

**Novelty Edition** 

#### Making Everything Easier!™

# Tidal Disruption Events

#### Learn to:

- Identify electromagnetic signatures from TDEs
- Estimate gravitational wave emission from TDEs

Pablo Laguna Georgia Tech Pablo Laguna Center for Relativistic Astrophysics School of Physics Georgia Tech, Atlanta, USA



Arcavi et al. 2014, ApJ, 793, 38



## The Transient Sky

#### SN, GRBs, AGN or TDEs?



van Velzen et al. 2011, ApJ, 741, 73

If TDEs, we will learn about

- Demographics of MBHs in quiescent galaxies
  - Constraints on low mass galaxies hosting MBHs
- Growth of MBHs by accreting gas at super-Eddington rates
- Stellar dynamics in the neighborhood of MBH

#### **Tidal Forces**



$$\frac{GmM_{*}}{R_{*}^{2}} = \frac{GmM_{h}}{(R_{t} - R_{*})^{2}} - \frac{GmM_{h}}{(R_{t} + R_{*})^{2}} \approx \frac{GmM_{h}R_{*}}{R_{t}^{3}}$$

- Stretching along the orbital plane
- Compression perpendicular to the orbital plane

$$\frac{M_*}{R_*^2} \approx \frac{M_h R_*}{R_t^3}$$

$$R_t \approx R_* \left(\frac{M_h}{M_*}\right)^{1/3}$$

Tidal Radius

#### **Tidal Radius and Penetration Factor**





 $R_{t} = R_{*} \left(\frac{M_{h}}{M_{*}}\right)^{1/3}$ Tidal Radius  $\beta = \frac{R_{t}}{R_{p}}$ Penetration Factor

#### Main Sequence

$$\frac{R_t}{M_{bh}} \simeq 47 \left(\frac{R_{ms}}{R_{\odot}}\right) \left(\frac{M_{ms}}{M_{\odot}}\right)^{-1/3} \left(\frac{M_{bh}}{10^6 M_{\odot}}\right)^{-2/3}$$

White Dwarf

$$\frac{R_{t}}{M_{bh}} \simeq 22 \left(\frac{R_{wd}}{0.95 R_{\oplus}}\right) \left(\frac{M_{wd}}{M_{\odot}}\right)^{-1/3} \left(\frac{M_{bh}}{10^{4} M_{\odot}}\right)^{-2/3}$$

#### **Triangle of Astrophysical Relevance**

**Tidal Radius** 

 $R_t \equiv R_* \left(\frac{M_h}{M_*}\right)^{1/3}$ 

**Penetration Factor** 

$$\beta(R_p) \equiv \frac{R_t}{R_p} = \frac{R_*}{R_p} \left(\frac{M_h}{M_*}\right)^{1/3}$$

 $\beta_t = \beta(R_t) = 1$  $\beta_* = \beta(R_*) = \left(\frac{M_h}{M_*}\right)^{1/3}$  $\beta_g = \beta(R_g) = \frac{R_*}{GM_*/c^2} \left(\frac{M_h}{M_*}\right)^{-2/3}$ 



Luminet & Pichon (1989)

## The Disruption of a Star: What to Look For



- Near periapsis, the star disrupts and compresses. Detonation, multiple bounces, and gravitational waves are possible outcomes.
- Fallback material yields an accretion disk (soft x-rays), with super-Eddignton outflows (optical/UV) and relativistic jets (radio/x-rays)
- Unbound material could also yield emission lines if irradiated by the disk

#### **TDE: The Capture**



Freitag & Benz

*Loss Cone*: Set of orbital directions that leads to capture or disruption

Event rate depends on how the *Loss Cone* gets populated

Stars enter the *Loss Cone* via collisions with other stars or relaxation

Stars can also be ejected from the Loss Cone via collisions.

Event rate ~  $10^{-4}$  yr  $^{-1}$ 

 $L \leq L_{LC} \approx \sqrt{2 G M_h R_{LC}}$ If  $R_{LC} \approx R_h \approx \frac{G M_h}{\sigma^2}$  star is captured If  $R_{LC} \approx R_t \approx R_* \left(\frac{M_h}{M_*}\right)^{1/3}$  star is disrupted

#### **Tidal Compression**



#### Multiple Tidal Compression



#### **Fallback Material**



#### The TDE Smoking Gun

$$L \propto \dot{M} \propto t^{-5/3}$$

\_\_\_\_ 2.0

1.5



Evans and Kochanek 89



 $\dot{M} \propto t^{-5/3}$ 



Not included:

- BH and stellar spin
- GR
- Partial disruption

Guillochon et al

#### **Circularization & Disk Formation**



Relativistic precession could also assist in circularizing the bound debris. *Bonnerot et al* 



Circularization depends on the efficiency of radiative cooling. *Hayasaki, Stone & Loeb* 

#### **TDE Candidates**





Gezari et al





#### Where is the emission produced?



## White Dwarf TD



Haas et al 2012

 $10^{6}$ 

- WD disrupted by a 1,000 M<sub>solar</sub> BH
- Eventually fallback rate settles down to t -5/3
- Amplitude of accretion depends on spin and its orientation

### Effects of spin misalignment



- Material is influenced by frame dragging
- Inner region obscured by debris

## Density & Temperature @ Max Compression





#### **Gravitational Waves from Star-BH System**





1/2

1/2

 $M_{\odot}$ 

 $I_{wd}$ 

Hz

Hz

Haas, Bode, Schervakov & PL 2004

$$h \sim \frac{M_*M_h}{DR_p} \sim \beta D^{-1} R_*^{-1} M_*^{4/3} M_h^{2/3} \qquad f \sim \left(\frac{M_{bh}}{R_p^3}\right)^{1/2} \sim \beta^{3/2} R_*^{-3/2} M_*^{1/2} \qquad f \sim \left(\frac{M_{bh}}{R_p^3}\right)^{1/2} \sim \left(\frac{M_{bh}}{R_p^3}\right)^{1/2} \qquad f \sim \left(\frac{M_{bh}}{R_p^3}\right)^{1/2} \sim \left(\frac{M_{bh}}{R_p^3}\right)^{1/2} \qquad f \sim \left(\frac{M_{bh}}{R$$

#### **Gravitational Waves from Star Compression**



## Summary

- For ultra-close encounters (R<sub>t</sub> ~ R<sub>g)</sub>, the tools of numerical relativity are needed to get the correct gas dynamics to model TDEs
- Early accretion, outflow and fallback rate will tell us about the BH's spin
- TDEs with prompt accretion will help identifying IMBH
- Magnetic fields could provided models of jetted TDEs
- TDEs of WD by IMBH could potentially be candidates for multi-messenger observations

## Questions

- What is the physics needed in TDE simulations to understand the observed luminosities beyond the estimates from accretion rates?
- Are there other ubiquitous signatures of TDEs besides the t<sup>-5/3</sup> accretion rate decay.
- Jetted TDEs?