
Lecture 9: Examples for the use of Integral Eqs.

1 Vibration of an inhomogeneous clamped string[1]

Consider a stretched metallic string clamped between two horizontal points The
distance between the fixed points is L,and the mass per unit length of the string
is not a constant, and hence the speed of propagation of the waves depends
on the location along the string. When a disturbance turbance is imparted to
the string, the particles in the string vibrate in the vertical direction with a
distribution of frequencies that is to be determined.
We denote by y(x, t) the small displacement of a mass-point on the string in

the vertical direction away from the equilibrium position y = 0 at a horizontal
distance x of the point from the left end at time t. The wave equation is

∂2y

∂x2
− ρ

T

∂2y

∂t2
= 0 (1)

where ρ(x)is the density of the string material and T is the tension along the
string. We define the dimensionless function R(x) which describes the variation
of the density with x as

ρ(x) = ρ0R(x) (2)

where ρ0 is some fixed value of the density. If we define the reference speed c
by

ρ0
T
=
1

c2
(3)

then Eq. (1) becomes
∂2y

∂x2
− 1

c2
R(x)∂

2y

∂t2
= 0 (4)

A separation or variables y(x, t) = ψ(x) A(t) yields the two equations

d2ψ(x)

dx2
+ λR(x)ψ(x) = 0 (5)

and
d2A

dt2
= −λc2A. (6)

If λ is known then the solution of Eq. (6) is

A(t) = a cos(wt) + b sin(wt); w = c
√
λ. (7)

The values of λ are obtained from the solution of Eq. (5). This is a Sturm
Liouville eigenvalue equation with an infinite number solutions determined by
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the boundary conditions. The solutions ψn(x) with eigenvalues λn form a com-
plete set with n = 1, 2, .. in terms of which a general solution of Eq. (4) is given
by

ψ(x, t) =
∑
n=1

[an cos(wnt) + bn sin(wnt)] ψn(x) (8)

The focus of the present example is how to obtain the eigensolutions of Eq.
(5) under the boundary conditions

ψn(0) = ψn(L) = 0. (9)

and for t = 0
y(x, 0) = f(x), and dy(x, 0)/dt = g(x). (10)

Here f(x) describes the "shape" of the string at t = 0, and g(x) describes
the initial velocity of the mass-pieces of the string. One can visalize this as a
hammer striking the string at a certain point, imparting to the string at this
point a "dent", and a velocity to the particles in the region of the dent. Once f
and g are given, then the coeffi cients in Eq. (8) are determined by the integrals

an =

∫ L

0

f(x)ψn(x)dx and bn =
1

wn

∫ L

0

g(x)ψn(x)dx (11)

1.1 Fourier solution of Eq. (9.6)

The fourier functions φ`(x) that have the same boundary conditions (9) as ψn(x)
are

φ`(x) =

√
2

L
sin(k`x), k` = `π/L, ` = 1, 2, .. (12)

These functions form an orthogonal basis in terms of which the functions ψn
can be represented

ψ(N)(x) =

N∑
`=1

d`φ`(x) (13)

The subscript n has been dropped at this stage, but the truncation parameter
N has been included. Inserting the expansion (13) into Eq. (5), multiplying on
the left with φ`′(x), and integrating over x from 0 to L, one obtains

N∑
`=1

R`′`d` =
1

λ
k2`′d`′ (14)

where

R`′` = R`′` =

∫ L

0

φ`′(x)R(x)φ`(x)dx. (15)

and where R is a symmetric N ×N matrix.
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Eq. (14) can be transformed into a simple eigenvalue equation by defining
the diagonal matrix

k−1=


k−11

k−12
k−13

. . .
k−1N

 (16)

in terms of which the matrix Mfourier can be defined as

Mfourier = k
−1Rk−1. (17)

The column vectors (u) = (u1, u2, ..uN )T and (d) = (d1, d2, ..dN )T related by

(u) = k(d) (18)

can also be defined, where k is the diagonal matrix of the values ki, i = 1, 2, ..N.
With these transformations the generalized eigenvalue Eq. (14) can be trans-
formed into an ordinary eigenvalue Eq.

MFourier(u)n =
1

λn
(un), n = 1, 2, ..N (19)

whereMFourier is a symmetric matrix and n represents each different eigenvalue
and eigenfunction. The eigenvalues are displayed in Fig.2 and 4 of the .pdf page
4 of Ref. [1], corresponding to an inhomogeneity

R(x) = 1 + F0x2 (20)

with F0 = 2 or 4 in units of inverse length, and x is the distance along the string.
For the present calculation L = 1.The inhomogeneity (20) corresponds to a 20%
or 40% increase in density along the string. Nevertheless, the frequencies are
still harmonic to a surprisingly good approximation, as shown in Fig. 4 of Ref.
[1].
The main "computational" observation made in this sub-section is that the

eigenvalues of a matrix, even though symmetric, loose accuracy towards the
high eigenvalues. An iterative way of calculating eigenvalues will be described
in the last section, that serve as a benchmark result because of its high accuracy
(10−11), and is not obtained asan eigenvalue of a matrix.

1.2 Eigenvalues in terms of an integral equation.

In the present section we transform Eq. (5) into an integral equation by "in-
verting" the operator d2/dx2 by means of a special energy independent Greens
function

1

λn
ψn = −

∫ L

0

G0(r, r′)R(r′)ψn(r′)dr′, (21)
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with n = 1, 2, ..N , where N is the number of Chebyshev polynomials used in
the expansion of all the functions involved. Here

G0(r, r′) = −F (r)G(r′)/L for r ≤ r′

G0(r, r′) = −F (r′)G(r)/L for r′ ≤ r (22)

where
F (r) = r and G(r) = L− r, (23)

and the factor 1/L is the inverse of the Wronskian between F and G. Both F
and G obey d2/dr2(F and G ) = 0, they are linearly independent of each other,
and provide the appropriate boundary conditions for ψ. The Greens function
above is the limiting result for k → 0 of the Greens function G0 described by
Eq. (6) of Lecture 6. An additional difference to Eq. (6) of Lecture 6 is that
Eq. (21) lacks a driving term F , i.e., Eq. (21) is now an eigenvalue equation.
Similarly to Eq. (13) of Lecture 6, the spectral matrix that represents Eq.

(21) is

MIEM = −C−1(1/L)(L/2)
[
FDCSRC

−1GD +GDCSLC
−1FD

]
RDC (24)

and the corresponding eigenvalue equation is

MIEM (an) = −
1

λn
(an). (25)

It is remarkable that the two totally different matrices MFourier and MIEM

give the same eigenvalues λn, albeit with different accuracies. The accuracies
are illustrated in Fig. 10 of page 9 of Ref. [1]. The iterative method used to
provide an accuracy comparison standard are also described in Ref. [1], but will
not be elaborated here.
The basic conclusion of the present lecture is that there are always several

different computational methods to solve a problem, and comparison between
such methods is desirable in order to gain insight into the accuracy of each of
these methods.
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