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A Roadmap to the Workshop

● Focus on software development concepts
● Introduce tools and processes for organizing 

development and maintenance
● Discuss strategies and best practices
● Explore methodology that encourages 

collaborative software development
● Favor writing reusable software frameworks
● Work in groups with complementary expertise
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Conventional Software 
Development Process

● Start with set of requirements defined by 
customer (or management):

features, properties, boundary conditions

● Typical Strategy:
● Decide on overall approach on implementation
● Translate requirements into individual subtasks
● Use project management methodology to enforce 

timeline for implementation, validation and delivery

● Close project when requirements are met
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What is Different in the Scientific 
Software Development Process?

● Requirements often are not that well defined
● Floating-point math limitations and the chaotic 

nature of some solutions complicate validation
● An application may only be needed once
● Few scientists are programmers (or managers)
● Often projects are implemented by students

(inexperienced in science and programming)
● Correctness of results is a primary concern, 

less so the quality of the implementation 
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Why Worry About This Now?

● Computers become more powerful all the time 
and more complex problems can be addressed

● Use of computational tools becomes common 
among non-developers and non-theorists
-> many users could not implement the whole 
applications that they are using by themselves

● Current hardware trends (SIMD, NUMA, GPU) 
make writing efficient software complicated

● Solving complex problems requires combining 
expertise from multiple domains or disciplines
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Ways to Move Forward

● Write more modular, more reusable software
=> build frameworks and libraries

● Write software that can be modified on an 
abstract level or where components can be 
combined without having to recompile
=> combine scripting with compiled code

● Write software where all components are 
continuously (re-)tested and (re-)validated

● Write software where consistent documentation 
is integral part of the development process
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In One Sentence...

Scientific software development 
has to be recognized as a task 
requiring trained specialists and 
dedication of time and resources 
to produce dependable results
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Embedded Scripting Language

● Not a new idea, but many scientific tools with 
scripting have their own “language”
-> script capability added on top of the tool

● Better to add domain specific extensions to an 
existing, generic scripting language:
-> use a language designed for scripting
-> can import other extensions, if needed
-> better documentation for script language
-> users may already know the syntax

● We will use Python in this workshop
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Script Language Benefits

● Portability

● Script code does not need to be recompiled
● Platform abstraction is part of script library

● Flexibility

● Script code can be adapted much easier
● Data model makes combining multiple extensions easy

● Convenience

● Script languages have powerful and convenient 
facilities for pre- and post-processing of data

● Only time critical parts in compiled language
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Modular Programming & Libraries

● Many tasks in scientific computing are similar
● Tasks differ only in some subset of the calculation
● Calculations use common operations like fast 

Fourier transforms, basic linear algebra, etc.
● Data can be represented in a structured file format 

supported by generic analysis & visualization tools

● There is a large potential for code reuse
● Independent modules can be better validated
● Reusable code is better target for optimization
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Object Oriented Programming

● Provide levels of abstraction
-> no need to know how something is done
-> opportunity to transparently optimize (for 
platforms, if certain conditions are given, etc.)

● Organize access to data
-> combine data with functions that modify it
-> control read-only vs. read-write access
-> handle side effects, on-demand computation

● Preserve APIs and favor local changes
-> modifying one part does not break others
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Unit and Regression Testing

● Complex software cannot be fully tested, but
● Many components can be tested individually
● Testing of individual units is fast, can be automated
● When testing individual units, you can also test for 

the correct handling of incorrect use or data
● Failures in individual units may not always show up 

in testing the entire application for current use case
● After fixing a bug, build minimal test case exposing 

the bug and add to a library of regression tests in 
order to keep it from reappearing
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Importance of Tests and Validation

● With a larger user base comes responsibility
-> a test suite confirms available functionality

● No new code should break existing functionality
● Changes may have unintended side effects
● The more flexible a software is, the more 

potential for users to use it in unexpected ways
● Applications can fail on platforms due to broken 

compilers or system libraries
● Writing tests helps understanding a feature



14
Workshop on Advanced Techniques
in Scientific Computing

Embedded Documentation

● Three types of documentation needed
● Information for developers who want to add code

-> Documentation of the API (e.g. via doxygen)
-> Comments in the code that explain choices

● Information for users that want to use a feature
-> Reference manual for visible commands (can be 
automated and cross-linked with developer manual

● Information for users that want to learn using a tool
-> write tutorials and HOWTO segments
-> often better written as standalone documents

● It can be helpful to write documentation first
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Source Code Management

● Not only a way to archive sources, but a tool for 
communication between developers

● Distributed source code management makes 
concurrent development easier

● Work with feature branches and merge often
● Commit changes in small increments and do 

not combine unrelated changes in on commit
● Have consistent, documented “whitespace 

rules” and best enforce them before committing
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The Bottom Line

● Many of these concepts and methods can help 
improve scientific software development

● Important: it is not the tools by themselves, but 
how they are used that makes the difference

● Fight the urge to take shortcuts and see the 
restrictions that modular and object oriented 
programming imposes as opportunities

● Finding the right balance is key to success
● Never underestimate the longevity of your code
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