
Workshop on Advanced Techniques
in Scientific Computing

as Part of Modern Software Development

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

Unit- and Regression Testing

http://sites.google.com/site/akohlmey/

2
Workshop on Advanced Techniques
in Scientific Computing

Traditional Development Cycle

● Discuss and define features for next release
● Implement features individually or in teams
● Integrate features into main code branch
● When feature complete, declare feature freeze
● Start testing new and existing features
● Document new and changed features
● Do release, if all severe problems are resolved
● Do patchlevel releases with bugfixes (only)

3
Workshop on Advanced Techniques
in Scientific Computing

Testing Stages

● Unit Testing (Developers):
→ test individual components of subsystems

● Integration Testing (Developers):
→ test if multiple subsystems work together

● System Testing (Developers):
→ test if all subsystems have been integrated
→ compare system against requirements

● Acceptance Testing (Users/Client):
→ test if the entire system works as expected

4
Workshop on Advanced Techniques
in Scientific Computing

Why so Much Testing?
● Early testing limits complexity of bugs:

→ bugs are eliminated early in the development
→ saves time and money

● Testing confirms that added functionality is in
compliance with the specified requirements

● Unit testing encourages modular programming
→ easier to add new functionality

● Tests demonstrate correct and incorrect usage
● Testing is easy and can be automated;

 debugging is complex and requires humans

5
Workshop on Advanced Techniques
in Scientific Computing

Unit Testing

● Tests for the smallest usable units of a program
→ typically a function or a class

● Write tests for all documented/expected uses
→ use multiple argument values

● Write additional tests for unexpected uses
→ test for correct behavior on invalid usage

● Tests should execute fast
● The amount of code written in unit tests often

exceeds the amount of tested code by far

6
Workshop on Advanced Techniques
in Scientific Computing

Regression Testing

● A regression is an input deck that triggers a bug
or unexpected behavior in an application

● This may not be a proper use of the application;
it is often engineered to trigger the bug quickly

● Then the developer fixes the bug and records
the corrected behavior of the application

● The regression is then added to a regression
test library with its correct output for validation

● Regression testing is part of system testing

7
Workshop on Advanced Techniques
in Scientific Computing

Extreme Programming (XP)

● Software development methodology to improve
software quality and customer/user interaction

● Strategy:
- write (unit) tests and documentation first
- add implementation later
- feature is complete when all tests are passed

● Rationale:
while writing tests, behavior and interface of
new features are reviewed and design flaws are
detected before the implementation is started

8
Workshop on Advanced Techniques
in Scientific Computing

Continuous Integration (CI)

● Designated (development) branches are
continuously merged, compiled, and tested
against all available (unit and regression) tests

● Developer that committed the change causing
test failures is responsible to resolve them

● Typically done on dedicated servers →Jenkins
● Early discovery of integration bugs, side effects
● Code base always produces a working program
● Encourages simpler and more modular code

9
Workshop on Advanced Techniques
in Scientific Computing

Code Review

● Developers mututally read and discuss the
changes done by their peers

● Most effective when working in pairs, often one
senior and one junior developer

● Discovered problems discussed in development
team, if no fast agreement on resolution

● When integrating contributed code, typically
approval from two core developers and
successful integration test needed to have
contribution accepted into code base

10
Workshop on Advanced Techniques
in Scientific Computing

Testing in Python

● unittest module (part of standard library)
works on explicitly written unit test classes
derived from a base TestCase class: methods
whose name start with test are test cases;
various assertions are used to compare results

● doctest module (part of standard library)
looks for pieces of text in a class's
documentation that look like interactive python
sessions and repeats them and verifies that
they still work as expected → regression tests

11
Workshop on Advanced Techniques
in Scientific Computing

Python Example: Particle Class

class particle(object):

 def __init__(self,x,m=1.0):
 if float(m) <= 0.0:
 raise ValueError('Mass must be > 0.0')
 self.m = float(m)
 self.x = float(x)
 self.v = 0.0

 def __repr__(self):
 return str(self.x)+ ":"+ str(self.m)+ "@"+ str(self.v)

12
Workshop on Advanced Techniques
in Scientific Computing

Unit Test Example: Some Tests
import unittest

class ParticleTest(unittest.TestCase):
 def test_constructor1(self):
 p=particle(2.0)
 self.assertEqual(p.x,2.0)
 self.assertEqual(p.m,1.0)
 self.assertEqual(p.v,0.0)

 def test_constructor2(self):
 p=particle(0.1,0.2)
 self.assertEqual(p.x,0.1)
 self.assertEqual(p.m,0.2)
 self.assertEqual(p.v,0.0)

13
Workshop on Advanced Techniques
in Scientific Computing

Unit Test Example: More Tests
class ParticleTest(unittest.TestCase):
 ...
 def test_output1(self):
 p=particle(2.0)
 p.v=-1.0
 self.assertEqual(str(p),'2.0:1.0@-1.0')

 def test_assert1(self):
 with self.assertRaises(ValueError):
 particle('x')

 def test_assert5(self):
 with self.assertRaises(TypeError):
 particle(complex(1.0,-1.0),10.0)

14
Workshop on Advanced Techniques
in Scientific Computing

Unit Test Example: Running Tests
[~]$ python -m unittest -v particle
test_assert1 (particle.ParticleTest) ... ok
test_assert2 (particle.ParticleTest) ... ok
test_assert3 (particle.ParticleTest) ... ok
test_assert4 (particle.ParticleTest) ... ok
test_assert5 (particle.ParticleTest) ... ok
test_assert6 (particle.ParticleTest) ... ok
test_constructor1 (particle.ParticleTest) ... ok
test_constructor2 (particle.ParticleTest) ... ok
test_constructor3 (particle.ParticleTest) ... ok
test_constructor4 (particle.ParticleTest) ... ok
test_output1 (particle.ParticleTest) ... ok

Ran 11 tests in 0.001s
OK

15
Workshop on Advanced Techniques
in Scientific Computing

Unit Test Example: Test Failure
[~]$ python -m unittest -v harmonic
test_compute1 (harmonic.HarmonicTest) ... ok
test_compute2 (harmonic.HarmonicTest) ... ok
test_compute3 (harmonic.HarmonicTest) ... FAIL
test_constructor1 (harmonic.HarmonicTest) ... ok
test_constructor2 (harmonic.HarmonicTest) ... ok
===
FAIL: test_compute3 (harmonic.HarmonicTest)

Traceback (most recent call last):
 File "/home/akohlmey/Downloads/unit-and-
regtest/harmonic.py", line 69, in test_compute3
 self.assertEqual(e,50.0)
AssertionError: 500.0 != 50.0

FAILED (failures=1)

16
Workshop on Advanced Techniques
in Scientific Computing

Regression Testing with doctest
 def update(self):
 """
>>> osc = [particle(x=-5.0), particle(x=5.0)]
>>> print(osc)
[-5.0:1.0@0.0, 5.0:1.0@0.0]
>>> pot = harmonic(10,5)
>>> v = integrator(pot,osc,0.005)
>>> v.update()
>>> print(osc)
[-4.999375:1.0@0.24996875, 4.999375:1.0@-0.24996875]
 """
 ...

if __name__ == "__main__":
 import doctest
 doctest.testmod()

17
Workshop on Advanced Techniques
in Scientific Computing

Test Failure with doctest
[~]$ python integrator.py

File "integrator.py", line 35, in
__main__.integrator.update
Failed example:
 print(osc)
Expected:
 [-4.999375:1.0@0.24996875, 4.999375:1.0@-0.2499687]
Got:
 [-4.999375:1.0@0.24996875, 4.999375:1.0@-0.24996875]

1 items had failures:
 1 of 12 in __main__.integrator.update
Test Failed 1 failures.

Test Failure with doctest

Workshop on Advanced Techniques
in Scientific Computing

- as Part of Modern Software Development

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

Unit- and Regression Testing

http://sites.google.com/site/akohlmey/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

