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LAMMPS is a Collaborative Project
A few lead developers and many significant contributors:

● Steve Plimpton, Aidan Thompson, Paul Crozier, Axel Kohlmeyer

- Roy Pollock (LLNL), Ewald and PPPM solvers
- Mike Brown (ORNL), GPU package
- Greg Wagner (Sandia), MEAM package for MEAM potential
- Mike Parks (Sandia), PERI package for Peridynamics
- Rudra Mukherjee (JPL), POEMS package for rigid body motion
- Reese Jones (Sandia), USER-ATC package for coupling to continuum
- Ilya Valuev (JIHT), USER-AWPMD package for wave-packet MD
- Christian Trott (Sandia), USER-CUDA package, KOKKOS package
- A. Jaramillo-Botero (Caltech), USER-EFF electron force field package
- Christoph Kloss (JKU), LIGGGHTS package for DEM and fluid coupling
- Metin Aktulga (LBL), USER-REAXC package for C version of ReaxFF
- Georg Gunzenmuller (EMI), USER-SPH package
- Ray Shan (Sandia), COMB package, QEQ package
- Trung Nguyen (ORNL), RIGID package, GPU package
- Francis Mackay and Coling Denniston (U Western Ontario), USER-LB
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LAMMPS is an Extensible Project
● ~2900 C/C++/CUDA files, 120 Fortran files,

about 900,000 lines of code in core executable
● Only about 200 files are essential, about 600 

files are compiled by default, 2300 are optional
● Optional files are included through derived C++ 

classes, extra functionality in bundled libraries
● Three levels of “package support”:

– Core packages (officially supported)
– USER-<NAME> packages (supported by individuals)
– USER-MISC package (mixed bag of everything else)
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A Short History of LAMMPS

● Started around 1995 as a DOE/Industry 
partnership under the lead of Steve Plimpton

● Development used Fortran 77 until 1999
● Converted to Fortran 90 for dynamical memory 

management. Final Fortran version in 2001.
Switch to C++ to make adding modules easier

● Current version is a complete rewrite in C++ 
merging in features from several MD codes 
written at Sandia (ParaDyn, Warp, GranFlow, 
GRASP) and many community contributions
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What LAMMPS Is

● Large-scale Atomic/Molecular Massively Parallel Simulator
(each word is an attribute)

● Three-legged stool, supported by force fields and methods:
one foot in biomolecules and polymers (soft materials)
one foot in materials science (solids)
one foot in mesoscale to continuum



6
Workshop on Advanced Techniques
in Scientific Computing

LAMMPS General Features

● Classical Molecular Dynamics (MD) (+ Lattice Boltzman, 
Peridynamics, DEM Simulations, FE coupling extension)

- open-source distribution, precompiled binaries for popular platforms
- runs on a single processor or in parallel (with optional load balancing)
- distributed-memory message-passing parallelism (MPI)
- GPU (CUDA and OpenCL) and OpenMP support for many code features
- spatial-decomposition of simulation domain for parallelism
- optional libraries used: MPI, serial FFT, JPEG, PNG, Voro++, OpenKIM
- integrated parallel visualizer (snapshot images and movies)
- easy to extend with new features and functionality
- syntax for defining and using variables and formulas
- syntax for looping over runs and breaking out of loops
- run one or multiple simulations simultaneously (in parallel) from one script
- can be build as library, invoke LAMMPS through library interface
- Python wrapper and module included, combine with Pizza.py toolkit
- couple with other codes: LAMMPS calls other code,
   other code calls LAMMPS, or umbrella code calls both
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Particle and Model Types
● simple atoms, metals
● coarse-grained particles (e.g. bead-spring polymers)
● united-atom polymers or organic molecules
● all-atom polymers, organic molecules, proteins, DNA
● granular materials
● coarse-grained mesoscale models
● finite-size spherical and ellipsoidal particles
● finite-size line segment (2d) and triangle (3d) particles
● point dipolar particles
● rigid collections of particles
● hybrid combinations of these
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Force Fields
● Simple pairwise additive potentials: Lennard-Jones, Buckingham, Morse, 

Born-Mayer-Huggins, Yukawa, Soft, Class 2 (COMPASS), Mie, hydrogen 
bond, tabulated, Coulombic, point-dipole

● Manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), 
embedded ion method (EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, 
AIREBO, ReaxFF, COMB, BOP

● Electron force fields: eFF, AWPMD
● Coarse-grained: DPD, GayBerne, REsquared, colloidal, DLVO, SDK
● Mesoscopic potentials: Granular media, Peridynamics, SPH, LB
● Potentials for bond/angles/dihedrals: harmonic, FENE, Morse, nonlinear, 

Class 2, quartic (breakable), CHARMM, OPLS, cvff, umbrella
● implicit solvent potentials: hydrodynamic lubrication, Debye
● long-range Coulombics and dispersion: Ewald, Wolf, PPPM (similar to 

particle-mesh Ewald), Ewald/N for long-range Lennard-Jones
● hybrid potentials: multiple pair, bond, angle, dihedral, improper 

potentials can be used in one simulation
● overlaid potentials: superposition of multiple pair potentials
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Ensembles, Boundary Conditions
● 2d or 3d systems
● orthogonal or non-orthogonal (triclinic symmetry) simulation domains
● constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators
● thermostatting options for groups and geometric regions of atoms
● pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 

dimensions, coupled and uncoupled
● simulation box deformation (tensile and shear)
● harmonic constraint forces, collective variables (MTD, ABF, SMD)
● rigid body constraints
● SHAKE bond and angle constraints
● bond breaking, formation, swapping
● walls of various kinds
● non-equilibrium molecular dynamics (NEMD)
● Properties and manipulations can be controlled by custom functions 
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Methods
● Integrators:

● Velocity Verlet, r-RESPA multi-timestepping, 
Brownian dynamics, rigid bodies

● Energy minimization with various algorithms
● Multi-replica methods:

● Nudged-elastic band
● Parallel replica MD,Temperature accelerated MD
● Parallel tempering MD
● Split short-range / long-range force computation
● Multi-walker metadynamics and ABF
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Not so Common Features

● generalized aspherical particles
● stochastic rotation dynamics (SRD)
● real-time visualization and interactive MD
● atom-to-continuum coupling with finite elements
● grand canonical Monte Carlo insertions/deletions
● direct simulation Monte Carlo for low-density fluids
● Peridynamics mesoscale modeling
● targeted and steered molecular dynamics
● two-temperature electron model
● Dynamic grouping of particles
● On-the-fly parallel processing of data (direct and via rerun)
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Pizza.py Companion Toolkit

● Each tool is a 
Python class

● Use multiple tools 
simultaneously 
from command-
line, scripts, or 
GUIs

● Tools for building 
LAMMPS input, 
reading LAMMPS 
output, conversion, 
analysis, plotting, 
viz, etc

● GUI-based tool to 
run a LAMMPS 
simulation in real-
time ...
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LAMMPS for Outreach
The Nano Dome

● Single person immersive, stereo-3d, haptic, and 
interactive simulation/visualization environment

● Combines HPC, visualization, molecular 
simulation, virtual reality, and STEM outreach 
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Serial Performance

● Low-level data structures are lists managed by classes
C-like, Fortran-like
x[N][3] = coordinates = 3N contiguous memory locations
one simulation allocates many atom-based arrays

● Neighbor lists
O(N) binning
Verlet list with skin, stored in large “pages” of integers
keep for 10-20 steps
biggest memory requirement in code

● Performance is same as C and same as Fortran
we don’t do things that slow down pair and neighbor routines
people do care how fast your code is
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Parallelism via
Spatial-Decomposition

● Physical domain divided into 3d boxes, one per processor
● Communication of “ghost” atoms via

nearest-neighbor 6-way stencil 
● Each processor computes forces on atoms in its box
● Atoms "carry along" molecular topology

as they migrate to new procs
● Work hard for optimal scaling:

  N/P so long as load-balanced
● Computation scales as  N/P
● Communication scales

sub-linear as  (N/P)2/3

(for large problems)
● Memory scales as  N/P
● Optional load balancing by atom count

via moving domain dividing planes
● Optional recursive bisectioning decomposition
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LAMMPS Performance

● Fixed-size (32K atoms) & scaled-size 
(32K/proc) parallel efficiencies

● Protein (rhodopsin) in solvated lipid bilayer 

● Billions of atoms on 64K procs of Blue Gene or 
Red Storm

● Opteron speed: 4.5E-5 sec/atom/step (12x for 
metal, 25x for LJ)
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OpenMP/MPI Scaling on Cray XT5

27 63 148 345 805 1878
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OpenMP+MPI Best Effort vs. MPI
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Extending LAMMPS

● In hindsight, this is best feature of LAMMPS
> 80% of code is “extensions”

● Easy for us and others to add new features (“style”)
new particle types
new force fields
new computations (T, per-atom stress, ...)
new fix (BC, constraint, integrator, diagnostic, ...)
new input command (read_data, velocity, run, ...)

● Adding a feature only requires 2 lines in a header file and recompiling
# include "pair_airebo.h"
PairStyle ( airebo, PairAIRebo )

● Enabled by C++
virtual parent class for all styles, e.g. pair potentials
defines interface the feature must provide
compute(), init(), coeff(), restart(), etc
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Coupling LAMMPS to Other 
Codes

● Method 1:   MD is the driver
MD  FE
enabled by fixes, link to external library
coupled rigid body solver from RPI

● Method 2:   Other code is the driver
FE  MD
build LAMMPS as a library
call from C++, C, Fortran
low-overhead to run MD in spurts
invoke low-level ops (get/put coords)

● Method 3:   Umbrella code is the driver
Umbrella code calls MD and FE
RPI group linking LAMMPS to their FE codes for deformation 
problems
could run LAMMPS on P procs, FE on Q procs, talk to each other

● Challenge:  balance the computation so both codes run efficiently
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lammps.sandia.gov
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