
Workshop on Advanced Techniques
in Scientific Computing

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

Software Development Basics

http://sites.google.com/site/akohlmey/


2
Workshop on Advanced Techniques
in Scientific Computing

A Roadmap to the Workshop

● Focus on software development concepts
● Introduce tools and processes for organizing 

development and maintenance
● Discuss strategies and best practices
● Explore methodology that encourages 

collaborative software development
● Favor writing reusable software frameworks
● Work in groups with complementary expertise



3
Workshop on Advanced Techniques
in Scientific Computing

Conventional Software 
Development Process

● Start with set of requirements defined by 
customer (or management):

features, properties, boundary conditions

● Typical Strategy:
● Decide on overall approach on implementation
● Translate requirements into individual subtasks
● Use project management methodology to enforce 

timeline for implementation, validation and delivery

● Close project when requirements are met



4
Workshop on Advanced Techniques
in Scientific Computing

What is Different in the Scientific 
Software Development Process?

● Requirements often are not that well defined
● Floating-point math limitations and the chaotic 

nature of some solutions complicate validation
● An application may only be needed once
● Few scientists are programmers (or managers)
● Often projects are implemented by students

(inexperienced in science and programming)
● Correctness of results is a primary concern, 

less so the quality of the implementation 



5
Workshop on Advanced Techniques
in Scientific Computing

Why Worry About This Now?

● Computers become more powerful all the time 
and more complex problems can be addressed

● Use of computational tools becomes common 
among non-developers and non-theorists
-> many users could not implement the whole 
applications that they are using by themselves

● Current hardware trends (SIMD, NUMA, GPU) 
make writing efficient software complicated

● Solving complex problems requires combining 
expertise from multiple domains or disciplines



6
Workshop on Advanced Techniques
in Scientific Computing

Ways to Move Forward

● Write more modular, more reusable software
=> build frameworks and libraries

● Write software that can be modified on an 
abstract level or where components can be 
combined without having to recompile
=> combine scripting with compiled code

● Write software where all components are 
continuously (re-)tested and (re-)validated

● Write software where consistent documentation 
is integral part of the development process



7
Workshop on Advanced Techniques
in Scientific Computing

In One Sentence...

Scientific software development 
has to be recognized as a task 
requiring trained specialists and 
dedication of time and resources 
to produce dependable results



8
Workshop on Advanced Techniques
in Scientific Computing

Embedded Scripting Language

● Not a new idea, but many scientific tools with 
scripting have their own “language”
-> script capability added on top of the tool

● Better to add domain specific extensions to an 
existing, generic scripting language:
-> use a language designed for scripting
-> can import other extensions, if needed
-> better documentation for script language
-> users may already know the syntax

● We will use Python in this workshop



9
Workshop on Advanced Techniques
in Scientific Computing

Script Language Benefits

● Portability

● Script code does not need to be recompiled
● Platform abstraction is part of script library

● Flexibility

● Script code can be adapted much easier
● Data model makes combining multiple extensions easy

● Convenience

● Script languages have powerful and convenient 
facilities for pre- and post-processing of data

● Only time critical parts in compiled language



10
Workshop on Advanced Techniques
in Scientific Computing

Modular Programming & Libraries

● Many tasks in scientific computing are similar
● Tasks differ only in some subset of the calculation
● Calculations use common operations like fast 

Fourier transforms, basic linear algebra, etc.
● Data can be represented in a structured file format 

supported by generic analysis & visualization tools

● There is a large potential for code reuse
● Independent modules can be better validated
● Reusable code is better target for optimization



11
Workshop on Advanced Techniques
in Scientific Computing

Object Oriented Programming

● Provide levels of abstraction
-> no need to know how something is done
-> opportunity to transparently optimize (for 
platforms, if certain conditions are given, etc.)

● Organize access to data
-> combine data with functions that modify it
-> control read-only vs. read-write access
-> handle side effects, on-demand computation

● Preserve APIs and favor local changes
-> modifying one part does not break others



12
Workshop on Advanced Techniques
in Scientific Computing

Unit and Regression Testing

● Complex software cannot be fully tested, but
● Many components can be tested individually
● Testing of individual units is fast, can be automated
● When testing individual units, you can also test for 

the correct handling of incorrect use or data
● Failures in individual units may not always show up 

in testing the entire application for current use case
● After fixing a bug, build minimal test case exposing 

the bug and add to a library of regression tests in 
order to keep it from reappearing



13
Workshop on Advanced Techniques
in Scientific Computing

Importance of Tests and Validation

● With a larger user base comes responsibility
-> a test suite confirms available functionality

● No new code should break existing functionality
● Changes may have unintended side effects
● The more flexible a software is, the more 

potential for users to use it in unexpected ways
● Applications can fail on platforms due to broken 

compilers or system libraries
● Writing tests helps understanding a feature



14
Workshop on Advanced Techniques
in Scientific Computing

Embedded Documentation

● Three types of documentation needed
● Information for developers who want to add code

-> Documentation of the API (e.g. via doxygen)
-> Comments in the code that explain choices

● Information for users that want to use a feature
-> Reference manual for visible commands (can be 
automated and cross-linked with developer manual

● Information for users that want to learn using a tool
-> write tutorials and HOWTO segments
-> often better written as standalone documents

● It can be helpful to write documentation first



15
Workshop on Advanced Techniques
in Scientific Computing

Source Code Management

● Not only a way to archive sources, but a tool for 
communication between developers

● Distributed source code management makes 
concurrent development easier

● Work with feature branches and merge often
● Commit changes in small increments and do 

not combine unrelated changes in on commit
● Have consistent, documented “whitespace 

rules” and best enforce them before committing



16
Workshop on Advanced Techniques
in Scientific Computing

The Bottom Line

● Many of these concepts and methods can help 
improve scientific software development

● Important: it is not the tools by themselves, but 
how they are used that makes the difference

● Fight the urge to take shortcuts and see the 
restrictions that modular and object oriented 
programming imposes as opportunities

● Finding the right balance is key to success
● Never underestimate the longevity of your code



Workshop on Advanced Techniques
in Scientific Computing

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

Software Development Basics

http://sites.google.com/site/akohlmey/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

