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FIG. 1: Plots of the Chebyshev polynomials Tv(x). The symbols denote the values at the 14

mesh-points ξk, which are the zero’s of T14.They are not eqi-spaced.

I. LECTURE 5, CHEBYSHEV POLYNOMIALS

Chebyshev Polynomials Tv(x), v = 0, 1, 2... provide a very useful set of basis functions

for expansion purposes. The variable x is contained in the interval −1→ +1, and is related

to an angle θ by x = cos θ. The last equation shows that the x′s are projections on the

x−axis of the tip of a radius vector of unit length that describes a semi-circle as θ goes from
0 to π. In terms of the x−variable the Tn’s are given by

T0 = 1

T1 = x

T2 = 2x2 − 1

Tn+1 = 2xTn − Tn−1

(1)

In terms of the θ variable they are given by

Tn = cos(n θ); 0 ≤ θ ≤ π. (2)

It is clear from Eq.(2) that −1 ≤ Tn(x) ≤ 1, and that the larger the index n, the more zeros

these polynomials have, as is shown in Fig 1 The Tn’s are orthogonal to each other with the

weight function ρ(x) = (1− x2)−1/2. The integral I

In,m=

∫ +1

−1
Tn(x) Tm(x) (1− x2)−1/2 dx =

∫ π

0

cos(nθ) cos(mθ) dθ (3)

has the value 0 if n 6= m, and the values π/2 if n = m 6= 0 and π if n = m = 0.

They also obey a discrete orthogonality

π

N

N∑
k=1

Tn(ξk) Tm(ξk) =
π

2
δn.m(1 + δ0n) n < N, m < N (4)
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where the ξk are the zero’s of TN , given by

ξk = cos[
π

N
(k − 1/2)], k = 1, 2, ...N. (5)

This set of support (or mesh) -points are the ones used by Deloff [2] and also in our own

work, because they do not attain the values ±1, thus avoiding possible singularities in the

functions being calculated at these points. By contrast, the support points used by Trefethen

[1] are

xk = cos[
π

N
k], k = 0, 1, 2, ...N. (6)

They do include the points ±1, and are especially useful to construct differentiation

matrices for functions that are not periodic, because these functions can be made periodic

by extending the angles of the support points (previously defined in 0 ≤ θ ≤ π) all the way

around the circle from π ≤ θ ≤ 2π. Since at the mesh-points the angles are equi-spaced,

Fourier series and FTT’s can be calculated with this variable, another useful property.

The Chebyshev polynomials can be calculated as a function of x by either using Eq. (2),

with θ = arccos(x), or by means of the recursion relations

Tn(x) = 2x Tn−1(x)− Tn−2(x), n ≥ 2 (7)

As can be seen from Fig. 1, at the end points their values are

Tn(1) = 1, and Tn(−1) = (−)n for all n (8)

Many additional properties are given in text books [4].

Assignment 6 a):

1.Start from an equispaced discrete set of angles θ contained between 0 and π. Use the

symbols ′∗′ or something similar for your discrete points in the graphs below.
2. Calculate the corresponding set of x−values, and plot x versus θ.
3. Calculate the values of Tn(x) for n = 0, 1, 2, and 3, and plot them as a function of x

4. Calculate the values of Tn(x) for n = 0, 1, 2, and 3, and plot them as a function of θ

5. Check whether the forward recursion relation in Eq.(7) can be trusted, by comparing

the result with Eq.(2)
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II. EXPANSION OF FUNCTIONS INTO A SERIES OF CHEBYSHEV POLYNO-

MIALS

Given a function f(x), it is desired to expand it in terms of Tn, n = 1, 2, ..N ,

f (N)(x) =
N∑
j=1

aj Tj−1(x), − 1 ≤ x ≤ 1 (9)

and examine the rapidity of the convergence with N. We will find that the rapidity of the

convergence depends on the "smoothness" of f , in particular how many singularities this

function or its derivatives can have. Theorems exist about these properties, as well as the

uniformity of the convergence in the x variable, some of which we will see further on.

There are various ways of obtaining the coeffi ciens aj. One way is to multiply Eq. (9) on

the left with Tn(x), and by making use of the orthogonality (3), obtain each an in terms of the

integral
∫ +1
−1 f(x)Tn(x)(1 − x2)−1/2dx. However, this quadrature can be avoided by making

use of the discrete orthogonality (4). All what is needed are the values of the function f at

the zeros of TN , given byEq. (5), and performing the sum

N∑
k=1

Tn(ξk)f(ξk) = (1 + δ0n)
N

2
an+1, n = 0, 1, ..N − 1. (10)

This results in a matrix relation between the column vectors [f ] and [a]

[f ] = (f(ξ1), f(ξ2), ...f(ξN))Tand [a] = (a1, a2, ...aN)T (11)

(here T means "transposed"), of the form

[f ] = C [a] (12)

and

[a] = C−1[f ]. (13)

Matrix C is a non-sparse N × N matrix that contains rows of columns of Chebyshevs

T0, T1, ...TN−1evaluated at ξ1, ξ2, ...ξN . None of the T ′s vanish at these points, because they

are the zeros of TN , and none of the entries depend on the function f , but only on the value

of N. Please note that all the values of the f(ξ’s) are involved in obtaining each value of

ak. In other words, relationships (12) and (13) are "spectral". Values of C and C−1 are
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written in our earliest paper [3], are availabe in my MATLAB programs, and are made

use of routinely in our numerical calculations. Further, the inverse C−1 is given in terms

of Tn’s as a result of Eq. (4, i.e., no matrix inversion is required. The relationship (12)

between [f ] and [a] can also be obtained [5] by writing Eq. (9) repeatedly for all values of

x = ξk, k = 1, 2, ..N , thus obtaining a set of N linear equations between f(ξk)’s and the a’s.

The same procedure can also be applied to expansions in terms of other basis functions. The

important question is how fast will the error |f(x) − f (N)(x)| decrease with N ?Numerical

examples will be given below. Interpolation of a function known only at the discrete ξk

points to all values of x is obtained by means of Eq. (13), that can be written as

f (N)(x) =
N∑
i=1

N∑
k=1

Ti−1(x)(C−1)i,kf(ξk). (14)

Another important matrix relation applies to obtaining indefinite integrals.

FL(t) =

∫ t

−1
f(x)dx and FR(t)

∫ 1

t

f(x)dx. (15)

Here the subscripts R and L stand for "left" and "right", repectively. From the expansion

coeffi cients [a] of f , one can obtain the expansion coeffi cients b(L),(R) of the functions FL,R(t)

F
(N)
L (t) =

N∑
k=1

b
(L)
k Tk−1(t) and F

(N)
R (t) =

N∑
k=1

b
(R)
k Tk−1(t) (16)

from the matrix relations

[b(L)] = S
(N)
L [a] and [b(R)] = S

(N)
R [a]. (17a)

Thus, [F
(N)
L ] = C(N)SL(N)C−1(N)[f ] is the column vector of the values of F (N)L evaluated

at the points ξk, and the interpolation to all other points can be obtained from Eq. (16),

that can be written in the fom

F
(N)
L (x) = Ti−1(x)(SL)i,j(C

−1)j,kf(ξk), (18)

where sums over all repeated indices i, j, and k are carried out from 1, 2, ..N. The same

results apply to the ”R” integrals. The integrals (18), to be called "Gauss-Chebyshev"

integrals, have the same accuracy as the expansions (9), as will be shown below.
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Assignment 6 b

1. Consider the function

f(r) = r1/2 sin(r) (19)

for r defined from 0 to π. Define a new variable x that goes from −1 to +1 and relate it to

the variable r by means of the linear transformation

r = a x+ b (20)

and find the values of a and b. Call the new function f̄(x) = f(r)

2. In preparation to expanding this function into Chebyshev polynomials

f̄(x) =
N∑
k=1

ak Tk−1(x) (21)

choose a value of N = 8, and find the zeros ξi of TN(x) with k = 1, 2, ..N Use the expressions

given in class

ξk = cos[
π

N
(k − 1/2)], k = 1, 2, ...N. (22)

and check that TN(ξk) = 0 for all values of k

3. Use the MATLAB functions [C,CM1, xz] = C_CM1(N) given in class, and check

wether the output vector xz agrees with the vector of the ξk values obtained in 2). Note,

xz is a column vector

4. For each of the ξi values obtain the corresponding rkvalues. Use the function r2 =

mapxtor(b1, b2, xz) with b1 = 0 and b2 = π, where xz was obtained in part 3) to obtain r2

and check wether the values of rk and r2 agree. Note thar r2 should be a column vector.

5. Obtain the column vector F = f(r2) and calculate the column vector A by means of

the matrix*column vector MATLAB operation

A = CM1 ∗ F (23)

The A−vector contains the coeffi cients an of the expansion (21),.and check how fast the

coeffi cients an decrease with n.

6. Repeat parts 3, 4, and 5 for N = 16

7. Define a new function

g(r) = r sin(r) (24)
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and repeat parts 3, 4, and 5 with N = 16. Check that the new expansion coeffi cients an

decreas much faster with n than for the expansion of f(r).
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