
software packaging
Workshop on Advanced Techniques for Scientific Program-
ming and Management of Open Source Software Packages

Beraldo Leal
April 21, 2015

0

software packaging

”Talk is cheap. Show me the code.”

- Linus Torvalds

1

introduction

if you wanna share:

∙ You need a package!

∙ Installation process should be as painless as possible for your
user / contributor;

∙ Use a version control system (choose a modern one);
∙ Don’t send your code by email (or host at dropbox);

3

if you wanna share:

∙ You need a package!
∙ Installation process should be as painless as possible for your
user / contributor;

∙ Use a version control system (choose a modern one);
∙ Don’t send your code by email (or host at dropbox);

3

if you wanna share:

∙ You need a package!
∙ Installation process should be as painless as possible for your
user / contributor;

∙ Use a version control system (choose a modern one);

∙ Don’t send your code by email (or host at dropbox);

3

if you wanna share:

∙ You need a package!
∙ Installation process should be as painless as possible for your
user / contributor;

∙ Use a version control system (choose a modern one);
∙ Don’t send your code by email (or host at dropbox);

3

what is a package ?

∙ We are not talking about python import package;
∙ A compressed (or not) file containing other files in a directory
structure that will be installed on the target system;

∙ On steroids:
∙ pre/post (un)install scripts;
∙ documentation;
∙ dependencies and libraries;
∙ etc.

4

what is a package ?

∙ Like a tarball file ?

∙ Well, let’s use something more sophisticated!

5

what is a package ?

∙ Like a tarball file ?
∙ Well, let’s use something more sophisticated!

5

what is a package ?

∙ Like a tarball file ?
∙ Well, let’s use something more sophisticated!

5

distributions package management system

∙ They try to follow the Filesystem Hierarchy Standard (FHS);

∙ Can be binary or source package;
∙ Each distro has a different review process;
∙ .deb: any debian-like distro;
∙ .rpm: RedHat Package Manager;
∙ ABS: Arch Build System;
∙ Ports-like from BSD;

6

distributions package management system

∙ They try to follow the Filesystem Hierarchy Standard (FHS);
∙ Can be binary or source package;

∙ Each distro has a different review process;
∙ .deb: any debian-like distro;
∙ .rpm: RedHat Package Manager;
∙ ABS: Arch Build System;
∙ Ports-like from BSD;

6

distributions package management system

∙ They try to follow the Filesystem Hierarchy Standard (FHS);
∙ Can be binary or source package;
∙ Each distro has a different review process;

∙ .deb: any debian-like distro;
∙ .rpm: RedHat Package Manager;
∙ ABS: Arch Build System;
∙ Ports-like from BSD;

6

distributions package management system

∙ They try to follow the Filesystem Hierarchy Standard (FHS);
∙ Can be binary or source package;
∙ Each distro has a different review process;
∙ .deb: any debian-like distro;

∙ .rpm: RedHat Package Manager;
∙ ABS: Arch Build System;
∙ Ports-like from BSD;

6

distributions package management system

∙ They try to follow the Filesystem Hierarchy Standard (FHS);
∙ Can be binary or source package;
∙ Each distro has a different review process;
∙ .deb: any debian-like distro;
∙ .rpm: RedHat Package Manager;

∙ ABS: Arch Build System;
∙ Ports-like from BSD;

6

distributions package management system

∙ They try to follow the Filesystem Hierarchy Standard (FHS);
∙ Can be binary or source package;
∙ Each distro has a different review process;
∙ .deb: any debian-like distro;
∙ .rpm: RedHat Package Manager;
∙ ABS: Arch Build System;

∙ Ports-like from BSD;

6

distributions package management system

∙ They try to follow the Filesystem Hierarchy Standard (FHS);
∙ Can be binary or source package;
∙ Each distro has a different review process;
∙ .deb: any debian-like distro;
∙ .rpm: RedHat Package Manager;
∙ ABS: Arch Build System;
∙ Ports-like from BSD;

6

repositories

∙ Did you rememeber rpmfind.net ?

7

repositories

8

debian repositories example

∙ three releases:
∙ stable: contains the latest officially released distribution of Debian;
∙ testing: contains packages that haven’t been accepted into a ”stable”
release yet, but they are in the queue for that;

∙ unstable (sid): is where active development of Debian occurs.

9

and about python packages?

python packages: history

∙ 2000: distutils was added to the Python standard library in Python
1.6;

∙ 2003: PyPI was up and running;
∙ To not be confuse: ”distribution” vs ”python package”.

11

python packages: history

∙ 2000: distutils was added to the Python standard library in Python
1.6;

∙ 2003: PyPI was up and running;

∙ To not be confuse: ”distribution” vs ”python package”.

11

python packages: history

∙ 2000: distutils was added to the Python standard library in Python
1.6;

∙ 2003: PyPI was up and running;
∙ To not be confuse: ”distribution” vs ”python package”.

11

pypi

12

python packages: distutils

FooBar/
setup.py
foobar/

__init__.py
foo.py
bar.py
subfoo/

__init__.py
blah.py

1 from distutils.core import setup
2 setup(name=’foobar’,
3 version=’1.0’,
4 author=’tarek’,
5 author_email=’foo@bar.org’,
6 url=’http://example.com’,
7 packages=[’foobar’,
8 ’foobar.subfoo’],
9)

13

python packages: distutils

Build source distribution
$ python setup.py sdist
$ ls -l dist/
total 4
-rw-r--r-- 1 user user 491 Apr 17 14:22 hello-1.0.tar.gz

14

python packages: distutils

Manual installation
$ tar zxvf hello-1.0.tar.gz
$ cd hello-1.0
$ sudo python setup.py install

15

python packages: distutils

Register at PyPi and upload
$ python setup.py register
$ python setup.py sdist upload

16

python packages: distutils

Install from PyPi
$ sudo pip install hello

17

python packages: distutils problems

∙ But...

∙ distutils is not really designed for compiled packages: Ex:
numpy.distutils fork;

∙ no uninstalling;
∙ You cannot use built in dependencies!
∙ Only possible with requirements.txt file:

$ cat requirements.txt
FooProject >= 1.2
SomethingWhichVersionIDontCareAbout
BarProject == 1.0

Install requirements
$ sudo pip install -r requirements.txt

18

python packages: distutils problems

∙ But...
∙ distutils is not really designed for compiled packages: Ex:
numpy.distutils fork;

∙ no uninstalling;
∙ You cannot use built in dependencies!
∙ Only possible with requirements.txt file:

$ cat requirements.txt
FooProject >= 1.2
SomethingWhichVersionIDontCareAbout
BarProject == 1.0

Install requirements
$ sudo pip install -r requirements.txt

18

python packages: distutils problems

∙ But...
∙ distutils is not really designed for compiled packages: Ex:
numpy.distutils fork;

∙ no uninstalling;

∙ You cannot use built in dependencies!
∙ Only possible with requirements.txt file:

$ cat requirements.txt
FooProject >= 1.2
SomethingWhichVersionIDontCareAbout
BarProject == 1.0

Install requirements
$ sudo pip install -r requirements.txt

18

python packages: distutils problems

∙ But...
∙ distutils is not really designed for compiled packages: Ex:
numpy.distutils fork;

∙ no uninstalling;
∙ You cannot use built in dependencies!

∙ Only possible with requirements.txt file:

$ cat requirements.txt
FooProject >= 1.2
SomethingWhichVersionIDontCareAbout
BarProject == 1.0

Install requirements
$ sudo pip install -r requirements.txt

18

python packages: distutils problems

∙ But...
∙ distutils is not really designed for compiled packages: Ex:
numpy.distutils fork;

∙ no uninstalling;
∙ You cannot use built in dependencies!
∙ Only possible with requirements.txt file:

$ cat requirements.txt
FooProject >= 1.2
SomethingWhichVersionIDontCareAbout
BarProject == 1.0

Install requirements
$ sudo pip install -r requirements.txt

18

python packages: distutils problems

∙ But...
∙ distutils is not really designed for compiled packages: Ex:
numpy.distutils fork;

∙ no uninstalling;
∙ You cannot use built in dependencies!
∙ Only possible with requirements.txt file:

$ cat requirements.txt
FooProject >= 1.2
SomethingWhichVersionIDontCareAbout
BarProject == 1.0

Install requirements
$ sudo pip install -r requirements.txt

18

python packages: history

∙ 2004: setuptools was introduced by Phillip Eby, which
included the Egg format, and the ability to declare and
automatically install dependencies;

smr2763Hello/
setup.py
ez_setup.py
smr2763hello/

__init__.py
world.py

1 from ez_setup import use_setuptools
2 use_setuptools()
3 from setuptools import setup
4 from setuptools import find_packages
5 setup(name=’smr2763hello’,
6 version=’0.2’,
7 author=’me’,
8 author_email=’foo@bar.org’
9 url=’http://example.com’,

10 packages = find_packages(),
11)

19

python packages: history

∙ 2004: setuptools was introduced by Phillip Eby, which
included the Egg format, and the ability to declare and
automatically install dependencies;

smr2763Hello/
setup.py
ez_setup.py
smr2763hello/

__init__.py
world.py

1 from ez_setup import use_setuptools
2 use_setuptools()
3 from setuptools import setup
4 from setuptools import find_packages
5 setup(name=’smr2763hello’,
6 version=’0.2’,
7 author=’me’,
8 author_email=’foo@bar.org’
9 url=’http://example.com’,

10 packages = find_packages(),
11)

19

python packages: history

∙ 2007: virtualenv was introduced by Ian Bicking, which allowed
users to create isolated Python environments based on a central
system installation of Python;

20

python packages: history

∙ 2007: virtualenv was introduced by Ian Bicking, which allowed
users to create isolated Python environments based on a central
system installation of Python;

20

python packages: history

∙ 2011: The PyPA is created to take over the maintenance of pip and
virtualenv from Ian Bicking, led by Carl Meyer, Brian Rosner and
Jannis Leidel. Other proposed names were ”ianb-ng”, ”cabal”,
”pack” and ”Ministry of Installation”.

∙ 2012: The effort to include ”Distutils2/Packaging” in Python 3.3 was
abandoned due lack of involvement;

∙ 2013: PEP425 and PEP427 were accepted. Together, they specify a
built-package format for Python called Wheel;

21

python packages: history

∙ 2011: The PyPA is created to take over the maintenance of pip and
virtualenv from Ian Bicking, led by Carl Meyer, Brian Rosner and
Jannis Leidel. Other proposed names were ”ianb-ng”, ”cabal”,
”pack” and ”Ministry of Installation”.

∙ 2012: The effort to include ”Distutils2/Packaging” in Python 3.3 was
abandoned due lack of involvement;

∙ 2013: PEP425 and PEP427 were accepted. Together, they specify a
built-package format for Python called Wheel;

21

python packages: history

∙ 2011: The PyPA is created to take over the maintenance of pip and
virtualenv from Ian Bicking, led by Carl Meyer, Brian Rosner and
Jannis Leidel. Other proposed names were ”ianb-ng”, ”cabal”,
”pack” and ”Ministry of Installation”.

∙ 2012: The effort to include ”Distutils2/Packaging” in Python 3.3 was
abandoned due lack of involvement;

∙ 2013: PEP425 and PEP427 were accepted. Together, they specify a
built-package format for Python called Wheel;

21

demo

summarizing

tool recommendations:

∙ Always try to install from your distro repository;

∙ But if you need to use PyPI 1

∙ Use pip to install Python packages from PyPI;
∙ Use virtualenv, or pyvenv to isolate application specific dependencies
from a shared Python installation;

∙ Use setuptools to define projects and create Source Distributions.

1from Python Packaging User Guide
24

tool recommendations:

∙ Always try to install from your distro repository;
∙ But if you need to use PyPI 1

∙ Use pip to install Python packages from PyPI;
∙ Use virtualenv, or pyvenv to isolate application specific dependencies
from a shared Python installation;

∙ Use setuptools to define projects and create Source Distributions.

1from Python Packaging User Guide
24

tool recommendations:

∙ Always try to install from your distro repository;
∙ But if you need to use PyPI 1

∙ Use pip to install Python packages from PyPI;

∙ Use virtualenv, or pyvenv to isolate application specific dependencies
from a shared Python installation;

∙ Use setuptools to define projects and create Source Distributions.

1from Python Packaging User Guide
24

tool recommendations:

∙ Always try to install from your distro repository;
∙ But if you need to use PyPI 1

∙ Use pip to install Python packages from PyPI;
∙ Use virtualenv, or pyvenv to isolate application specific dependencies
from a shared Python installation;

∙ Use setuptools to define projects and create Source Distributions.

1from Python Packaging User Guide
24

tool recommendations:

∙ Always try to install from your distro repository;
∙ But if you need to use PyPI 1

∙ Use pip to install Python packages from PyPI;
∙ Use virtualenv, or pyvenv to isolate application specific dependencies
from a shared Python installation;

∙ Use setuptools to define projects and create Source Distributions.

1from Python Packaging User Guide
24

questions?

	Introduction
	And about python packages?
	Demo
	Summarizing

