Lecture 9: Examples for the use of Integral Eqgs.

1 Vibration of an inhomogeneous clamped string][1]

Consider a stretched metallic string clamped between two horizontal points The
distance between the fixed points is L,and the mass per unit length of the string
is not a constant, and hence the speed of propagation of the waves depends
on the location along the string. When a disturbance turbance is imparted to
the string, the particles in the string vibrate in the vertical direction with a
distribution of frequencies that is to be determined.

We denote by y(x,t) the small displacement of a mass-point on the string in
the vertical direction away from the equilibrium position y = 0 at a horizontal
distance x of the point from the left end at time ¢. The wave equation is
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where p(z)is the density of the string material and T is the tension along the
string. We define the dimensionless function R(x) which describes the variation
of the density with z as
p(x) = poR(x) ()
where p, is some fixed value of the density. If we define the reference speed c
by
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then Eq. (1) becomes
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A separation or variables y(z,t) = 1(x) A(t) yields the two equations
d*y(z)
= + AR(z)p(x) =0 (5)
and 2A
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If X is known then the solution of Eq. (6) is
A(t) = a cos(wt) + bsin(wt); w = VA (7)

The values of A are obtained from the solution of Eq. (5). This is a Sturm
Liouville eigenvalue equation with an infinite number solutions determined by



the boundary conditions. The solutions v, (x) with eigenvalues \,, form a com-
plete set with n = 1,2, .. in terms of which a general solution of Eq. (4) is given
by
Pz, t) = Z[an cos(wpt) + by, sin(w,t)] ¥,,(x) (8)
n=1

The focus of the present example is how to obtain the eigensolutions of Eq.
(5) under the boundary conditions

¥,(0) = ¢, (L) = 0. (9)

and fort =0
y(z,0) = f(z), and dy(z,0)/dt = g(x). (10)

Here f(z) describes the "shape" of the string at ¢ = 0, and g(x) describes
the initial velocity of the mass-pieces of the string. One can visalize this as a
hammer striking the string at a certain point, imparting to the string at this
point a "dent", and a velocity to the particles in the region of the dent. Once f
and g are given, then the coefficients in Eq. (8) are determined by the integrals
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an = /0 f(z)v,(z)dx and b, = — g(x), (z)dx (11)

Wp, 0

1.1 Fourier solution of Eq. (9.6)

The fourier functions ¢,(x) that have the same boundary conditions (9) as v,,(x)
are

o(x) = \/zsin(kgx), ke =4n/L, £=1,2,.. (12)

These functions form an orthogonal basis in terms of which the functions %,
can be represented

PN (@) = digy(x) (13)
=1

The subscript n has been dropped at this stage, but the truncation parameter
N has been included. Inserting the expansion (13) into Eq. (5), multiplying on
the left with ¢, (z), and integrating over x from 0 to L, one obtains
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and where R is a symmetric N x N matrix.



Eq. (14) can be transformed into a simple eigenvalue equation by defining
the diagonal matrix
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in terms of which the matrix M{,yricr can be defined as
M fourier = k 'Rk L. (17)
The column vectors (u) = (u1,us,..un)? and (d) = (dy,ds, ..dx)"T related by
(u) =k(d) (18)

can also be defined, where k is the diagonal matrix of the values k;, 7 = 1,2, ..N.
With these transformations the generalized eigenvalue Eq. (14) can be trans-
formed into an ordinary eigenvalue Eq.
1
MFourier('U/)n = r(un)a n= 152a N (19)
n
where M poyrier 18 @ symmetric matrix and n represents each different eigenvalue
and eigenfunction. The eigenvalues are displayed in Fig.2 and 4 of the .pdf page
4 of Ref. [1], corresponding to an inhomogeneity

R(z) =1+ Fyz? (20)

with Fy = 2 or 4 in units of inverse length, and z is the distance along the string.
For the present calculation L = 1.The inhomogeneity (20) corresponds to a 20%
or 40% increase in density along the string. Nevertheless, the frequencies are
still harmonic to a surprisingly good approximation, as shown in Fig. 4 of Ref.
[1].

The main "computational" observation made in this sub-section is that the
eigenvalues of a matrix, even though symmetric, loose accuracy towards the
high eigenvalues. An iterative way of calculating eigenvalues will be described
in the last section, that serve as a benchmark result because of its high accuracy
(1011, and is not obtained asan eigenvalue of a matrix.

1.2 Eigenvalues in terms of an integral equation.

In the present section we transform Eq. (5) into an integral equation by "in-
verting" the operator d?/dz? by means of a special energy independent Greens

function .
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with n = 1,2,..N, where N is the number of Chebyshev polynomials used in
the expansion of all the functions involved. Here

Go(r,r") = —F(r)G(r")/L for r <r’
Go(r,7") —F(r"G(r)/L for ' < (22)
where
F(r)y=rand G(r)=L —r, (23)

and the factor 1/L is the inverse of the Wronskian between F' and G. Both F'
and G obey d?/dr?(F and G ) = 0, they are linearly independent of each other,
and provide the appropriate boundary conditions for ©. The Greens function
above is the limiting result for & — 0 of the Greens function Gy described by
Eq. (6) of Lecture 6. An additional difference to Eq. (6) of Lecture 6 is that
Eq. (21) lacks a driving term F, i.e., Eq. (21) is now an eigenvalue equation.

Similarly to Eq. (13) of Lecture 6, the spectral matrix that represents Eq.
(21) is

Mgy = —C~(1/L)(L/2) [FpCSrC'Gp + GpCSLC Fp] RpC  (24)

and the corresponding eigenvalue equation is

Mipar(an) = - (an). (25)
n
It is remarkable that the two totally different matrices M poyrier and Mipas
give the same eigenvalues \,, albeit with different accuracies. The accuracies
are illustrated in Fig. 10 of page 9 of Ref. [1]. The iterative method used to
provide an accuracy comparison standard are also described in Ref. [1], but will
not be elaborated here.

The basic conclusion of the present lecture is that there are always several
different computational methods to solve a problem, and comparison between
such methods is desirable in order to gain insight into the accuracy of each of
these methods.
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