
Workshop on Advanced Techniques
in Scientific Computing

Dr. Axel Kohlmeyer
(with a little help from several friends)

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

LAMMPS – An Object Oriented
Scientific Application

http://sites.google.com/site/akohlmey/

Workshop on Advanced Techniques
in Scientific Computing

LAMMPS is a Collaborative Project
A few lead developers and many significant contributors:

● Steve Plimpton, Aidan Thompson, Paul Crozier, Axel Kohlmeyer

- Roy Pollock (LLNL), Ewald and PPPM solvers
- Mike Brown (ORNL), GPU package
- Greg Wagner (Sandia), MEAM package for MEAM potential
- Mike Parks (Sandia), PERI package for Peridynamics
- Rudra Mukherjee (JPL), POEMS package for rigid body motion
- Reese Jones (Sandia), USER-ATC package for coupling to continuum
- Ilya Valuev (JIHT), USER-AWPMD package for wave-packet MD
- Christian Trott (Sandia), USER-CUDA package, KOKKOS package
- A. Jaramillo-Botero (Caltech), USER-EFF electron force field package
- Christoph Kloss (JKU), LIGGGHTS package for DEM and fluid coupling
- Metin Aktulga (LBL), USER-REAXC package for C version of ReaxFF
- Georg Gunzenmuller (EMI), USER-SPH package
- Ray Shan (Sandia), COMB package, QEQ package
- Trung Nguyen (ORNL), RIGID package, GPU package
- Francis Mackay and Coling Denniston (U Western Ontario), USER-LB

Workshop on Advanced Techniques
in Scientific Computing

LAMMPS is an Extensible Project
● ~2900 C/C++/CUDA files, 120 Fortran files,

about 900,000 lines of code in core executable
● Only about 200 files are essential, about 600

files are compiled by default, 2300 are optional
● Optional files are included through derived C++

classes, extra functionality in bundled libraries
● Three levels of “package support”:

– Core packages (officially supported)
– USER-<NAME> packages (supported by individuals)
– USER-MISC package (mixed bag of everything else)

Workshop on Advanced Techniques
in Scientific Computing

A Short History of LAMMPS

● Started around 1995 as a DOE/Industry
partnership under the lead of Steve Plimpton

● Development used Fortran 77 until 1999
● Converted to Fortran 90 for dynamical memory

management. Final Fortran version in 2001.
Switch to C++ to make adding modules easier

● Current version is a complete rewrite in C++
merging in features from several MD codes
written at Sandia (ParaDyn, Warp, GranFlow,
GRASP) and many community contributions

5
Workshop on Advanced Techniques
in Scientific Computing

What LAMMPS Is

● Large-scale Atomic/Molecular Massively Parallel Simulator
(each word is an attribute)

● Three-legged stool, supported by force fields and methods:
one foot in biomolecules and polymers (soft materials)
one foot in materials science (solids)
one foot in mesoscale to continuum

6
Workshop on Advanced Techniques
in Scientific Computing

LAMMPS General Features

● Classical Molecular Dynamics (MD) (+ Lattice Boltzman,
Peridynamics, DEM Simulations, FE coupling extension)

- open-source distribution, precompiled binaries for popular platforms
- runs on a single processor or in parallel (with optional load balancing)
- distributed-memory message-passing parallelism (MPI)
- GPU (CUDA and OpenCL) and OpenMP support for many code features
- spatial-decomposition of simulation domain for parallelism
- optional libraries used: MPI, serial FFT, JPEG, PNG, Voro++, OpenKIM
- integrated parallel visualizer (snapshot images and movies)
- easy to extend with new features and functionality
- syntax for defining and using variables and formulas
- syntax for looping over runs and breaking out of loops
- run one or multiple simulations simultaneously (in parallel) from one script
- can be build as library, invoke LAMMPS through library interface
- Python wrapper and module included, combine with Pizza.py toolkit
- couple with other codes: LAMMPS calls other code,
 other code calls LAMMPS, or umbrella code calls both

7
Workshop on Advanced Techniques
in Scientific Computing

Particle and Model Types
● simple atoms, metals
● coarse-grained particles (e.g. bead-spring polymers)
● united-atom polymers or organic molecules
● all-atom polymers, organic molecules, proteins, DNA
● granular materials
● coarse-grained mesoscale models
● finite-size spherical and ellipsoidal particles
● finite-size line segment (2d) and triangle (3d) particles
● point dipolar particles
● rigid collections of particles
● hybrid combinations of these

8
Workshop on Advanced Techniques
in Scientific Computing

Force Fields
● Simple pairwise additive potentials: Lennard-Jones, Buckingham, Morse,

Born-Mayer-Huggins, Yukawa, Soft, Class 2 (COMPASS), Mie, hydrogen
bond, tabulated, Coulombic, point-dipole

● Manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM),
embedded ion method (EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO,
AIREBO, ReaxFF, COMB, BOP

● Electron force fields: eFF, AWPMD
● Coarse-grained: DPD, GayBerne, REsquared, colloidal, DLVO, SDK
● Mesoscopic potentials: Granular media, Peridynamics, SPH, LB
● Potentials for bond/angles/dihedrals: harmonic, FENE, Morse, nonlinear,

Class 2, quartic (breakable), CHARMM, OPLS, cvff, umbrella
● implicit solvent potentials: hydrodynamic lubrication, Debye
● long-range Coulombics and dispersion: Ewald, Wolf, PPPM (similar to

particle-mesh Ewald), Ewald/N for long-range Lennard-Jones
● hybrid potentials: multiple pair, bond, angle, dihedral, improper

potentials can be used in one simulation
● overlaid potentials: superposition of multiple pair potentials

9
Workshop on Advanced Techniques
in Scientific Computing

Ensembles, Boundary Conditions
● 2d or 3d systems
● orthogonal or non-orthogonal (triclinic symmetry) simulation domains
● constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators
● thermostatting options for groups and geometric regions of atoms
● pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3

dimensions, coupled and uncoupled
● simulation box deformation (tensile and shear)
● harmonic constraint forces, collective variables (MTD, ABF, SMD)
● rigid body constraints
● SHAKE bond and angle constraints
● bond breaking, formation, swapping
● walls of various kinds
● non-equilibrium molecular dynamics (NEMD)
● Properties and manipulations can be controlled by custom functions

10
Workshop on Advanced Techniques
in Scientific Computing

Methods
● Integrators:

● Velocity Verlet, r-RESPA multi-timestepping,
Brownian dynamics, rigid bodies

● Energy minimization with various algorithms
● Multi-replica methods:

● Nudged-elastic band
● Parallel replica MD,Temperature accelerated MD
● Parallel tempering MD
● Split short-range / long-range force computation
● Multi-walker metadynamics and ABF

11
Workshop on Advanced Techniques
in Scientific Computing

Not so Common Features

● generalized aspherical particles
● stochastic rotation dynamics (SRD)
● real-time visualization and interactive MD
● atom-to-continuum coupling with finite elements
● grand canonical Monte Carlo insertions/deletions
● direct simulation Monte Carlo for low-density fluids
● Peridynamics mesoscale modeling
● targeted and steered molecular dynamics
● two-temperature electron model
● Dynamic grouping of particles
● On-the-fly parallel processing of data (direct and via rerun)

12
Workshop on Advanced Techniques
in Scientific Computing

Pizza.py Companion Toolkit

● Each tool is a
Python class

● Use multiple tools
simultaneously
from command-
line, scripts, or
GUIs

● Tools for building
LAMMPS input,
reading LAMMPS
output, conversion,
analysis, plotting,
viz, etc

● GUI-based tool to
run a LAMMPS
simulation in real-
time ...

13
Workshop on Advanced Techniques
in Scientific Computing

LAMMPS for Outreach
The Nano Dome

● Single person immersive, stereo-3d, haptic, and
interactive simulation/visualization environment

● Combines HPC, visualization, molecular
simulation, virtual reality, and STEM outreach

14
Workshop on Advanced Techniques
in Scientific Computing

Serial Performance

● Low-level data structures are lists managed by classes
C-like, Fortran-like
x[N][3] = coordinates = 3N contiguous memory locations
one simulation allocates many atom-based arrays

● Neighbor lists
O(N) binning
Verlet list with skin, stored in large “pages” of integers
keep for 10-20 steps
biggest memory requirement in code

● Performance is same as C and same as Fortran
we don’t do things that slow down pair and neighbor routines
people do care how fast your code is

15
Workshop on Advanced Techniques
in Scientific Computing

Parallelism via
Spatial-Decomposition

● Physical domain divided into 3d boxes, one per processor
● Communication of “ghost” atoms via

nearest-neighbor 6-way stencil
● Each processor computes forces on atoms in its box
● Atoms "carry along" molecular topology

as they migrate to new procs
● Work hard for optimal scaling:

 N/P so long as load-balanced
● Computation scales as N/P
● Communication scales

sub-linear as (N/P)2/3

(for large problems)
● Memory scales as N/P
● Optional load balancing by atom count

via moving domain dividing planes
● Optional recursive bisectioning decomposition

16
Workshop on Advanced Techniques
in Scientific Computing

LAMMPS Performance

● Fixed-size (32K atoms) & scaled-size
(32K/proc) parallel efficiencies

● Protein (rhodopsin) in solvated lipid bilayer

● Billions of atoms on 64K procs of Blue Gene or
Red Storm

● Opteron speed: 4.5E-5 sec/atom/step (12x for
metal, 25x for LJ)

17
Workshop on Advanced Techniques
in Scientific Computing

OpenMP/MPI Scaling on Cray XT5

27 63 148 345 805 1878

0.04

0.08

0.17

0.36

1 Vesicle CG System / 3,862,854 CG-Beads

12 MPI / 1 OpenMP

6 MPI / 2 OpenMP

4 MPI / 3 OpenMP

2 MPI / 6 OpenMP

2 MPI / 6 OpenMP (SP)

Nodes

Ti
m

e
pe

r M
D

 s
te

p
(s

ec
)

18
Workshop on Advanced Techniques
in Scientific Computing

OpenMP+MPI Best Effort vs. MPI

19
Workshop on Advanced Techniques
in Scientific Computing

Extending LAMMPS

● In hindsight, this is best feature of LAMMPS
> 80% of code is “extensions”

● Easy for us and others to add new features (“style”)
new particle types
new force fields
new computations (T, per-atom stress, ...)
new fix (BC, constraint, integrator, diagnostic, ...)
new input command (read_data, velocity, run, ...)

● Adding a feature only requires 2 lines in a header file and recompiling
include "pair_airebo.h"
PairStyle (airebo, PairAIRebo)

● Enabled by C++
virtual parent class for all styles, e.g. pair potentials
defines interface the feature must provide
compute(), init(), coeff(), restart(), etc

20
Workshop on Advanced Techniques
in Scientific Computing

Coupling LAMMPS to Other
Codes

● Method 1: MD is the driver
MD  FE
enabled by fixes, link to external library
coupled rigid body solver from RPI

● Method 2: Other code is the driver
FE  MD
build LAMMPS as a library
call from C++, C, Fortran
low-overhead to run MD in spurts
invoke low-level ops (get/put coords)

● Method 3: Umbrella code is the driver
Umbrella code calls MD and FE
RPI group linking LAMMPS to their FE codes for deformation
problems
could run LAMMPS on P procs, FE on Q procs, talk to each other

● Challenge: balance the computation so both codes run efficiently

21
Workshop on Advanced Techniques
in Scientific Computing

lammps.sandia.gov

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	LAMMPS
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Pizza.py Screenshot
	Slide 13
	Serial Performance
	Parallelism via Spatial-Decomposition
	LAMMPS Performance
	Slide 17
	Slide 18
	Extending LAMMPS
	Coupling LAMMPS to Other Codes
	Slide 21

