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The Transient Sky 

van Velzen et al. 2011, ApJ, 741, 73 Arcavi et al. 2014, ApJ, 793, 38 

If TDEs, we will learn about  
 
•  Demographics of MBHs in quiescent galaxies 
•  Constraints on low mass galaxies hosting MBHs 
•  Growth of MBHs by accreting gas at super-

Eddington rates 
•  Stellar dynamics in the neighborhood of MBH  

SN, GRBs, AGN or TDEs? 

t-5/3 



Tidal Forces 

•  Stretching along the orbital plane 
•  Compression perpendicular to the 

orbital plane 
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Tidal Radius and Penetration Factor 
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Triangle of Astrophysical Relevance 
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The Disruption of a Star: 
What to Look For 

Injection 

Disruption & 
Compression 

Fallback & 
Disk Formation 

Ejecta 

•  Near periapsis, the star disrupts and compresses. Detonation, multiple 
bounces, and gravitational waves are possible outcomes. 

•  Fallback material yields an accretion disk (soft x-rays), with super-Eddignton 
outflows (optical/UV) and relativistic jets (radio/x-rays) 

•  Unbound material could also yield emission lines if irradiated by the disk 



TDE: The Capture 

Freitag & Benz 

Loss Cone: Set of orbital directions 
that leads to capture or disruption  
 
Event rate depends on how the Loss 
Cone gets populated 
 
Stars enter the Loss Cone via 
collisions with other stars or relaxation 
 
Stars can also be ejected from the 
Loss Cone via collisions. 
 
Event rate ~ 10-4 yr -1 
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Tidal Compression 

ρmax ~ ρ* β
3

Tmax ~ T* β
2

Carter & Luminet 1993 

Haas, Shcherbakov, Bode, PL 
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Multiple Tidal Compression 

•  Multiple maximum compression a GR effect 
•  In Newtonian limit, only one compression always after periastron passage  

Luminet & Marck, 1985, MNRAS, 212, 57 

Laguna, Miller, Zurek & Davies 1993, ApJL 410, 83 

β = 1 β = 5
β = 10



Fallback Material 

Rees 1988 
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 L ∝ M ∝ t −5/3



Evans and Kochanek 89 

The TDE Smoking Gun  

 L ∝ M ∝ t −5/3



Not included: 
•  BH and stellar spin 
•  GR 
•  Partial disruption 

Deviations from          

Guillochon et al 



Circularization & Disk Formation 

Circularization depends on the efficiency of 
radiative cooling. Hayasaki, Stone & Loeb 

Relativistic precession could also assist in 
circularizing the bound debris. Bonnerot et al 



TDE Candidates 

Gezari et al PS1-10jh 

van Velzen et al. 2011, ApJ, 741, 73 



Where is the emission produced? 

Flare: 
•  From self-intersection 
•  Prompt accretion 

Power-law decay: 
•  From the disk? 
•  Direct accretion? 



White Dwarf TD 

■  WD disrupted by a 1,000 Msolar BH 
■  Eventually fallback rate settles down to t -5/3 

■  Amplitude of accretion depends on spin and its orientation 
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Effects of spin misalignment 

■  Material is influenced by frame dragging 
■  Inner region obscured by debris 

Aligned spin Spin in plane 



Density & Temperature @ Max Compression 
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Accretion Rates 
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T* ≈

0.5M⊙

103M⊙ yr
−1 ~ 5hrs

Simulation time ~ 0.6 hrs 

Time to swallow the bound 
debris: 

ln L 

ln t (hrs) 5 

t -5/3 

0.5 



Gravitational Waves from Star-BH System 
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Gravitational Waves from Star Compression 
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Summary 

Ø  For ultra-close encounters (Rt ~ Rg), the tools of numerical 
relativity are needed to get the correct gas dynamics to 

model TDEs 
Ø Early accretion, outflow and fallback rate will tell us about 

the BH’s spin 

Ø  TDEs with prompt accretion will help identifying IMBH 
Ø Magnetic fields could provided models of jetted TDEs 

Ø  TDEs of WD by IMBH could potentially be candidates for 
multi-messenger observations 

 
 



Questions 

•  What is the physics needed in TDE simulations to 
understand the observed luminosities beyond the 
estimates from accretion rates? 

•  Are there other ubiquitous signatures of TDEs besides 
the t-5/3 accretion rate decay. 

•  Jetted TDEs? 


