
Workshop on Advanced Techniques
in Scientific Computing

Compiling and Linking with Static and SharedCompiling and Linking with Static and Shared
Libraries Using Multiple Programming LanguagesLibraries Using Multiple Programming Languages

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

http://sites.google.com/site/akohlmey/

2
Workshop on Advanced Techniques
in Scientific Computing

Pre-process / Compile / Link

● Creating an executable includes multiple steps
● The “compiler” (gcc) is a wrapper for several

commands that are executed in succession
● The “compiler flags” similarly fall into categories

and are handed down to the respective tools
● The “wrapper” selects the compiler language

from source file name, but links “its” runtime
● We will look into a C example first, since this is

the language the OS is (mostly) written in

3
Workshop on Advanced Techniques
in Scientific Computing

● Consider the minimal C program 'hello.c':
#include <stdio.h>
int main(int argc, char **argv)
{
 printf(“hello world\n”);
 return 0;
}

● i.e.: what happens, if we do:
> gcc -o hello hello.c
(try: gcc -v -o hello hello.c)

A simple C Example

4
Workshop on Advanced Techniques
in Scientific Computing

Step 1: Pre-processing

● Pre-processing is mandatory in C (and C++)
● Pre-processing will handle '#' directives

● File inclusion with support for nested inclusion
● Conditional compilation and Macro expansion

● In this case: /usr/include/stdio.h
- and all files are included by it - are inserted
and the contained macros expanded

● Use -E flag to stop after pre-processing:
> cc -E -o hello.pp.c hello.c

5
Workshop on Advanced Techniques
in Scientific Computing

Step 2: Compilation

● Compiler converts a high-level language into
the specific instruction set of the target CPU

● Individual steps:
● Parse text (lexical + syntactical analysis)
● Do language specific transformations
● Translate to internal representation units (IRs)
● Optimization (reorder, merge, eliminate)
● Replace IRs with pieces of assembler language

● Try:> gcc -S hello.c (produces hello.s)

6
Workshop on Advanced Techniques
in Scientific Computing

Compilation cont'd
 .file "hello.c"
 .section .rodata
.LC0:
 .string "hello, world!"
 .text
.globl main
 .type main, @function
main:
 pushl %ebp
 movl %esp, %ebp
 andl $-16, %esp
 subl $16, %esp
 movl $.LC0, (%esp)
 call puts
 movl $0, %eax
 leave
 ret
 .size main, .-main
 .ident "GCC: (GNU) 4.5.1 20100924 (Red Hat 4.5.1-4)"
 .section .note.GNU-stack,"",@progbits

#include <stdio.h>
int main(int argc,
 char **argv)
{
 printf(“hello world\n”);
 return 0;
}

gcc replaced printf with puts

try: gcc -fno-builtin -S hello.c

7
Workshop on Advanced Techniques
in Scientific Computing

Step 3: Assembler / Step 4: Linker

● Assembler (as) translates assembly to binary
● Creates so-called object files (in ELF format)

Try: > gcc -c hello.c
Try: > nm hello.o
00000000 T main
 U puts

● Linker (ld) puts binary together with startup
code and required libraries

● Final step, result is executable.
Try: > gcc -o hello hello.o

8
Workshop on Advanced Techniques
in Scientific Computing

Adding Libraries
● Example 2: exp.c
#include <math.h>
#include <stdio.h>
int main(int argc, char **argv)
{ double a=2.0;
 printf("exp(2.0)=%f\n", exp(a));
 return 0;
}
● > gcc -o exp exp.c

Fails with “undefined reference to 'exp'”. Add: -lm

● > gcc -O3 -o exp exp.c
Works due to inlining at high optimization level.

9
Workshop on Advanced Techniques
in Scientific Computing

Symbols in Object Files & Visibility

● Compiled object files have multiple sections
and a symbol table describing their entries:
● “Text”: this is executable code
● “Data”: pre-allocated variables storage
● “Constants”: read-only data
● “Undefined”: symbols that are used but not defined
● “Debug”: debugger information (e.g. line numbers)

● Entries in the object files can be inspected with
either the “nm” tool or the “readelf” command

10
Workshop on Advanced Techniques
in Scientific Computing

Example File: visbility.c
static const int val1 = -5;
const int val2 = 10;
static int val3 = -20;
int val4 = -15;
extern int errno;

static int add_abs(const int v1, const int v2) {
 return abs(v1)+abs(v2);
}

int main(int argc, char **argv) {
 int val5 = 20;
 printf("%d / %d / %d\n",
 add_abs(val1,val2),
 add_abs(val3,val4),
 add_abs(val1,val5));
 return 0;
}

nm visibility.o:
00000000 t add_abs
 U errno
00000024 T main
 U printf
00000000 r val1
00000004 R val2
00000000 d val3
00000004 D val4

11
Workshop on Advanced Techniques
in Scientific Computing

What Happens During Linking?

● Historically, the linker combines a “startup
object” (crt1.o) with all compiled or listed object
files, the C library (libc) and a “finish object”
(crtn.o) into an executable (a.out)

● With current compilers it is more complicated
● The linker then “builds” the executable by

matching undefined references with available
entries in the symbol tables of the objects

● crt1.o has an undefined reference to “main”
thus C programs start at the main() function

12
Workshop on Advanced Techniques
in Scientific Computing

Static Libraries

● Static libraries built with the “ar” command are
collections of objects with a global symbol table

● When linking to a static library, object code is
copied into the resulting executable and all
direct addresses recomputed (e.g. for “jumps”)

● Symbols are resolved “from left to right”, so
circular dependencies require to list libraries
multiple times or use a special linker flag

● When linking only the name of the symbol is
checked, not whether its argument list matches

13
Workshop on Advanced Techniques
in Scientific Computing

Shared Libraries

● Shared libraries are more like executables that
are missing the main() function

● When linking to a shared library, a marker is
added to load the library by its “generic” name
(soname) and the list of undefined symbols

● When resolving a symbol (function) from
shared library all addresses have to be
recomputed (relocated) on the fly.

● The shared linker program is executed first and
then loads the executable and its dependencies

14
Workshop on Advanced Techniques
in Scientific Computing

Differences When Linking

● Static libraries are fully resolved “left to right”;
circular dependencies are only resolved
between explicit objects or inside a library
-> need to specify libraries multiple times
or use: -Wl,--start-group (...) -Wl,--end-group

● Shared libraries symbols are not fully resolved
at link time, only checked for symbols required
by the object files. Full check only at runtime.

● Shared libraries may depend on other shared
libraries whose symbols will be globally visible

15
Workshop on Advanced Techniques
in Scientific Computing

Semi-static Linking

● Fully static linking is a bad idea with GNU libc;
it requires matching shared objects for NSS

● Dynamic linkage of add-on libraries requires a
compatible version to be installed (e.g. MKL)

● Static linkage of individual libs via linker flags
-Wl,-Bstatic,-lfftw3,-Bdynamic

● can be combined with grouping, example:
-Wl,--start-group,-Bstatic \
 -lmkl_gf_lp64 -lmkl_sequential \
 -lmkl_core -Wl,--end-group,-Bdynamic

16
Workshop on Advanced Techniques
in Scientific Computing

Meta-Libraries

● GNU linker supports linker scripts as a library
● Can be used to build a library-of-libraries:

[~]$ cat libscalapack.a

GROUP (-lscalapack_gnu -lblacsF77 -lblacs -llapack -lf77blas)

● To link the entire sequence of libraries only
the flag -lscalapack is needed

● Useful to hide implementation details or handle
library dependencies for static libraries
(not a problem with shared libraries, if the
shared library is linked to its dependencies)

17
Workshop on Advanced Techniques
in Scientific Computing

Dynamic Linker Properties

● Linux defaults to dynamic libraries:
> ldd hello
linux-gate.so.1 => (0x0049d000)
libc.so.6 => /lib/libc.so.6
(0x005a0000)
/lib/ld-linux.so.2 (0x0057b000)

● /etc/ld.so.conf, LD_LIBRARY_PATH
define where to search for shared libraries

● gcc -Wl,-rpath,/some/dir will encode
/some/dir into the binary for searching

18
Workshop on Advanced Techniques
in Scientific Computing

Using LD_PRELOAD

● Using the LD_PRELOAD environment variable,
symbols from a shared object can be preloaded
into the global object table and will override
those in later resolved shared libraries
=> replace specific functions in a shared library

● Example: override log() with a faster version:
#include “amdlibm.h”
double log(double x) { return amd_log(x); }

gcc -shared -o fasterlog.so faster.c -lamdlibm
● LD_PRELOAD=./fasterlog.so ./myprog-with

19
Workshop on Advanced Techniques
in Scientific Computing

Before LD_PRELOAD

20
Workshop on Advanced Techniques
in Scientific Computing

After LD_PRELOAD

21
Workshop on Advanced Techniques
in Scientific Computing

Difference Between C and Fortran
● Basic compilation principles are the same

=> preprocess, compile, assemble, link
● In Fortran, symbols are case insensitive

=> most compilers translate them to lower case
● In Fortran symbol names may be modified to

make them different from C symbols
(e.g. append one or more underscores)

● Fortran entry point is not “main” (no arguments)
PROGRAM => MAIN__ (in gfortran)

● C-like main() provided as startup (to store args)

22
Workshop on Advanced Techniques
in Scientific Computing

Pre-processing in C and Fortran

● Pre-processing is mandatory in C/C++
● Pre-processing is optional in Fortran
● Fortran pre-processing enabled implicitly via

file name: name.F, name.F90, name.FOR
● Legacy Fortran packages often use /lib/cpp:

 /lib/cpp -C -P -traditional -o name.f name.F
● -C : keep comments (may be legal Fortran code)
● -P : no '#line' markers (not legal Fortran syntax)
● -traditional : don't collapse whitespace

(incompatible with fixed format sources)

23
Workshop on Advanced Techniques
in Scientific Computing

Fortran Symbols Example

 SUBROUTINE GREET
 PRINT*, 'HELLO, WORLD!'
END SUBROUTINE GREET

program hello
 call greet
end program

0000006d t MAIN__
 U _gfortran_set_args
 U _gfortran_set_options
 U _gfortran_st_write
 U _gfortran_st_write_done
 U _gfortran_transfer_character
00000000 T greet_
0000007a T main

- “program” becomes symbol “MAIN__” (compiler dependent)
- “subroutine” name becomes lower case with '_' appended
- several “undefineds” with '_gfortran' prefix
 => calls into the Fortran runtime library, libgfortran
- cannot link object with “gcc” alone, need to add -lgfortran
 => cannot mix and match Fortran objects from different compilers

24
Workshop on Advanced Techniques
in Scientific Computing

Fortran 90+ Modules

● When subroutines or variables are defined
inside a module, they have to be hidden

● gfortran creates the following symbols:

module func
 integer :: val5, val6
contains
 integer function add_abs(v1,v2)
 integer, intent(in) :: v1, v2
 add_abs = iabs(v1)+iabs(v2)
 end function add_abs
end module func

00000000 T __func_MOD_add_abs
00000000 B __func_MOD_val5
00000004 B __func_MOD_val6

25
Workshop on Advanced Techniques
in Scientific Computing

The Next Level: C++

● In C++ functions with different number or type
of arguments can be defined (overloading)
=> encode prototype into symbol name:

Example : symbol for int add_abs(int,int)
becomes: _ZL7add_absii

● Note: the return type is not encoded
● C++ symbols are no longer compatible with C

=> add 'extern “C”' qualifier for C style symbols
● C++ symbol encoding is compiler specific

26
Workshop on Advanced Techniques
in Scientific Computing

C++ Namespaces and Classes
vs. Fortran 90 Modules

● Fortran 90 modules share functionality with
classes and namespaces in C++

● C++ namespaces are encoded in symbols
Example: int func::add_abs(int,int)
becomes: _ZN4funcL7add_absEii

● C++ classes are encoded the same way
● Figuring out which symbol to encode into the

object as undefined is the job of the compiler
● When using the gdb debugger use '::' syntax

27
Workshop on Advanced Techniques
in Scientific Computing

Why We Need Header or Module Files

● The linker is “blind” for any language specific
properties of a symbol => checking of the
validity of the interface of a function is only
possible during compilation

● A header or module file contains the prototype
of the function (not the implementation) and the
compiler can compare it to its use

● Important: header/module has to match library
=> Problem with FFTW-2.x: cannot tell if library
was compiled for single or double precision

28
Workshop on Advanced Techniques
in Scientific Computing

Calling C from Fortran 77

● Need to make C function look like Fortran 77
● Append underscore (except on AIX, HP-UX)
● Call by reference conventions
● Best only used for “subroutine” constructs (cf. MPI)

as passing return value of functions varies a lot:
void add_abs_(int *v1,int *v2,int *res){
*res = abs(*v1)+abs(*v2);}

● Arrays are always passed as “flat” 1d arrays by
providing a pointer to the first array element

● Strings are tricky (no terminal 0, length added)

29
Workshop on Advanced Techniques
in Scientific Computing

Calling C from Fortran 77 Example
void sum_abs_(int *in, int *num, int *out) {
 int i,sum;
 sum = 0;
 for (i=0; i < *num; ++i) { sum += abs(in[i]);}
 *out = sum;
 return;
}

/* fortran code:
 integer, parameter :: n=200
 integer :: s, data(n)

 call SUM_ABS(data, n, s)
 print*, s
*/

30
Workshop on Advanced Techniques
in Scientific Computing

Calling Fortran 77 from C

● Inverse from previous, i.e. need to add
underscore and use lower case (usually)

● Difficult for anything but Fortran 77 style calls
since Fortran 90+ features need extra info
● Shaped arrays, optional parameters, modules

● Arrays need to be “flat”,
C-style multi-dimensional arrays are lists of
pointers to individual pieces of storage, which
may not be consecutive
=> use 1d and compute position

31
Workshop on Advanced Techniques
in Scientific Computing

Calling Fortran 77 From C Example
subroutine sum_abs(in, num, out)
 integer, intent(in) :: num, in(num)
 integer, intent(out) :: out
 Integer :: i, sum
 sum = 0
 do i=1,num
 sum = sum + ABS(in(i))
 end do
 out = sum
end subroutine sum_abs
!! c code:
! const int n=200;
! int data[n], s;
! sum_abs_(data, &n, &s);
! printf("%d\n", s);

32
Workshop on Advanced Techniques
in Scientific Computing

Modern Fortran vs C Interoperability

● Fortran 2003 introduces a standardized way to
tell Fortran how C functions look like and how
to make Fortran functions have a C-style ABI

● Module “iso_c_binding” provides kind definition:
e.g. C_INT, C_FLOAT, C_SIGNED_CHAR

● Subroutines can be declared with “BIND(C)”
● Arguments can be given the property “VALUE”

to indicate C-style call-by-value conventions
● String passing tricky, needs explicit 0-terminus

33
Workshop on Advanced Techniques
in Scientific Computing

Calling C from Fortran 03 Example

int sum_abs(int *in, int num) {
 int i,sum;
 for (i=0,sum=0;i<num;++i) {sum += abs(in[i]);}
 return sum;
}
/* fortran code:
 use iso_c_binding, only: c_int
 interface
 integer(c_int) function sum_abs(in, num) bind(C)
 use iso_c_binding, only: c_int
 integer(c_int), intent(in) :: in(*)
 integer(c_int), value :: num
 end function sum_abs
 end interface
 integer(c_int), parameter :: n=200
 integer(c_int) :: data(n)
 print*, SUM_ABS(data,n) */

34
Workshop on Advanced Techniques
in Scientific Computing

Calling Fortran 03 From C Example
subroutine sum_abs(in, num, out) bind(c)
 use iso_c_binding, only : c_int
 integer(c_int), intent(in) :: num,in(num)
 integer(c_int), intent(out) :: out
 integer(c_int), :: i, sum
 sum = 0
 do i=1,num
 sum = sum + ABS(in(i))
 end do
 out = sum
end subroutine sum_abs

!! c code:
! const int n=200;
! int data[n], s;
! sum_abs(data, &n, &s);
! printf("%d\n", s);

35
Workshop on Advanced Techniques
in Scientific Computing

Linking Multi-Language Binaries

● Inter-language calls via mutual C interface only
due to name “mangling” of C++ / Fortran 90+
=> extern “C”, ISO_C_BINDING, C wrappers

● Fortran “main” requires Fortran compiler for link
● Global static C++ objects require C++ for link

=> avoid static objects (good idea in general)
● Either language requires its runtime for link

=> GNU: -lstdc++ and -lgfortran
=> Intel: “its complicated” (use -# to find out)
more may be needed (-lgomp, -lpthread, -lm)

Workshop on Advanced Techniques
in Scientific Computing

Compiling and Linking with Static and SharedCompiling and Linking with Static and Shared
Libraries Using Multiple Programming LanguagesLibraries Using Multiple Programming Languages

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

http://sites.google.com/site/akohlmey/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

