
Review:
In Lecture 2 we described two simple finite difference methods to solve a second
order differential equation: The Euler method, with error of the order of O(h2),
and the Euler Cromer method with error of order O(h3). As an example we
applied it to the equation for the angle θ(t) of a simple pendulum as a function
of the time t̄, θ′′ = d2θ/dt̄2 = − sin(θ). Time t̄ is a dimension-less quantity, that
measures time in units of

√
`/g, as described in the homework assignment, where

` is the length of the pendulum, and g the acceleration of gravity, 9.8 m/s2.
It is interesting to note that the equation above is non-linear, but the finite
difference methods are able to handle this. Instead of sin(θ), the term could
also have been 1/θ3, for example. But in this case there would have been a
singularity at the origin. So, why do people not use this type of method for non

linear equations in general?
Answer: the algorithm error O(h3) (or O(h6) for the Numerov method for linear
eqs.) accumulates errors very fast. That in turn requires to make h very small,
and as a result the accumulation of round-off errors soon overwhelms the total
error. In addition, the method is numerically slow, and a different method,
that expands the solution in a set of basis functions becomes preferable. This
method is the subject of the present lecture.

Galerkin and Collocation Methods [4]

Assume that the equation to be solved for the function u(x) is

Lu = f (1)

where L is a linear operator, either in differential or integral form, the function
f(x) is given, and the independent variable x is contained in some interval [a, b].
A common method to solve for u is to expand it in terms of a complete (and

hopefully orthogonal) set of basis functions φi(x), i = 1, 2, ..N, N + 1, ..∞,
and solve for the expansion coeffi cients ci. However, the expansion has to be
truncated at some upper limit N , thus inntroducing an algorithm error, and
hence the result, u(N)

u(N)(x) =

N∑
i=1

ci φi(x), a ≤ x ≤ b (2)

is only an approximation to the exact solution u. The aim is to minimize the
error, called remainder R

L u(N)(x)− f(x) = R(N)(x). (3)

In the limit N →∞, u(N) → u, and R(N) → 0. Please note that at this point x
is a continuous variable, and the size of R may not be uniform (i.e.,limited by
an upper limit for all x within the interval [a, b]), and hence integrals over this
interval are employed. This is however not the case for the collocation methods,
where integrals are not performed explicitly, as described below.
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0.1 The Galerkin Method

In one of the simplest forms of the Galerkin method, the overlap integral <
χi|R >

< χi|R > =

∫ b

a

χi(x)ρ(x)R(x) dx (4)

over any of the set of auxiliary basis functions χi (x) is considered, and is set to
zero. In the integral above ρ is a positive weight function that depends on the
type of integration being performed. By multiplying both sides of Eq. (3) with
χj , making use of the expansion (2), remembering the linearity of the operator
L, and after integrating the result over the interval [a, b] one finds

N∑
i=1

Lji ci − Fj = < χj |R > = 0, j = 1, 2, ..N (5)

where
Lji = < χj |Lφi >, and Fj = < χj |f > . (6)

Eq. (5) is a matrix equation, and the whole expansion procedure (2) is a dis-
cretization of the operator L. That discretization depends on the choice of the
basis set {φi}. The matrix Lji is a square matrix, and hopefully it admits
an inverse, with not too large a numerical error. That error is described by a
condition number C, which we may have time to discuss later on.

Some comments are useful here.
1. If the φi are solutions of a part L̄ of the operator L, i.e., L̄ φi = λiφi,
where λi are the discrete bound-state eigenvalues that depend on the appropriate
boundary conditions of the φi, if one replaces the χi by the φi, and if one
keeps only one expansion function φ0 then one obtains the perturbation theory
formulation that is very common in physics applications. In this case one finds
an improved eigenvalue λ, close to λ0 by successive iterations, and also finds an
improved function ψ that is close to φ0. But we can do much better, see below.
2. If the φi , i = 1, 2, ..N are Sturmian functions, which are known eigen-

functions of some piece L̄ of the operator L that obey the appropriate boundary
conditons for the function u in Eq. (1), and if the χj are replaced by the Stur-
mian functions φj , then the sturmian expansion (2) may converge very rapidly.
This approach is made use of in many applications to physics. The main chal-
lenge in this case is to obtain a practical method to calculate the sturmian
functions and the eigenvalues λ [1].
3. A good choice of the set {φi} is crucial for the rapid convergence of the

expansion (2), and theorems relating to the size of N required for a desired
accuracy (or smallness of R) will be presented further below for the case of
spectral expansions. For the finite element procedure, where the whole domain
of the independent variable is split into segments (called elements or partitions),
and for each partition an expansion of the type (2) is performed, the quantity f
may contain the requirement that the solution u(N) from an adjoining previous
partition match smoothly to the solution in the next element [2].
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4. An important point for the numerical implementation of the Galerkin
method is that the choice of the discrete support points in the interval [a, b] is
not crucial, other than for the requirement that the integrals be as accurate as
possible, if done numerically. For example, equidistant mesh points are needed
if Simpson’s integration rule is used. If the integrals can be done analytically,
then of course no choice of mesh points is required. This is in contrast to the
Collocation method, where the choice of mesh points becomes critical.
5. A very useful set of basis functions φi, i = 1, 2, ..N are Lagrange functions.

There are various types of Lagrange functions [3]. For each type a set of N
support points ξj is defined in the interval [a, b], and each Lagrange function φi
goes through zero at all support points with the exception of ξi, where its value
is unity. The advantage of these functions is that the integrals fj (6) can be
performed very accurately [3] using Gauss integration methods, requiring only
the knowledge of f at ξj . These functions are also now used in finite element
calculations [5], and an accuracy study is contained in Ref. [2].

0.2 Collocation Method.

In this case a choice of support points ξi, i = 1, 2, ..N in [a, b] is required. A
direct connection with the Galerkin method can be established by choosing the
set of functions χi that are used in Eqs. (5) and (6) as Dirac delta functions

χi(x) = δ(x− ξi), (7)

in which case Eq. (5) becomes

N∑
i=1

[Lφi]ξj ci − f(ξj) = 0, j = 1, 2, ..N. (8)

An advantage is that no integrals have to be carried out, and, once the coeffi -
cients ci are obtained from the solution of the matrix equation (8), the value of
u(N) can be calculated for any continuous value of x from Eq. (2). However,
one diffi culty is in finding a good method to establish the location and number
of support points that is suitable for a given problem. One way to remedy this
diffi culty is to use special functions that vanish at a given set of mesh points.
Two examples will now be given

Example 1: The equi-distant Fourier mesh [3]: For a given value of N , the
mesh points are equidistant and given by

ξi = i, i = −1

2
(N − 1),−1

2
(N − 2)...

1

2
(N − 1), (9)

and the corresponding Lagrange-Fourier functions are [6]

φi(x) =
sin(π(x− ξi))

N sin( πN (x− ξi))
. (10)
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Example 2: a) Lagrange Interpolation functions [5], [2]: These are polynomials
all of the same order N − 1

Li(x) =

N∏
k=1

x− ξk
ξi − ξk

, k 6= i; i = 1, 2, ...N, (11)

and the mesh-points are Lobatto points.
b) An alternative choice [4] is to use a sequence of a particular orthogonal
polynomial P (x), for example Legendre or Chebyshev. In contrast to example
a) the order of each polynomial increases from 0 to N − 1, and φi(x) = Pi−1(x)
, i = 1, 2, ..N . The support points ξk, k = 1, 2, ..N are the zeros of the
polynomial PN (x).For the Chebyshev case, they can be obtained by means of
simple trigonometric expressions, as will be seen.
For Chebyshev Polynomials φi(x) = Ti−1(x), i = 1, 2, ..N, the discrete or-

thogonality holds

π

N

N∑
k=1

Tn(ξk) Tm(ξk) =
π

2
δn.m(1 + δ0n) n < N, m < N (12)

where the ξk are the zero’s of TN , given by

ξk = cos[
π

N
(k − 1/2)], k = 1, 2, ...N. (13)

For examples 2a and 2b the support points are not equi-spaced, which, as
we will see during the discussion of spectral methods, gives rise to a higher
accuracy in the expansion (2) than if the points are equi-spaced. An important
additional feature is the use of the Gauss integration expression∫ b

a

ψ(x)ρ(x)dx =

N∑
k=1

wkψ(ξk) (14)

where ρ(x) is the weight function appropriate for each type of orthogonal poly-
nomial, and the weights wk are obtained by solving the linear system

N∑
k=1

wk(ξk)n =

∫ b

a

xnρ(x)dx, n = 0, 1, ..(N − 1). (15)

The relation (14) is exact if ψ(x) is a polynomial whose order is not greater
than 2N + 1.

In order to obtain the coeffi cients ci in Eqs. (5) in the collocation method,
one can proceed in two ways: In the first method one uses both for the functions
χj and the functions φj the Lagrange functions Lj defined in Eq. (11). Further,
using the vanishing of the Li at all mesh points other than ξi, together with the
Gauss integration expression (14) one obtains again Eq. (8), with the difference
that the basis functions and support points are now well defined. In the second
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method one can use for both the χj and the φj one of the set of orthogonal
polynomials Pj−1 described in example 2b, and after using Gauss’s quadrature,
one obtains

N∑
i=1

Mjici = Fj , (16)

where

Mji =

N∑
k=1

wkφj(ξk)[Lφi]ξk (17)

and

Fj =

N∑
k=1

wkφj(ξk)f(ξk). (18)

The difference between Eqs. (8) and Eqs. (16)-(18) is that the former requires
the values of the functions at only one support point, line by line, while the
latter contain sums over all support points in each line. For that reason the
latter is much more "spectral" than the former.
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