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Traditional Development Cycle

● Discuss and define features for next release
● Implement features individually or in teams
● Integrate features into main code branch
● When feature complete, declare feature freeze
● Start testing new and existing features
● Document new and changed features
● Do release, if all severe problems are resolved
● Do patchlevel releases with bugfixes (only)
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Testing Stages

● Unit Testing (Developers):
→ test individual components of subsystems

● Integration Testing (Developers):
→ test if multiple subsystems work together

● System Testing (Developers):
→ test if all subsystems have been integrated
→ compare system against requirements

● Acceptance Testing (Users/Client):
→ test if the entire system works as expected
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Why so Much Testing?
● Early testing limits complexity of bugs:

→ bugs are eliminated early in the development 
→ saves time and money

● Testing confirms that added functionality is in 
compliance with the specified requirements

● Unit testing encourages modular programming
→ easier to add new functionality

● Tests demonstrate correct and incorrect usage 
● Testing is easy and can be automated;

 debugging is complex and requires humans
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Unit Testing

● Tests for the smallest usable units of a program
→ typically a function or a class

● Write tests for all documented/expected uses
→ use multiple argument values

● Write additional tests for unexpected uses
→ test for correct behavior on invalid usage

● Tests should execute fast
● The amount of code written in unit tests often 

exceeds the amount of tested code by far
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Regression Testing

● A regression is an input deck that triggers a bug 
or unexpected behavior in an application

● This may not be a proper use of the application; 
it is often engineered to trigger the bug quickly

● Then the developer fixes the bug and records 
the corrected behavior of the application

● The regression is then added to a regression 
test library with its correct output for validation

● Regression testing is part of system testing
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Extreme Programming (XP)

● Software development methodology to improve 
software quality and customer/user interaction

● Strategy:
- write (unit) tests and documentation first
- add implementation later
- feature is complete when all tests are passed

● Rationale:
while writing tests, behavior and interface of 
new features are reviewed and design flaws are 
detected before the implementation is started
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Continuous Integration (CI)

● Designated (development) branches are 
continuously merged, compiled, and tested 
against all available (unit and regression) tests

● Developer that committed the change causing 
test failures is responsible to resolve them

● Typically done on dedicated servers →Jenkins
● Early discovery of integration bugs, side effects
● Code base always produces a working program
● Encourages simpler and more modular code
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Code Review

● Developers mututally read and discuss the 
changes done by their peers

● Most effective when working in pairs, often one 
senior and one junior developer

● Discovered problems discussed in development 
team, if no fast agreement on resolution

● When integrating contributed code, typically 
approval from two core developers and 
successful integration test needed to have 
contribution accepted into code base
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Testing in Python

● unittest module (part of standard library)
works on explicitly written unit test classes 
derived from a base TestCase class: methods 
whose name start with test are test cases;
various assertions are used to compare results

● doctest module (part of standard library)
looks for pieces of text in a class's 
documentation that look like interactive python 
sessions and repeats them and verifies that 
they still work as expected → regression tests
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Python Example: Particle Class

class particle(object):
 
  def __init__(self,x,m=1.0):
    if float(m) <= 0.0:
      raise ValueError('Mass must be > 0.0')
    self.m = float(m)
    self.x = float(x)
    self.v = 0.0

  def __repr__(self):
    return str(self.x)+ ":"+ str(self.m)+ "@"+ str(self.v)
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Unit Test Example: Some Tests
import unittest

class ParticleTest(unittest.TestCase):
    def test_constructor1(self):
        p=particle(2.0)
        self.assertEqual(p.x,2.0)
        self.assertEqual(p.m,1.0)
        self.assertEqual(p.v,0.0)

    def test_constructor2(self):
        p=particle(0.1,0.2)
        self.assertEqual(p.x,0.1)
        self.assertEqual(p.m,0.2)
        self.assertEqual(p.v,0.0)
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Unit Test Example: More Tests
class ParticleTest(unittest.TestCase):
  ...
  def test_output1(self):
    p=particle(2.0)
    p.v=-1.0
    self.assertEqual(str(p),'2.0:1.0@-1.0')

  def test_assert1(self):
    with self.assertRaises(ValueError):
      particle('x')

  def test_assert5(self):
    with self.assertRaises(TypeError):
      particle(complex(1.0,-1.0),10.0)
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Unit Test Example: Running Tests
[~]$ python -m unittest -v particle
test_assert1 (particle.ParticleTest) ... ok
test_assert2 (particle.ParticleTest) ... ok
test_assert3 (particle.ParticleTest) ... ok
test_assert4 (particle.ParticleTest) ... ok
test_assert5 (particle.ParticleTest) ... ok
test_assert6 (particle.ParticleTest) ... ok
test_constructor1 (particle.ParticleTest) ... ok
test_constructor2 (particle.ParticleTest) ... ok
test_constructor3 (particle.ParticleTest) ... ok
test_constructor4 (particle.ParticleTest) ... ok
test_output1 (particle.ParticleTest) ... ok
-----------------------------------------------
Ran 11 tests in 0.001s
OK
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Unit Test Example: Test Failure
[~]$ python -m unittest -v harmonic
test_compute1 (harmonic.HarmonicTest) ... ok
test_compute2 (harmonic.HarmonicTest) ... ok
test_compute3 (harmonic.HarmonicTest) ... FAIL
test_constructor1 (harmonic.HarmonicTest) ... ok
test_constructor2 (harmonic.HarmonicTest) ... ok
===============================================
FAIL: test_compute3 (harmonic.HarmonicTest)
-----------------------------------------------
Traceback (most recent call last):
  File "/home/akohlmey/Downloads/unit-and-
regtest/harmonic.py", line 69, in test_compute3
    self.assertEqual(e,50.0)
AssertionError: 500.0 != 50.0

FAILED (failures=1)
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Regression Testing with doctest
    def update(self):
        """
>>> osc = [particle(x=-5.0), particle(x=5.0)]
>>> print(osc)
[-5.0:1.0@0.0, 5.0:1.0@0.0]
>>> pot = harmonic(10,5)
>>> v = integrator(pot,osc,0.005)
>>> v.update()
>>> print(osc)
[-4.999375:1.0@0.24996875, 4.999375:1.0@-0.24996875]
        """
 ...

if __name__ == "__main__":
    import doctest
    doctest.testmod()
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Test Failure with doctest
[~]$ python integrator.py 
*****************************************************
File "integrator.py", line 35, in 
__main__.integrator.update
Failed example:
 print(osc)
Expected:
 [-4.999375:1.0@0.24996875, 4.999375:1.0@-0.2499687]
Got:
 [-4.999375:1.0@0.24996875, 4.999375:1.0@-0.24996875]
*****************************************************
1 items had failures:
   1 of  12 in __main__.integrator.update
***Test Failed*** 1 failures.

Test Failure with doctest
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