops, not so nice...
I despite very good agreement with Rick Field’s CDF UE analysis.
I choice of PDF set (CTEQ61l vs MSTW LO** (our default))
I Failure of a physically motivated model usually points to more,

interesting physics ... colour structure?



Colour structure

I Colour structure of the soft interactions, pt 6 pmin
t

Sensitivity to parameter:
• colourDisrupt = P(disrupt colour lines) as opposed to hard QCD.
• colourDisrupt = 1, completely disconnected.



Colour Structure of the Underlying Event
Colour Structure of the Underlying Event multiple interactions, even when
soft, can cause non-trivial changes to the colour topology of the colliding
system as a whole, with potentially major consequences for the particle
multiplicity in the final state
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Underlying event in Herwig++

Colour Structure of the Underlying Event multiple interactions, even when
soft, can cause non-trivial changes to the colour topology of the colliding
system as a whole, with potentially major consequences for the particle
multiplicity in the final state

I plain Colour Reconnection (pCR) (parameter preco) - Included from
Herwig++ 2.5, [Gieseke, Rohr, AS, Eur.Phys.J. C72 (2012)]

I Colour Disrupt - only Soft UE (parameter pCD)

Main parameters:

I µ2 - inverse hadron radius squared (parametrization of overlap function)

I pmin
t - transition scale between soft and hard components

I preco - colour reconnection

I pCD - colour structure of the Soft UE



Colour reconnection (CR) in Herwig++
i

j

k

l

Extending the hadronization model in Herwig(++):
I QCD parton showers provide pre-confinement
⇒ colour-anticolour pairs form highly excited
hadronic states, the clusters

I CR in the cluster hadronization model: allow
reformation of clusters, e.g. (il) + (jk)

I Physical motivation: exchange of soft gluons
during non-perturbative hadronization phase

Implementation

I Allow CR if the cluster mass decreases,

Mil + Mkj < Mij + Mkl,

where M2
ab = (pa + pb)

2 is the (squared) cluster mass
I Accept alternative clustering with probability preco (model parameter)
⇒ this allows to switch on CR smoothly
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I Accept alternative clustering with probability preco (model parameter)
⇒ this allows to switch on CR smoothly
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Energy interpolation

I Not possible to fit with energy-independent parameters (different
parameters for different energies).

I Possible to fit with energy-dependent pmin
t = pmin

t,0
(√s

E0

)b and all else
energy-independent.

I Interpolation to
√

s = 2760 GeV



Energy scaling
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Legend:
I No sigma eff. in fit (only UE data in fit) - blue lines
I UE-EE-5-CTEQ6L1 - both sigma eff. and UE data in fit σeff . = 14.8 mb).
I UE-EE-4-CTEQ6L1 - old tune - only UE data in fit.

[M. H. Seymour, and AS, JHEP 1310 (2013) 113]



Summary

Summary:

I Motivation and experimental evidence for MPI

I Example of MPI model - MPI in Herwig++

I This was just a basics - there are many details which I had
no time to talk about and ”The Devil is in the detail“ ...

I Colour structure of an event
I Energy extrapolation

Thursday’s talk:

I Overview of MPI models
I Tuning tools - Professor
I Comparison with some LHC data
I CDF Min Bias “factorization” mystery
I Outlook



Thank you for your attention!
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