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Figure 1: Convergence properties of the Gauss-Chebyshev integration procedure
as a function of the number of Chebyshev support points, for both the integrals
I1 =

∫ π
0
sin(r) r1/2 dr and I2 =

∫ π
0
sin(r) r dr

Lecture 6:
In lecture 5 we presented examples of the rate of convergence of the Cheby-

shev expansion of two functions

f1 = sin(r) r
1/2 and f2 = sin(r) r (1)

and also compared the result with Fourier series expansions. In both cases
the expansion of f1 was slower than that of f2, because the first derivative
of f1 has a square root singularity, while f2 has an infinite number of non-
singular derivatives. As we will see in a future lecture, there are theorems that
demonstrate these properties.
We also introduced the matrices SL and SR that give the Chebyshev ex-

pansion of the indefinite integrals F (r) =
∫ r
a
f(r′)dr′ in terms of the Chebyshev

expansions of the function f. By summing the expansion coeffi cients of the indef-
inite integral using SL one also obtains the definite integral I =

∫ b
a
f(r)dr. We

will make much use of these matrices. These properties are discussed extensively
in Refs [1]-[4].
If the Chebyshev expansion of the function f converges slowly, then the error

of the integral I also decreases slowly with the number of Chebyshev polynomials
used to expand f. This will now be demonstrated numerically. The error of the
two definite integrals

I1 =

∫ π

0

sin(r) r1/2 and I1 =
∫ π

0

sin(r) r (2)

is displayed in Fig. 1 A comparison of the error of the integrals I1 and I2 with
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Figure 2: Comparison of the convergence properties of the Gauss-Chebyshev
and the Simpson integration procedures as a function of the number of support
points. The labels 1 or 2 denote the integrals I1 =

∫ π
0
sin(r) r1/2 dr or I2 =∫ π

0
sin(r) r dr, respectively.

the corresponding errors of the finite difference Simpson method is displayed
in Fig. 2. The figure shows that for the same number of mesh-points, the
accuracy of the Simpson method is less than that of the Chebyshev method.
This difference is especially pronounced for the case of I2
Another important property is the estimate of the error of a Chebyshev

expansion. That error is the error of truncating the expansion at a certain
value of N terms. The rule of thumb is that this error is proportional to the
absolute value of the last expansion coeffi cient aN , once the expansion begins
to converge very rapidly. In order to demonstrate this property, we reconsider
the expansion of the function

f(x) = ex, − 1 ≤ x ≤ 1. (3)

The Chebyshev expansion coeffi cients ai are illustrated in Fig. 3 and the error
εN of the expansion is defined in Eq. (4).

f(x) =

n∑
k=1

akTk−1(x) + εn. (4)

In order to show that this error is proportional to the last expansion coeffi cient
an, the ratio εn/an is displayed in Fig. 4.

This figure shows not only that the error is indeed proportional to the last
expansion coeffi cient, but also that the error is uniform in the variable x, i.e.,
the upper limit of the absolute value of the error is independent of the value of
x. This is one of the interesting properties of Chebyshev expansions, as will be
discussed further in a future lecture.
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Figure 3: The Chebyshev expansion coeffi cients ak of exp(x) =
∑n
k=1 akTk−1(x)

in the interval [−1, 1]

Figure 4: Error εn(x) of the expansion of exp(x), in the interval [−1, 1], divided
by the last. Chebyshev expansion coeffi cients an in the expansion exp(x) =∑n
i=1 aiTi−1(x) + εn.
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The integral equation corresponding to a differential
equation
The Schrödinger second order differential equation in one dimension has the

form (
d2

dr2
+ k2

)
ψ(r) = V (r)ψ(r), (5)

that normally is solved by a finite difference method, such as Runge-Kutta.
Here ψ(r) is the wave function to be obtained, r is the radial distance, k2 is
the energy in units of inverse length squared (assumed given), k is the wave
number in units of inverse length, and V (r) (assumed given) is the potential. V
, also in units of inverse length squared, and ψ is dimensionless. The connection
between the energy and the potential, both in energy units (joules) involves
Plank’s constant and the reduced mass of the two interacting objects, i.e., The
energy and the potential, both in energy units, after being multiplied by 2m/}2,
are the quantities that appear in Eq. (5)
There exists the equivalent integral equation, denoted as Lippmann-Schwinger

(L− S), of the form

ψ(r) = sin(kr) +

∫ ∞
0

Gk(r, r′) V (r′) ψ(r′) dr′. (6)

The Greens function Gk(r, r′) and the boundary conditions for ψ will be de-
scribed below. Physicists prefer to solve the differential equation because of the
simplicity of the numerical recurrence relation algorithm, and shy away from
solving integral equations because the matrices are non-sparse and cumbersome
to handle as well as memory intensive. However Gk(r, r′) in configuration space
is much simpler than in momentum space, where there occur no denominators
with iε, i.e., the singularity in configuration space is simpler to handle compu-
tationally and leads to higher accuracy.
In configuration space the Green’s function Gk(r, r′) is given by

Gk(r, r′) = −
1

k
F (r<)G(r

′
>) (7)

r< and r> being the lesser and larger values of r and r′, respectively, where

F (r) = sin(kr), G(r) = cos(kr) (8)

and where k is the wave number defined in Eq. (5). Thus, the explicit form of
Eq. (6) is

ψ(r) = F (r)− 1
k
F (r)

∫ ∞
r

G(r′) V (r′) ψ(r′) dr′

−1
k
G(r)

∫ r

0

F (r′) V (r′) ψ(r′) dr′. (9)

The functions F andG are solutions of
(
d2/dr2 + k2

)
F (r) = 0, and

(
d2/dr2 + k2

)
G(r) =

0. They are linearly independent of each other, and F approaches 0 as r →
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0, while G approaches a constant. If the differential operator includes the
termL(L+1)/r2,i.e.,

(
d2/dr2 + k2

)
is replaced by

(
d2/dr2 − L(L+ 1)/r2 + k2

)
,

then F and G are the regular and irregular spherical Bessel functions.
Please note (or show) that the solution of Eq. (9) also obeys Eq. (5), and

further, that the derivative ψ′(r) = dψ(r)/dr is given by

ψ′(r) = k cos(kr)− 1
k
F ′(r)

∫ ∞
r

G(r′) V (r′) ψ(r′) dr′

−1
k
G′(r)

∫ r

0

F (r′) V (r′) ψ(r′) dr′. (10)

In the derivation of Eq. (10) the terms due to the derivatives of the integrals
cancel each other. This equation is very useful because it contains the derivatives
of known functions F and G, and the rest is done by integrals that in the spectral
method do not lose accuracy.

The spectral expansion method (S-IEM).
The spectral representation of Eq. (9) proceeds as follows:

1. The upper limit of integration ∞ is replaced by Rmax, beyond which the
potential V is suffi ciently negligible, and the number N of Chebyshev expansion
polynomials is chosen.
2. The unknown expansion coeffi cient ak of ψ are written in a column form
(aψ), and the corresponding column of the (unknown) function ψ(ξk) at at the
position of the support points ξk, k = 1, 2, ..N is written as (ψ) = C(aψ).
3. The functions F and V are written as diagonal matrices, with the values at
the support points written at the diagonal of the matrices.

FD =


F (ξ1)

F (ξ2)
. . .

F (ξN )


The product FDVDC(aψ) is a column vector containing as entries F (ξk)V (ξk)ψ(ξk).

4. The expansion coeffi cients of this column vector are given by C−1FDVDC(aψ),
and the expansion coeffi cients bk of the integral

∫ Rmax

r
FV ψdr′are given by

SRC
−1FDVDC(a

ψ).
5. With the additional multiplication by C the column vector in step 4. is
transformed back into a column vector of the corresponding function evaluated
at the ξk’s . That in turn is multiplied by −(1/k)(Rmax/2)GD, and "voila’",
one has the column vector of the functions representing the last term term of
Eq. (9). That can again be transformed into the column vector of the respec-
tive expansion coeffi cients by an additional multiplication by C−1. The factor
(Rmax/2) is due to the integral being over dr′ rather over dx.
In summary the last term of Eq. (9) is

−C−1(1/k)(Rmax/2)GDCSLC−1FDVDC(aψ)
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The middle term of Eq. (9) is correspondingly

−C−1(1/k)(Rmax/2)FDCSRC−1GDVDC(aψ)

and the sum of these two terms gives rise to the matrix

M = −C−1(1/k)(Rmax/2)
[
FDCSRC

−1GD +GDCSLC
−1FD

]
VDC (11)

The final equation for the expansion coeffi cients (aψ),according to Eq. (??) is

(1D −M)(aψ) = (aF ). (12)

In order to solve for (aψ), the inverse of the matrix (1D −M) appears to be
required. However in MATLAB there is a command ”\”,

(aψ) = (1D −M)\(aF )

that instead solves a set of linear equations.
The above manipulations are at the heart of the S-IEM method to solve the

one-dimensional radial Schrödinger equation. In practice however, additional
details are needed in order to divide the whole radial domain [0, Rmax] into
partitions, as will be explained in a future lecture.
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