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I. EFFECTIVE THEORY FOR CHARGED SPHERES

While effective field theories were first developed in the context of quantum field theories,

they are still quite useful in classical settings as well. In a later chapter we will introduce

an effective field theory for gravitational interactions that has use in predicting gravity

wave signatures for inspiralling binaries, but here we will start in the simpler setting of

electrodynamics. An attempt has been made to make this chapter self contained. So there

will be some overlap with the previous chapters, though the methodology will be distinct

in some ways. In addition, an effort has been made to elucidate some rudimentary points

that may not be familiar to those with less exposure to quantum field theory. It will be

assumed that the reader has some familiarity with the notion of the path integral as well as

a basic understanding of the semi-classical treatment of radiation at the level of an advanced

undergraduate text in quantum mechanics. For those who are not familar with Feynman

diagrams, an appendix at the end of the chapter has been included to provide the necessary

background.

Let us consider the following problem. Suppose we have two spherical shells each of

which carry a net charge. The charges on the sphere are dynamical, and thus the spheres

have both electric and magnetic polarizabilities. We wish to calculate the positions of the

spheres as a function of time given some initial data. This is a complicated problem to say

the least. When the spheres are in motion, all sorts of effects need to be accounted for in

order to track their phase space trajectories. First off, as they accelerate they will radiate,

which will dampen the motion. Furthermore, the charges on the sphere will shift their

orientation depending upon the position of the other sphere, which will change the nature

of the interaction. In general there is no possible way to solve this problem analytically.

One might hope to put it on a computer and solve the set of coupled differential equations,

but this is not a task that one would ask any friend to tackle. However, we might hope

to get an analytic handle on the problem in certain limits. In particular, when the spheres

are far apart, compared to their radii, it makes sense to approximate each sphere as a point

particle. This will clearly simplify the problem. However, we would like to be able to include

finite size effects in a systematic fashion, and this is where the power of effective field theory

becomes evident.

Before continuing, it is important to clarify some terminology. Sometimes in the literature
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one sees theories in which the point particle approximation has been used, referred to as

effective field theories. This definition is much too broad to be useful, since by this account

an EFT would amount to no more than the multipole expansion. The modern use of the

term EFT refers to multi-scale theories in which the scales have been separated at the level

of the action and each term in the action scales homogeneously in the expansion parameter

of interest which is typically a ratio of scales.

In any case, for a classical EFT the starting point is the point particle approximation [1].

The action for a collection of point particles is given by

S =
∑
i=1,2

∫
dλi

mi

√
dxµi
dλi

dxiµ
dλi

+ ei
dxµi
dλi

Aµ(xi(λi))

− ∫ d4x
1

4
FµνF

µν . (1)

ei is the net charge of the i’th particle and λi parameterize the world lines. We will separate

the space into the bulk and the worldline so that the photons kinetic term lives in the bulk.

Now how do we account for the finite size of the spheres? We know were missing out on

physics so we have to add something to this action to account for it. But that something,

can’t just be anything. It must respect the symmetries of the theory. In this case at hand

those symmetries are gauge 1 and Lorentz invariance, as well as world-line reparameterization

invariance (RPI)2. We know that in the bulk, away from the sources we have nothing but

Maxwells’ electrodynamics3 , so we can not mess with the bulk action. But on the worldline

we are free to add operators 4. Furthermore, it is clear that as the engineering dimensions of

the new terms grow, their effect must diminish as powers of Ri/κ where κ is some external

scale (say the distance between the spheres) and Ri is the radius of the i’th sphere.

We may form Lorentz invariants out of the vector potential Aµ, as well as the four velocity

of the world lines, vµ. We could also use higher time derivatives of the worldline xµ. Of the

leading terms, those of lowest dimension will be 5

SFS =

∫
dλ(CB

√
v2FµνF

µν +
CE√
v2
vµFµνvαF

αν) (2)

1 Terms need only be gauge invariant up to a total derivative, as is the case for the charge coupling to the

gauge field.
2 Meaning that the action should not depend upon how one wishes to parameterize the path.
3 Readers who have gone through the earlier chapters will note that strictly speaking quantum effects will

generate higher dimensional non-linear terms arising from integrating out heavy charged particles, but

the effects of such terms will be irrelevant at long distances.
4 The term “operators” is used despite the fact that we are considering a classical theory.
5 This is perhaps the shortest path to the answer to the “why is the sky blue?” question. The symmetries of

the theory imply the first interactions for neutral particles start at two derivatives, and thus the scattering

cross section grows with frequency. Thus the sharpest answer to the childs question is: ”the sky is blue

because symmetries allow nothing else”.
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CE and CB are coefficients which we will fix later in the chapter. The factors of
√
v2 are

forced upon us by RPI, where v = dx/dλ. On dimensional grounds, the coefficients of both

of these operators must scale as R3. The attentive reader may ask why the operator

Oa =
vµaν
v2

F µν (3)

has not been included, since it would scale as R2 and therefore would be the true leading

order effect. This operator would indeed be there if the particles were being acted upon by

an external force, or if the interactions between the spheres were sufficient to generate an

appreciable acceleration. However, save for a short diversion, this term will not play a role

in the remainder of this chapter6.

Returning now to our leading order finite corrections (2), note that these coefficients

encode “short distance” information, which are responsible for the polarizability. That is,

when we put the spheres in an external field they will deform. The polarization could be

due to structural changes, i.e. the sphere itself may deform if the charges constrained, or

due to the charge flow on the surfaces. The polarization can be a consequence of quantum

or classical effects, it does not matter. In either case there will be a net polarization, the

strength of which will be recorded in CE,B. We will calculate these coefficients later in this

chapter.

Note that in doing things this way we have made another important approximation.

We have assumed that the time scale for the deformation is short in comparison to the

“external” time scales in the problem, such as the period of the orbits. In the absence of

such a hierarchy we would need to add additional degrees of freedom to the worldline and

track their time dependence. We will address this issue of additional degrees of freedom

below.

Now that we have the action in the point particle approximation, including the effects

of finite size to leading order in the radii, we would like to use this action to calculate the

dynamics of the system. Notice that, at this order, the system is Gaussian, and thus com-

pletely solvable since the path integral can be done exactly (more on this below). However,

there is really no point finding an exact solution because it would in no way improve our

systematics. Such a solution would re-sum all the finite size effects due to the first correction

6 One could also consider terms which do not involve the gauge field but will change the equations of motion

of the spheres. See [7] and ([6]) for a discussion.
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in R, but given that we have truncated our Lagrangian, dropping higher order terms in R,

we can not claim to be calculating at any accuracy beyond R3.

We will now use the path integral formalism 7, developed for quantum field theories, to

determine the dynamics of this classical system. This seems like using a rather large hammer

for a very small nail. However, we will see that the formalism will pay dividends.

The first object we will calculate is the so-called “vacuum-persistence” amplitude which

is defined by

Z[x, ẋ] =
〈0,−∞ | 0,+∞〉x,ẋ
〈0,−∞ | 0,+∞〉

=

∫
DAµe

iS(A,x,ẋ)∫
DAµeiS(A)

(4)

where vacuum boundary conditions are applied to both ends of the path integral. Roughly

speaking, Z is the probability amplitude to go from the vacuum at past infinity to the

vacuum at future infinity in the presence of the sources xi.

Let us now see what we can learn from this amplitude. We can write the amplitude as

Z[x, ẋ] = e−i
∫
dtE(x,ẋ) (5)

where E(x, ẋ) is the energy in the presence of the source which need not be constant over

the worldline (e.g. there can be acceleration). This result follows from the basic quantum

mechanical fact that for a stationary state with energy E0 (let’s assume it’s the ground state),

the time evolution of the system is trivial. As time evolves the state just picks up a phase

factor e−iE0T during a time interval T . Suppose we now perturb the system adiabatically

with a source J (in our case the xi). The state of the system will remain in the ground

state, only now the energy level has been shifted. The net phase which is accrued over the

path will be the integral over the energy. If we consider sources which are not static, then,

in general, we should find that the probability to arrive back at the ground state at plus

infinity will no longer be one, since we expect there to be radiation.

We can understand this better by considering the example at hand, namely, sources

7 Readers not familiar with the path integral, or for those who are just rusty on the subject can consult

[16].

5



coupled to the electromagnetic field whose action is given by

S =

∫
d4x

(
−1

4
FµνF

µν − 1

2
(∂µA

µ)2 + JµA
µ,

)
(6)

where the second term in the action restricts the field to live in Feynman gauge8. This

theory is Gaussian, and thus we can do the path integral exactly, leaving for the persistence

amplitude

Z[J ] = e−
i
2

∫
d4xd4yJµ(x)GµνF (x−y)Jν(y) ≡ e−iW [J ] (7)

For a particle traversing a worldline xµ(τ) the form of the current is

Jµ(x) = e

∫
dτvµ(τ)δ(4)(x− x(τ)). (8)

GF is the “Feynman” propagator which will be defined below. Intuitively we can see that

the exponent looks like an energy. The convolution of the Greens function with one of the

sources gives the value for the field at the position of the other source. However, this is not

quite correct, because the Greens function is the acausal9, complex, Feynman prescription

Greens function, not the causal retarded Greens function we would need to calculate the

value of the field away from the sources. Notice that we had no choice in our prescription

for the Greens function. The path integral tells us we must use Feynman. A simple way of

reaching this conclusion is to first note that the Minkowskian path integral does not converge,

as it is highly oscillatory. By discretization, the path integral can be written as a product of

Gaussians (see Peskin), each of which is oscillatory (recall that in the amplitude the action

gets multiplied by a factor of i). We may restore convergence by adding a damping term to

the Lagrangian 10.

∆L = − i
2
εA2 ε > 0. (9)

In momentum space we may write the action as

S =
i

2

∫
[d4k]

(
Ãµ(k)(k2 + iε)Ãµ(−k) + Jµ(−k)Ãµ(k)

)
(10)

8 We will restrict ourselves to this gauge unless otherwise stated
9 The Feynman prescription Greens function has support outside the light-cone and is inherently quantum

mechanical.
10 Note the sign is due to our choice of metric convention (+,−,−,−). The time like photon polarization

would appear to have the wrong sign for the convergence factor. However, since they decouple as a

consequence of current conservation, they contribute an overall factor which cancels with the denominator

in (4). 6



The propagator may be read off by inverting the kernel of the quadratic term in the gauge

field which automatically gives rise to the Feynman prescription (Feynman gauge) result

G̃µν
F (k) =

−gµν

k2 + iε
. (11)

In coordinate space we have 11

Gµν
F (x) =

gµν
4π2

−i
x2 − iε

. (12)

which has support outside the light-cone and is complex. On the other hand, the “retarded”

propagator

Gµν
R (x) = −gµν

∫
[d4k]e−ik·x

((k0 + iε)2 − ~k2)
=
gµν

2π
θ(x0)δ(x2) (13)

is causal having support only on the light cone.

Thus given that we must use the Feynman prescription, we can expect that our energy

functional will be complex. But for accelerating sources that is exactly what we would

expect since the system wants to “decay” by radiating photons12. We can see this more

clearly by writing W [J ] in momentum space

W [J ] = −1

2

∫
[d4k]

k2 + iε
J̃(−k) · J̃(k). (14)

We can see that the only imaginary part comes from the pole and is proptional to δ(k2),

which corresponds to a real propagating photon, i.e. radiation. Moreover, given the signs,

we can see that that radiation will only decrease the vacuum persistence amplitude. If the

sources are static then J̃(k) ∼ δ(k0) and the pole is not supported. In this case W [J ] is

purely real, and corresponds to the Coulomb energy. More generally, we have

ImW [J ] =
1

2

∫
[d3k]

2E
J̃(−k) · J̃(k), (15)

where k0 =| ~k | is implied. Given current conservation kµJ
µ(k) = 0 we can re-write the

11 There is a distinction between the Greens function and the two point function, 〈T (φ(x)φ(0))〉 = iGF . The

two point function arises when performing Wick contractions and thus is what is relevant for Feynman

rules.
12 Readers who have considered the chapter on SCET, can appreciate that the kink in the wilson lines means

that the Sudakov form factor will not be a pure phase.
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result as

ImW [J ] = −1

2

∫
[d3k]

2E
(| J̃T (k) |2) (16)

where we have decomposed the current into transverse and longitudinal pieces J̃µ = J̃Tµ +

kµJ̃
L.

The probability of producing no photons is given by the modulus squared of the vacuum

to vacuum transition amplitude (7) is given by

P0 = e−
∫
d3k
2E

(|J̃T (k)|2). (17)

What is the proper way to interpret the exponent? It is simple to show that it gives

the average number of photons emitted, i.e. To see this consider the probability to emit n

photons 13, which follows from squaring the transition amplitude and integrating over phase

space of the final state photons,

Pn =
1

n!
Πn
i=1

∫
[d3ki]

2Ei
| 〈k1...kn | e−i

∫
d4xAµ(x)Jµ(x) | 0〉 |2 . (18)

The factor of n! accounts for the fact that we have identical bosons in the final state. Now

decompose Aµ into its creation (A+) and annihilation (A−) pieces as is done in standard

semi-classical calculations. Then using the result

eAeB = eA+B+ 1
2

[A,B] (19)

which holds when [A,B] is a c-number, we can write

e−i
∫
d4xAµ(x)Jµ(x) = e−i

∫
d4xA+

µ (x)Jµ(x)e−i
∫
d4xA−µ (x)Jµ(x)e

1
2

∫ [d3k]
2E

J̃(k)·J̃(−k) (20)

where use was made of the result 14

[A+
µ (x), A−ν (y)] = gµν

∫
[d4k]e−ik·(x−y)θ(k0)δ(k2). (21)

13 We will sum over polarizations. This sum is implied in all the following formulae.
14 This result follows from using the field normalization Aµ(x) =

∫ [d3k]
2Ek

(εµe
−ik·xak + ε?µe

ik·xa†k) and the

canonical commutation relations.
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We can see immediately that our result for the vacuum persistence amplitude is consistent

with P0 since A− | 0〉 = 〈0 | A+ = 0 by defintion.

Now let’s consider the amplitude

An = 〈k1...kn | e−i
∫
d4xAµ(x)Jµ(x) | 0〉. (22)

For An we may ignore A− since the exponent will vanish when operating on the vacuum.

Leaving ∫
d4xA+ · J =

∫
[d3k]

2E
a†kε

µ(k)J̃µ(k) (23)

where ε is the photon polarization. Note that the conserved current picks out the physical

transverse polarizations. Expanding the exponential we find

An = (−i)nε1 · J̃(k1)....εn · J̃(kn) (24)

where the 1/n! cancelled since there are n! identical terms.

Squaring and summing over polarizations, gives

Pn =
1

n!

(∫
[d3k]

2E
J̃(−k) · J̃(k)

)n
e−

∫ [d3k]
2E

J̃(k)·J̃(−k). (25)

We see that we may write the probability as a Poisson distribution with

Pn = e−〈n〉
〈n〉n

n!
, (26)

if we interpret (17) as 〈n〉. With this knowledge in hand, we are prepared to calculate the

power loss in the system. We first note that we may make the following identification

Re ln(Z[J ]) = −ΓT

2
(27)

where Γ is the width of the state, so that the decay rate is Γ−1 and T is the observation

time. Heuristically we might have guessed this result just from our intuition for unstable

states in quantum mechanics. Thus to get the power loss all we have to do is to weight the
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phase space measure with the energy

P =
1

2T

∫
[d3k] | J̃(k) |2 . (28)

It is important to note that in general if we wish to measure time dependent quantities,

then the traditional path integral formulation where are are only concerned about the states

and plus and minus temporal infinity will not be applicable. As, will be discussed later in

this chapter, when we wish to measure quantities that are local in time we will need to so-

called “in-in” formalism [8](as opposed to the “in-out” formalism utilized above). However,

for time averaged quantities such as the power loss we see that the “in-out” formalism is

sufficient.

A. Some Simple Examples

So far this discussion has been formal, so let us now consider some explicit examples. Take

two static sources, with charges (e1, e2) separated by ~R. Their world lines are parameterized

as

xµ1 = (t,~0) ; xµ2 = (t′, ~R) (29)

so that

J̃µ(k) = (2π)e1v1µδ(k0) + (2π)e2v2µδ(k0)e−i
~k·~R. (30)

Then we have

W [J ] =
1

2

∫
[d4k]J̃µ(k)Gµν

F (k)J̃ν(−k)

=
(2π)δ(0)

2

∫
[d3k]

~k2

(
e1v

µ
1 + e2v

µ
2 e
−i~k·~R

)(
e1v1µ + e2v2µe

i~k·~R
)
. (31)

The terms proportional to e2
i are self energy contributions, independent of R, which con-

tribute an overall unphysical phase to Z. This divergent contribution to the energy can be

thought of as renormalizing the mass of the sources. The physical piece comes from the
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t = 0

R

FIG. 1. Two charged particle world lines, separated by R until the time t = 0 at which time the

second particle instantaneously accelerates to a fixed velocity v2′
µ .

cross terms and for static sources yields

W [J ] ≡ TV = (2π)δ(0)
e1e2

4π | ~R |
. (32)

Identifying ∫
dt = 2πδ(0), (33)

we can extract the usual Coulomb energy of the static sources. We can see that in this static

case the Greens function prescription was irrelevant as the pole was not an issue.

In the case where we have accelerating charges leading to real (“on-shell”) radiation the

(iε) pole prescription is what will lead to an apparent lack of unitarity, in that the phase will

no longer have unit modulus. This fact was made clear in the previous section. Consider two

charged particles, one, with charge and four velocity (e1, v1µ), which is fixed at the origin,

and the other, labelled by (e2, v2µ), is initially fixed a distance δ~x = ~R away. At a time t = 0

this second particle instantaneously accelerates to a velocity v′2µ in some direction. This set

up is depicted in figure (1).

Thus the current takes the form

J̃µ(k) = e1

∫ ∞
−∞

dtv1µ(t)eit(k·v1+iε) + e2

∫ ∞
0

dtv′2µ(t)ei(k·v
′
2+iε)t−ik·~R + e2

∫ 0

−∞
dtv2µ(t)ei(k·v2−iε)t−ik·

~R

= e1v1µ(2π)δ(k · v1) + ie2

(
v′2µe

−i~k·~R

k · v′2 + iε
− v2µe

−i~k·~R

k · v2 − iε

)
, (34)

where convergence factors have been added to make the time integrals well defined. Let us

consider the exponent W [J ]. As before, the static self interaction of particle one will lead
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to an overall phase renormalizationand can be ignored. Now consider the cross (X) terms

WX [J ] = − i
2
e1e2

∫
[d4k](2π)δ(k · v1)

k2 + iε

(
v1 · v′2e−i

~k·~R

k · v′2 + iε
+
v1 · v′2ei

~k·~R

k · v′2 − iε
− v1 · v2e

i~k·~R

k · v2 + iε
− v1 · v2e

−i~k·~R

k · v2 − iε

)
.

(35)

The terms involving v2 will give one half 15 of the net (time integrated) Coulomb energy

of the two static particle case, while the terms involving v′2 will give the time integrated

Coloumb energy between the static particle and particle two after it has been accelerated.

Finally, we have the contribution coming from the e2
2 terms. As we will now see, these terms

are responsible for the radiation and the diminishment in the amplitude. Furthermore, this

suppression will arise only because we are working with the Feynman prescription for the

Greens function. The relevant terms for radiation (R) are

WR[J ] = −1

2
e2

2

∫
[d4k]

k2 + iε

(
1

(k · v′2 − iε)(k · v′2 + iε)
+

1

(k · v2 + iε)(k · v2 − iε)

− v2 · v′2
(k · v′2 − iε)(−k · v2 + iε)

− v2 · v′2
(k · v′2 + iε)(−k · v2 − iε)

)
(36)

The term in the brackets is purely real by construction and thus the only contribution to

the imaginary part will come from the pole in the photon propagator at k0 =| ~k |. These

poles correspond to real (“on-shell”, k2 = 0) radiation. Notice that if we used the retarded

propagator, where the poles are on the same side of the axis, we could deform the contour

so as to completely avoid the poles. Also note that if we were to calculate the power loss

by weighting the integral by the energy we would find a divergent answer. The reason is

that we have assumed an instantaneous acceleration which puts a kink in the worldline16.

A physical path would have to resolve this singularity and lead to a finite result.

15 To get the factor of one half correct one must be careful to drop the principle part of the linear denomi-

nators.
16 Readers who have had some experience with HQET (or SCET) will recognize this divergence as responsible

for the “cusp-anomalous dimension”.
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B. The non-Relativistic Approximation

In anticipation of applying the ideas developed in this chapter to the non-linear theory

of General Relativity (GR), let us consider working in the limit where the spheres are

moving slowly compared to the speed of light. In this limit we wish to develop a power

counting scheme17 in v/c and concentrate on the case of a captured orbit, as this is a case

of significant phenomenological relevance in GR. We will calculate the potentials, which can

be used to determine the equations of motion, as well as the power loss. The calculation

will be performed in two ways. First, we will expand our exact result (7) in powers of the

velocity, then we will show how to reproduce this result using an effective field theory action,

by developing a power counting scheme at the level of the Lagrangian. We will only work

to order v2, but the proper way to include higher order corrections will hopefully be clear

to the reader.

1. Expanding the Exact Solutions

The two worldlines will be labelled by xµ1(t) and xµ2(t′), respectively. As before parame-

terize the lines using the time coordinate

J̃µ(k) = e1

∫ ∞
−∞

dt
dxµ1
dt

eik·x1 + e2

∫ ∞
−∞

dt
dxµ2
dt

eik·x2 . (37)

Thus

W = −1

2

∫
dtdt′

∫
[d4k]

k2 + iε

(
e2

1(1− ~v1(t) · ~v1(t′))eik·(x1(t)−x1(t′)) + e2
2(1− ~v2(t) · ~v2(t′))eik·(x2(t)−x2(t′))

+ e1e2(1− ~v1(t) · ~v2(t′))eik·(x1(t)−x2(t′)) + e1e2(1− ~v1(t′) · ~v2(t))e−ik·(x1(t′)−x2(t))
)

(38)

Let us first consider the real part, which is the piece independent of the (iε) pole prescrip-

tion. We note that in the static limit, after making a change of variables, we can perform

the time integration, which leads to k0 vanishing. Thus, k0 ∼ vn, where n will be fixed to

one momentarily. Then we can expand the integrand in powers of k0/k, given that k will

not vanish in the static limit and therefore on dimensional grounds k ∼ 1/r, where r is

the radius of the orbit. Furthermore, in this limit the interactions are instantaneous, i.e.

17 Recall we will work in units where c = 1.
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they are potentials. The real part of the e2
1 and e2

2 terms are unphysical self energies which

contribute an overall irrelevent phase that can be renormalized away. At leading order we

find (recalling (32)) for the crossed terms,

VC(R) =
e1e2

4π | ~x1 − ~x2 |
(39)

which follows after dropping k0 in the denominator. While at order v2 we have

Re[W ]v2 = −
∫
dtVC(x1−x2)~v1 ·~v2−

e1e2

2

∫
dtdt′

k2
0[d4k]

~k4
(eik0(t−t′)−i~k·(~x1(t)−~x2(t′)) +c.c), (40)

We can see that after integration by parts, each factor of k0 will bring down one power of v

so that k0/ | ~k |∼ v. The resulting integrals leads to the net potential

V = VC −
e1e2

8πr

(
~v1 · ~v2 + ~v1 ·

~x1 − ~x1

| ~x1 − ~x2 |
~v2 ·

~x1 − ~x2

| ~x1 − ~x2 |

)
. (41)

Note that this potential is expressed in terms of the canonical coordinates and the velocities.

So it should be interpreted as the potential part of the Lagrangian.

Now let us consider the imaginary part of W which is non-vanishing only when the

pole prescription is relevant, i.e. in the on-shell region k0 ∼ k. Again in the static limit

k approaches zero, so that on dimensional grounds k ∼ v/r ≡ 1/λ. This suppression is

expressing the fact that the wavelength of the radiation is parametrically large compared to

the radius of the orbit in the non-relativistic limit. First, it proves convenient to re-write

(38) as

W = −1

2

∫
[d4k]

k2 + iε

∫
dtdt′

(∑
i=1,2

ei
dxµi (t)

dt
eik·xi(t)

)(∑
i=1,2

ei
dxiµ(t′)

dt′
e−ik·xi(t

′)

)
(42)

We may then perform a multipole expansion, which is an expansion in R/λ ∼ v. The leading

order term is given by

W = −1

2

∫
[d4k]

k2 + iε

∫
dtdt′

(
e1e

ik0t + e2e
ik0t
) (
e1e
−ik0t′ + e2e

−ik0t′
)

(43)
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which we see fails to have an imaginary part. This is just the statement that the monopole

moment (the total charge) does not radiate since it is a conserved quantity. It should be

clear that to get a non-vanishing contribution there must be non-trivial dependence on both

t and t′. At next order we have

dxµi (t)

dt
e−i

~k·~xi(t) ∼ (η0µ(1− i~k · ~xi(t)) + vai (t)δ
µ
a ), (44)

where va is the three velocity. Using Im 1
k2+iε

= −πδ(k2), we find to O(v2)

ImW = −1

2

∫
dtdt′

∫
[d3k]

2k

∑
i=1,2

eik(t−t′)(ei(~k · ~xi(t)~k · ~xi(t′))− ei~k2~xi(t) · ~xi(t′))

(45)

where in the second term we have integrated by parts. We then get Γ by first multiplying

by a factor of two (recall (27)), and the elementary power loss follows18 after weighting the

integral by the energy

〈P 〉 =
1

6πT

∫
dt~̈p(t) · ~̈p(t) (46)

where ~p is the dipole moment

~pi =
∑
i

ei~xi. (47)

2. Building up the Solution from an Effective Theory

In non-Gaussian theories we do not have the luxury of expanding the exact solution.

Instead we must formulate our non-relativistic approximation at the level of the action

within the context of an effective field theory. The idea is to separate the scales in such a

way that we can construct a set of Feynman rules where each vertex or propagator scales

homogeneously 19 . In this way we can construct a set of diagrams which encode all of the

contribution of a given order in the small v expansion.

To construct an effective theory we must first get a handle on the scales involved. Our

theory of interacting spheres has three relevant scales: R the size of the spheres (we’ll assume

that all the sphere have radii of the same order), r the distance between the spheres, and v/r

18 Note our units of charge differ from the choice in Landau and Lifshitz.
19 For those who are not familiar with Feynman rules there is an appendix at the end of this chapter which

gives a rapid fire review.
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the wavelength of the radiation. We have already eliminated20 the scale R, by working in

the point particle approximation. For the moment we will ignore the finite size corrections

and will return to them later.

When we calculate Feynman diagrams we typically work in momentum space where the

scales are easily manifested. In the last section we saw that radiation had both energy and

momenta that scale as v/r whereas in the potentials the momenta scale as 1/r and the

energy scales as v/r. When we construct effective field theories we eliminate the scales one

at a time from short to long distances. So we will first address the potentials which get

contributions from scales of order 1/r. Once we’ve eliminated this scale, the only relevant

degree of freedom will be a composite formed from the spheres since no knowledge of the

scale 1/r will remain. The only remnants of this scale will be numbers, or coefficients of

operators in the Lagrangian, but the fields themselves will have no support on scales of order

r.

The way we accomplish this separation of scales is to write the gauge field in our path

integral as

Aµ(x) = Aµ + Āµ. (48)

where the barred (bold) field is the radiation (potential) field. Naively this would seem to

lead to double counting, so we have to make sure we peform this separation in a way such

that Aµ(Āµ) captures only the physics responsible for potentials (radiation). This occurs

naturally21 by making sure that each type of mode has the proper pole structure built into its

propagator, which as we shall see below, follows automatically when we enforce homogeneity

in velocity scaling.

Technically the separation (48) falls under the rubric of the “background field method”

developed by DeWitt [2] and Abbott [3] and is very reminiscent of the Born-Oppenheimer

approximation for systems with fast and slow variables. The underlying idea is that since

the potential part of the field is “off-shell”, i.e. kµk
µ ∼ 1/r2 > 0 its virtual life is fleeting

compared to the long lived on-shell radiation field. One thinks of the potential field as a

fluctuation on a (relatively) static background radiation field. In this way of doing things

we may “integrate out” the potential field, leaving an effective action for the background

20 We have not really eliminated R, the coefficients of higher dimensional operators will scale with R. But

this R dependence is trivial.
21 For more complicated effective theories it is not so natural, and one has to worry about so-called “zero-

bins”, see chapter () for details. In this chapter such subtlties will not arise.
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radiation field. The term “integrate out” stems from the fact that formally one does the

path integral over this field. The classical limit of integrating out a field corresponds to

performing the saddle point approximation, which effectively means solving for the field

value and plugging it back into the action. Formally we may write

Z[J ] =

∫
DĀDAeiS(Ā,A,J) =

∫
DĀeiSeff (Ā,J) (49)

where Seff is the resulting action for the effective theory. Typicallly, i.e. for non-Gaussian

theories, one can not do this integral exactly (even in the classical approximation), since

it’s not possible to solve for the exact field value in a non-linear theory. Instead one does a

matching procedure in which one chooses Seff to reproduce the physics of the full theory at

some fixed order of the relevant expansion parameter (in the present case v) to the order of

interest. This matching procedure is at the heart of effective field theories.

At this point we should discuss the issue of gauge invariance. In the background field

formalism [3], one may choose distinct gauges for Ā and A. There is a preferred gauge

called the “background field gauge” in which the act of integrating out A leaves a gauge

invariant action (Seff ) for Ā. The gauge fixing term for A is fixed by covariantizing the

typical gauge fixing term with respect to the background field. For a linear theory where

the gauge field does not transform under the gauge symmetry the covariantization has no

action, but for a non-linear theory such as GR, this gauge fixing term will shift the action,

as we shall be made clear when we discuss GR. But for the linear theory in which we are

presently interested, we may gauge fix A and Ā independently without concern of generating

a non-gauge invariant Seff .

Let us now see how this matching (“integrating out”) procedure is done in our toy model.

We begin with the complete (or “full theory”) action ,

L = −
∑
i

∫
midτi +

∑
i

∫
eivµ(xi)A

µ(xi)dτi −
1

4

∫
d4xF 2 − 1

2
(∂µA

µ)2, (50)

where for the moment we have neglected the finite size effects. So the first, trivial, step

in the effective field theory construction has been utilized, i.e. we have removed the scale

R (size of the objects) by working in the point particle approximation. All vestiges of this

scale would be in coefficients of the higher dimensional terms (2) which we are neglecting
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for the moment. Now we perform our mode decomposition (48) and furthermore perform a

partial Fourier transform22

Aµ(t, ~x) =

∫
[d3k]ei

~k·~xA~k µ(t) ≡
∫
~k

ei
~k·~xA~k µ(t). (51)

The reason for performing this transformation is that it effectively “removes” the large scale

1/r from the field fluctuations and makes any dependence on the scale 1/r manifest, as will

be seen clearly below.

Plugging our decomposition into the action (50) leads to

L =
∑
i

∫
ei
dxµi
dti

(ti)

(
Āµ(xi) +

∫
~k

ei
~k·~xi(ti)A~kµ(ti)

)
dti +

1

2

∫
dt

∫
~k

(~k2Aµ
~k
A−~kµ + ∂0A~kµ∂0A

µ

−~k
)

+
1

2

∫
d4x(Āµ2Ā

µ), (52)

where the kinetic term for the point particle has been dropped as it wont play a role here,

and the affine parameter has been chosen to be the time coordinate 23. Notice that there

are no quadratic cross terms between the radiation and potential fields as a consequence of

momentum conservation since the radiation field can not carry away large momenta of order

1/r.

Now each term in the action should have definite scalings in v. To see how this comes

about we must first fix the scalings of the fields. This may be done by noting that the kinetic

term for the photon must be leading order to have a sensible perturbative expansion. Let

us first consider the radiation field. To fix its scaling we use the fact that 2 ∼ v2/r2. We

also need to determine how the measure scales. Perhaps the simplest method is to note that

the spatial integration generates a momentum conserving delta function, and since all the

momenta scale as v/r the measure scales as r4/v4. Imposing the fact that kinetic term is

leading order yields

Āµ ∼ v/r. (53)

Alternatively one can determine the field scaling by considering the propagator (see chapter

). For the potential field, we have ∂0 ∼ v/r and k ∼ 1/r. Thus we must treat the term with

22 Readers who have familiarized themselves with NRQCD and SCET may wonder why this is an integral

and not a sum. The answer is that in the classical theories there is no residual momentum for the external

sources so all of the associated subtleties are absent.
23 At higher orders in v one must be careful not to drop contributions arising from this choice of parame-

terization.
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temporal derivatives as a perturbation. To determine the scaling of the potential field we

note dt ∼ r/v thus the field scales

A~kµ(t) ∼ v1/2r2. (54)

The propagator for the potential photon may be found by inverting the associated

quadratic in the action to give

〈A~kµ(t1)A~qν(t2)〉 = (2π)3δ(t1 − t2)δ3(~k + ~q)
igµν
~k2

. (55)

We see immediately that since the potential propagator is independent of the energy, its

Fourier transform is proportional to δ(t), i.e. instantaneous. Notice that there is no energy

pole in this propagator, thus eliminating the possibility of double counting the radiation field

which gets its support from the region k0 ∼| ~k |. The temporal derivative terms correct for

this instantaneity, and are down by v2. These corrections correspond to the k0 corrections in

(52). The dominant interaction will involve the temporal potential photon. This interaction

will clearly generate the leading order Coulomb potential. The couplings to non-temporal

photons are suppressed by v.

We now have a well defined power counting in the action and are prepared for the next

step in the EFT process, namely integrating out the potential modes. In so doing we will

have eliminated the scale 1/r from the theory, and the only remaining scale will be v/r. In

this next theory, since we have coarse grained beyond the scale 1/r we can not distinguish

between the constituents of the binary. Thus the resulting theory will be a one body theory

which couples only to radiation. Let us now generate the one body theory for our toy model.

Since the theory is Gaussian, we could, of course, solve it exactly as we did in the last section,

but instead we will build up an approximate solution by considering the relevant Feynman

diagrams order by order. To calculate the diagram we will need a set of Feynman rules. The

potential photon propagator represented by dashed lines was given in (55). There are two

types of vertices which follow from expanding out the interaction

∑
i

∫
ei
dxµi
dti

(ti)

(∫
~k

ei
~k·~xi(ti)A~kµ(ti)

)
dti ≈

∑
i

ei

(∫
~k

ei
~k·~xi(ti)(A~k0(ti)− vaA~ka(ti)

)
dti,

(56)
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FIG. 2. Diagram (a) is the leading order coupling between the temporal polarization, while diagram

(b) is the order v coupling to the spatial polarization. The dashed line corresponds to a potential

photon.

FIG. 3. The box corresponds to the first correction to instantaneity, arising from the temporal

derivative term in (52). One can think of this as the corrected propagator. Higher order corrections

to instantaneity, say with n insertions of the square go as ∼ 1
(k2i )n

( d
dt1

d
dt2

)nδ(t1 − t2).

a leading order coupling to the temporal photon, and an order v vertex coupling to the

spatial photon.

The corresponding Feynman rules are shown in figure (2). Not shown are the explicit

factors of
∫
~k
ei
~k·xi(t) which are associated with the potential A~k at the vertex coupling to

worldlines xi(t). The corrections to instantaneity are accounted for by correcting the prop-

agator which arise as a consequence of the last term in the first line of (52). The leading

order corrected propagator is depicted in (3) and is given by

〈A~kµ(t1)A~k′ν(t2)〉1 = i(2π)3gµνδ(t1 − t2)δ(~k1 − ~k2)
k2

0

~k4
. (57)

where the subscript on the expectation value reminds us that this includes the first order

correction to instantaneity. Those are all of the rules we need in this simple Gaussian theory

since the radiation photon does not couple to the potential photon. Thus it is simple for us

to integrate out the potential photon. Up to order v2 there are only three diagrams, which

are depicted in figure (4).

Let us start with the leading order contribution figure (4a). This diagram arises from the

Wick contraction

iMLO = −
∫
dt1dt2

∫
[d3k][d3q]e1e2〈A0

~k
(t1)A0

~q(t2)〉ei~k·~x1ei~q·~x2 . (58)
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a b c

FIG. 4. The Feynman diagrams which generate potentials up to order v2. Diagram (a) is the

leading order Coulomb potential, while (b) corresponds to a velocity dependent vertex correction.

This diagram has an associated figure where dot is inserted on the other worldline. Diagrams (c)

corresponds to an instantaneity correction.

Power counting this diagram we find that it scales as e1e2/v. Naively this seems to not have a

well defined v → 0 limit, until we recall that for a Coulombic bound state e1e2 ∼ v. We might

also worry that since this exchange is leading order, that multiple exchanges of this type

would also be leading order. This is indeed true, but we must recall that we are interested

in calculating the potential which lives in the exponent. So we will need an infinite number

of diagrams to sum into this exponential. The resummation into an exponential follows

rather trivially since the box and the crossed box diagrams shown in figure (5) give the

same contribution24 and thus add. The exponential follows by carefully keeping track of

symmetry factors as discussed in the appendix. The details of the resummation are left as

an exercise for the reader.

To complete the leading order calculation we use the result for the potential mode prop-

agator (54) to find

iMLO = −ie1e2

∫
dt

[d3k]

~k2
ei
~k·(~x1(t)−x2(t)). (59)

To extract the potentials from the Feynman diagrams (which are given by iM , M being the

amplitude) we use the relation

iM = −iV T. (60)

This follow the fact that diagrams arise from expanding out the matrix element in (4) and

using Wick’s theorem. Using (60) and performing the integral gives the Coulomb potential

which we previously derived by expanding the the full theory (39).

To calculate the first relativistic correction we have to include the two diagrams (4b,4c).

By inspection, we can see that these are the only diagrams which contribute at order v2

24 Notice this would not be true in a non-Abelian theory where the vertices don’t commute.
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a b

FIG. 5. Box (a) and crossed-box (b) diagram which are automatically generated from expanding

the exponential in Z.

relative to the leading order contribution. Let us consider (4b). According to our Feynmen

rules this diagrams is given by

fig (3c) = −ie1e2

∫
dt1dt2

∫
[d3k]

(~k2)2
ei
~k·(~x1(t)−~x2(t)) d

dt1

d

dt2
δ(t1 − t2). (61)

After an integration by parts the calculation of this integral is a simple extension of the inte-

gral (59). Performing this integral and then including the result for diagram (4b) reproduces

the result (41).

Once we have integrated out the potentials, we have an effective Lagrangian which is of

the form

L =
∑
i

Vi + Lrad(Ā(x)). (62)

However, our goal of eliminating the scale 1/r has yet to be achieved, as the radiation field

still know about this scale as a consequence of its coupling to the worldlines. That is, the

potential still couples distinctly to the individual worldlines. We have yet to coarse grain

the system sufficiently. To remove this scale we must multipole expand the fields to generate

an effective one body action. Note that this is not a matter of choice, to have a well defined

effective theory it is necessary that all terms in the action scale homogeneously, and if we

were not to multipole expand this criteria would not be satisfied [4].

Consider the coupling of the radiation photon. We must expand

∑
i

eiv
i
νA

ν(xi) =
∑
i

ei(v
i
νA

ν(t, 0)− viν(~xi · ~∂)Aν(t, 0) + ...) = QA0(t, 0) + ~p · ~E(t, 0) + ...(63)

where we have gone to the COM frame of the system. Q and ~p are nothing but the total
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FIG. 6. The Feynman diagram responsible for the leading order power loss.

charge and net dipole moment respectively. This is the standard dipole coupling. Keeping

higher orders in v would generate the magnetic dipole and the electric quadrapole etc. The

dipole moment is the moment of the composite object, and there is no longer any reference

to the scale of the orbit itself. Notice that the orbital scale r ∼ xi now shows up explicitly

as part of an operator coefficient. Just as the object sizes themselves show for the finite size

operators. The dependence on the orbit size is manifest, which is what insures that we can

power count in a systematic fashion.

Now let us calculate the power loss. At leading order there is only one relevant diagram

which is shown in figure (6). As an exercise, let us calculate this diagram directly using Wicks

theorem which is the long way of doing things. Usually we use a short cut where we derive

a set of Feynam rules which allow us to construct diagrams directly, but for readers who

have little to no quantum field theory experience this exercise will hopefully be instructive.

Expanding our Lint to second order 25 in the dipole interaction we see that there is only

one possible Wick contraction, and it is given by

fig(6) = −1

2

∫
dt1dt2pi(t1)pj(t2)T 〈(∂iA0(t1, 0)∂jA0(t2, 0) + ∂0Ai(t1, 0)∂0Aj(t2, 0))〉.

(64)

Using the radiation photon propagator (as usual in Feynman gauge)

∫
[d4x]eik·x〈T (Aµ(x)Aν(0))〉 =

−igµν
k2 + iε

. (65)

Rotational invariance leads to

〈(∂iA0(t1, 0)∂jA0(t2, 0)〉 = i
1

3

∫
[d4k]δij~k

2

k2
e−ik0·(t1−t2). (66)

25 There is no contribution to the vacuum persistence amplitude at leading order in the interaction since all

of the photon legs must be contracted.
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The resulting amplitude is given by

iM = i
1

2

∫
dt1dt2

∫
[d4k](−~k2

3
+ k2

0)

k2 + iε
~p(t1) · ~p(t2)e−ik0(t1−t2),

= −
∫
dt1dt2

∫
[d3k](−k2

3
+ k2)

4k
~p(t1) · ~p(t2)e−ik(t1−t2).

(67)

such that

ImM =
1

6

∫
dt1dt2

∫
[d3k] |~k| ~p(t1) · ~p(t2)e−i|

~k|(t1−t2). (68)

After weighting the integral by the energy, and using (27) we regain the standard dipole

radiation formula (46).

We have successfully reproduced the full theory results to order v2 in the non-relativistic

expansion. It is hopefully clear to the reader how to carry out the expansion to higher orders

by including higher order multipole moments. As stated above, in this trivial, solvable, case

there was no need to go through the whole exercise of separating out the scales, as the

power and potentials are calculated in many elementary texts using canonical methods.

This section hopefully served as a warm up for the payoff which will come when we consider

non-linear theories.

II. INCLUDING FINITE SIZE EFFECTS

The power of effective field theory really resides in its systematics. That is, it is a “turn

the crank method” of calculating results to any order desired. So far we have only calculated

in the zero radius limit. But we are set up to calculate to any order in R, as long as we are

willing to put in the work. The first step in calculating finite size effects is to fix CE and

CB.

A. Interpreting the Finite Size Coefficients

To determine the coefficients CE,B, we perform a matching calculation. We first choose

some object to calculate in both the full and effective theories. Whereby “full” we mean
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the complete theory, i.e. no approximations, the real microscopic theory. We then choose

our matching coefficients CE,B so that the full theory reproduces the effective theory to the

appropriate order in R. The immediate question then arises: “If I knew how to calculate

in the full theory, then why would I bother with the effective theory in the first place?”.

The answer is that we are free to choose any object to calculate when we do the matching

procedure, as long as the calculation is sensitive to the relevant operator. If we’re smart,

then we’ll match using some very simple configuration that will make the full theory side

doable. Its worth expounding upon this point. We could consider the interaction between

any number of differing shaped objects. But the only full theory calculation that we need to

do involves only one object at a time, as the matching coefficients of the finite size operators

only depend upon the details of the individual objects in isolation. Once we’ve done this

calculation to fix CE,B, then we can use the effective theory to calculate something more

complicated. This point will become more clear when we do an explicit calculation below.

Let’s see how this works in our example. To do the matching let us choose to calculate

the induced field generated by a sphere in the presence of some external field Aµ. We begin

performing the decomposition

Aµ(x) = Aµ + Aµ, (69)

where Aµ is the induced field and Aµ is the background field. When we expand the field in

this way in the effective theory,

S0
FS =

∫
dτ
(
(4CB(∂iAµ)Fiµ − 2CE(∂iA0)F0i

)
≡
∫
d4xJνeff (x)Aν(x), (70)

and we have chosen to work in the rest frame of the sphere. For simplicity we have taken

the external field to be static. Recall, we are free to match any observable as long as the

resulting solution to the matching equation is unique and non-zero. We see that the finite

size terms look like sources when we expand around the external field.

Jνeff (x) =

∫
dτ
(
evνδ4(x− y(τ))− ∂xi

[
4CBFiν(x)− 2CEη

0νF0i(x))δ4(x− y(τ))
])

(71)

We can calculate the induced field by convolving the effective source with the retarded
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Green’s function

Dr
µν(z − x) = gµν

θ(z0 − x0)

4π | ~z − ~x |
δ(z0 − x0− | ~z − ~x |). (72)

Placing the particle at the origin ~y = 0, leaves

Aµ(z) = −CB
π

zi
| ~z |3

Fi
µ +

CE
2π

η0µ
zi
| ~z |3

F0i (73)

Ei = −F 0i εijkBk = −F ij. (74)

We immediately see that these new terms in the action are responsible for generating a

polarizability. Given that a dipole (~P , ~M) generates a potential (A0 =
~P ·~r

4πr3
, Ai = ~m×~r

4πr3
), we

can then read off the induced dipole moments which are given by

~P = (4CB + 2CE) ~E : ~M = 4CB ~B (75)

and thus the Wilson coefficients are related to the electric and magnetic susceptibilities via

χE = (4CB + 2CE) : χM = 4CB. (76)

To calculate the corresponding field in the full theory we must make some choice for the

properties of the shell. For simplicity, suppose that the spheres are perfect conductors. So

we already have the polarizabilities in terms of CE and CB all we need is to calculate these

quantities for a perfect conductor where the normal magnetic and tangental electric fields

are continuous. which is a standard problem in electrostatics, vanishing of field inside the

conductor can be accomplished by placing image dipoles at the origin with magnitudes

~P = R3 ~E ~M =
R3

2
~B. (77)

Comparing this result with (75) gives

CB =
R3

8
, CE =

R3

4
. (78)
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B. Radiation Reaction

So far in applying effective field theory to the subject of classical electrodynamics, we

have done nothing but reproduce rudimentary results. Here we will discuss a topic which,

while ancient as well, is nonetheless not a closed book, namely, radiation reaction. The

question of the classical motion of a charged body turns out to be a rather vexing subject.

As the body accelerates under the influence of an external force it will radiate. The radiation

in turn back reacts on the particle which affects its equations of motion. The idea is to try

to find a differential equation which describes the motion of the body. While the solution

for the case of a point particle was solved by Abraham Dirac and Lorentz (ADL), for the

case of a finite sized object solving the problem exactly, at least analytically, seems to be out

of the question. However, if we assume that the radiation wavelength is much larger then

the object size, then we may hope that the point particle approximation is a good starting

point.

The radiation reaction equation of motion for a point particle is given by the celebrated

ADL equation. You can find numerous derivations in various textbooks [10]. The result is

mẍβ =
e2

4π

2

3
(
...
x β − ẋβ(ẍ · ẍ)) (79)

We should be able to re-derive this result using our effective field theory developed in this

chapter. This is accomplished by applying the Euler-Lagrange to W [J ]. However, we need

to modify our formalism slightly in order to study these equations of motion. In the end the

needed change will be only slight and intuitively obvious.

We begin by noticing that calculating conservative equations of motion, i.e. those due to

potentials, the iε prescription is irrelevant since potential propagators are off-shell. However,

as is hopefully clear to the reader by now, when we are interested in the effects of radiation,

the pole structure is crucial. So far when it comes to radiation all we’ve been concerned

about is the power output. That is, we’ve asked the question, given some initial state with

zero radiation, what is the probability of finding a final state with some fixed final state?

Now however, we are no longer interested in calculating transitions from in to out states.

We are interested in calculating instantaneous quantities.

To treat this subject properly one needs to use the so-called “in-in” formalism [? ]. A
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discussion of this topic goes beyond what we wish to accomplish in this text. However, it

is not difficult to intuit the proper method of calculating. First off we should replace the

Feynman propagator by the retarded propagator. This seems obvious since the Feynman

propagator has support outside the light-cone which would lead to acausal equations of

motion. The retarded propagator is given by

DR
µν(x) ≡ 〈Aµ(x(τ))Aν(x(τ ′))〉R =

1

2π
δ((x(τ)− x(τ ′))2)θ(x0(τ)− x0(τ ′)) (80)

Furthermore, when we apply the equations of motions we should vary only the vertex which

is at the latest time. The leading diagram is shown in figure (7). The amplitude is given by

iM = −e
2

2

∫
dτdτ ′vµ(τ)vν(τ

′)〈Aµ(τ)Aν(τ ′)〉R

(81)

Varying this action with respect to yβ(σ) (with the respect to latest σ) leads to the Euler-

Lagrange equation

mÿβ(σ) =
e2

2

d

dσ

∫
dτvµ(τ)〈Aµ(τ)Aβ(σ)〉R −

e2

2

∫
dτvµ(τ)vν(σ)〈Aµ(τ)

d

dyβ(σ)
Aν(σ)〉R.

(82)

To evaluate this expression we choose the affine parameter to be z such that z2 = (y(τ)−

y(σ))2. This will allow us to evaluate the integral. First we replace d
dy(σ)

by − d
dy(z)

and then

use
d

dyβ(z)
=
yβ(z)− yβ(σ)

z

d

dz
. (83)

Since the propagator is proportional to δ(z) we may expand the integrand around z = 0 and

integrate by parts. The resulting equations of motion are

mÿβ =
e2

4π

(
2

3
(
...
y β − ẏβ ÿ · ÿ)−

∫
dzδ(z)

ÿβ

2z

)
. (84)

Note that for the first two term the derivatives have been re-expressed in terms of the proper

time. When the proper time is the affine parameter the expression simplifies due to the many

identities which follow from the constraint ẏ2 = 1.

This equation does not include the external force necessary for the initial acceleration.
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We see that the last term is divergent, but it can be absorbed into the mass. This had to

be the case since all short divergences must be local and must correspond to some term

in the action, since the action includes all possible terms consistent with the symmetry.

Note that if we regulate the integral in a way which breaks one of our symmetries then this

statement no longer holds, and it one might need to include terms in the action which are

not invariant under the broken symmetry group to absorb the divergence. We see that after

this renormalization this reproduces (79).

Now consider the power corrections corresponding to finite size effects. We have already

considered the first such operators and they are down by R3. However, as previously dis-

cussed, if we have external forces, as we must here, we should include the operator (3).

In addition, we must consider operators which are independent of the gauge field that are

allowed by the symmetries such as [7]

O = a2. (85)

This operator accounts for the conservative part of the finite size effects. However even

though this term scales as R and is thus parametrically large compared to (3), its effects

will be numerically small [6], . The dominant contributions will come from the operator

whose Wilson coefficient scales as R2,

Oa =
1

v2
vµaνFµν . (86)

Physically this operator represents the dipole moment induced upon acceleration due to the

finite size of the sphere. The factor of inverse velocity is necessary for RPI. Note that a

dipole moment will be induced even for a constant acceleration.

We may now use this to calculate the first correction to the ADL equation. This correction

follows from applying the Euler-Lagrange equation to the diagrams show in figure (8). In

analyzing this diagram, we must keep track of the time ordering of the vertices, since only

the later vertex should be varied, given that the earlier vertex generates the radiation which
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FIG. 7. The Feynman diagram responsible for the leading order radiation reaction force. The

vertices are time ordered with time increasing to the right.

a b

FIG. 8. The Feynman diagrams responsible for the first finite size correction. The heavy dot is an

insertion of Oa, and time runs from left to right. The vertex furthest to the right is the one which

is varied when calculating the equations of motion.

induces the force 26 A rather tedious, yet straightforward calculation leads to the result [5]

mÿβ =
4eCa

3
(yβ(5) − y

ν
(5)ẏν ẏ

β + 2ẏ · y(3)(y
β
(3) − y

ν
(3)ẏν ẏ

β)− 2ÿβ(5)y
ν
(4)ẏν). (87)

where y(n) denotes the n’th derivative. The matching procedure fixes Ca = e/6 for a spherical

shell [5].

C. The Force Between Neutral Bodies

We may utilize our effective theory to calculate the interaction between neutral bodies

which have no permanent mulitpole moments. Of course classically there will be no forces

between such objects, and since we are presently discussing classical effective theories this

subject is slightly off topic. However, it will allow us to explore some new ideas in effective

field theories that we will utilize when we come to GR.

Since we are interested in neutral objects, the action will be given by 27

S =
∑
i=1,2

∫
dτi(mi + Ci

E

√
v2FµνF

µν +
Ci
B√
v2
i

vµi Fµνv
i
αF

αν)−
∫
d4x

1

4
FµνF

µν . (88)

Where we have included only the leading order finite size corrections and vµi = dxµ

dτi
. We will

26 To see a proof of this seemingly ad-hoc, yet physical, procedure use must be made of the “in-in formalism”

see [? ].
27 Again the terms which are independent of the gauge field will be suppressed in the non-relativistic limit.
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FIG. 9. The Feynman diagram responsible for the leading order force between neutral objects. The

dot represents an insertion of either one of the finite size operators that arises at leading order.

be interested in static spheres so the kinetic term will not play any role below.

The dominant force, which arises at O(R6), will come from the diagram shown in figure

(9). On dimensional grounds we can see that this diagram leads to a potential which scales

like

V ∼ R6

r7
(89)

since it involves one insertion of a finite size operator, scaling as R3, on each line. Notice that

this diagram has a closed photon loop in it. This is a clear sign that the result is actually

quantum mechanical. To understand this let us recall the origin of the effect. The force

arises as a consequence of the fact that microscopic 28 objects with no multipole moments

can fluctuate quantum mechanically into states with non-vanishing moments, resulting in a

force between neutral objects. Alternatively, we may think of the effect as arising from a

vacuum fluctuations in the electric field inducing a virtual dipole [12] in the atoms.

We should expect the scaling (89) to hold as long as the distance between the particles is

large compared to 1/∆E, where ∆E is the energy of the first excited state of the sphere(s).

When we constructed the effective theory we assumed that the only relevant scale was the

size of the particle. We have integrated out all the excitations assuming that we wont be

probing the system at distances short enough for any excited states to be relevant. For many

situations of physical interest, this is not the case, so we will have to return to this issue in

the next section.

Before moving on with the calculation, the discussion in the last paragraph brings up an

important point. Unless we know all of the scales in the full theory there will always be

some uncertainty in the scale at which it breaks down. In our example of the spheres, it

is fair to assume that the first excited state will have a gap of order ∆E ∼ 1/R, but this

need not be the case. In fact, the sphere could be a molecule, or a macroscopic object. The

28 This force can also manifest itself on larger scales as well and is responsible for the Geckos remarkable

climbing abilities.
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theory should apply equally well in both case. But it is clear that the hierarchy of scales

in these cases will be quite disparate. Suppose we were considering Hydrogen. In this case

the breakdown scales will be the energy splittings (∆E ∼ α2me). Thus the error in any

such EFT calculation will only be suppressed by powers of 1/(λ∆E) instead of (R/λ) where

λ is the typical scale for the observable of interest. In our case here λ = r, the distance

between the spheres. Anothere way to think about this mismatch is to note that when we

naively assume that higher dimensional operators are down by powers of R, what were really

assuming is that the gap in the energy spectrum is set by the size, which would be the case

for a simple system like a particle in a box.

For now let us assume that we are free to consider distances long enough that our EFT

is valid. We will begin by calculating the result for the diagram in figure (9), assuming for

the moment that CB = 0 and that the two particles are identical. The amplitude is given

by

iM = 2(i2)× C2
E

∫
dt1dt2〈Fµν(t1)Fρσ(t2)〉〈F µν(t1)F ρσ(t2)〉. (90)

It behooves us to calculate in coordinate space where

〈T (Aµ(x)Aν(0))〉 =
gµν
4π2

−i
x2 − iε

(91)

and we will need the result

∂xµ∂
y
ν

1

(x− y)2
= 2(

ηµν
(x− y)4

− 4
(x− y)µ(x− y)ν

(x− y)6
). (92)

Then

Diag = iM = −C2
E

∫
dx0dy0

48

π4((x0 − y0)2 − (~x− ~y)2 − iε)4

= i
15

π3r7
T = iV T (93)

where the time interval T ≡
∫
dt and | ~x− ~y |≡ r. So that

V = −15C2
E

π3r7
. (94)

This force is usually referred to as the Casimir-Polder effect.
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Notice that the photons need not have zero energy and are thus are not instantaneous.

This occurs even though there is no radiation, as the sources can be completely static.

In the literature one often sees this referred to as a retardation effect, although in this

book we would not call it that. We reserve that terminology for corrections to the static

propagator. In momentum space we would find that the effect is coming from the purely

quantum mechanical soft region of momentum space which was discussed in the chapter on

non-relativistic gauge theories. It is important to note that this example

D. The Van Der Vaals Force

Suppose we start to probe the system at distances small enough that we excite the

internal dynamics above the ground state. We may “integrate back in” these excited states

by introducing new degrees of freedom on the world-line. However, we need to do so in

a systematic fashion. That is, we need to make sure that whatever we add to the action,

we know its scaling in the relevant hierarchy and we furthermore know the size of the next

correction. We introduce a new dynamical variable O(t) that lives on the world line that

couples in a way which is consistent with the relevant symmetries which are: translational,

rotational and U(1) gauge invariance. If we wished we could covariantize the action to make

it consistent with relativity.

How do we interpret the operator O(t)? This operator, acting on the Hilbert space of the

particle, should excite the lowest lying excitations. In our case we are interested in allowing

for a fluctuating dipole moment, so the relevant operator will transform as a vector under

the rotation group and is odd under parity, thus we label it as ~p(t) . Indeed, it is hopefully

clear to the reader that the multipole expansion is relevant here, and if we wished we could

calculate, in a systematic fashion, the effects of higher order multipole moments which will

be suppressed by powers of 1/(∆E r). The operator ~p(t) will act on a Hilbert space carried

by the worldline, and its coupling will be given by the interaction

S =

∫
dt~p · ~E. (95)

The effective theory knows nothing about the dynamics of the electric dipole ~p(t). We will

have to input that information at some future point.
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Since we’ll be working in the non-relativistic limit, the electric field will be decomposed

into radiation and potential pieces, as discussed in the previous section. Thus this interaction

will lead to new power loss mechanisms via radiation. Here we will only be interested in the

static force between neutrals, but the inclusion of radiation effects would follow in a manner

similar to the cases discussed in the previous section . Note that there is also a magnetic

dipole term which arises at the same order in 1/(∆Er), but is suppressed since the magnetic

field couples to angular momentum and we assume that the constituents of the sphere are

non-relativistic 29.

What diagrams contribute to the potential? The fact that the worldline now carries

degrees of freedom implies that box topologies are no longer considered iterations of the

leading order exchange. The leading order potential will arise from two insertions of dipole

operators on each line. 〈pi(t)〉 vanishes under our assumption of spherical symmetry so one

insertion of the interaction will not suffice. The box diagram (see (5)) gives

Box = −1

4

∫
dt1dt2dt

′
1dt
′
2〈T (pa(t1)pb(t2))〉〈T (pc(t

′
1)pb(t

′
2))〉〈T (Ea(t1)Ec(t

′
1))〉〈T (Eb(t2)Ed(t

′
2))〉

(96)

The 1/4 comes from the fact that we have two identical vertices for both sides so we have to

expand out the time evolution operator to quadratic order in both interactions. Bold letters

have been used to distinguish between worldlines, as the particles need not have the same

properties.

Write the time ordered product for the dipoles as

〈T (pa(t1)pb(t2))〉 =
1

2πi

∫
dτ

1

τ − iε
∑
n

〈0 | pa(0) | n〉〈n | pb(0) | 0〉e−i(E0−En+τ)(t1−t2)

+
1

2πi

∫
dτ

1

τ − iε
∑
n

e−i(E0−En+τ)(t2−t1)〈0 | pb(0) | n〉〈n | pa(0) | 0〉

(97)

where we have used the integral representation for the theta function. The sum over in-

termediate energy eigenstates includes degenerate states. The box diagram is then given

29 The coupling to intrinsic spin has no explicit powers of the velocity, but is still suppressed as can be seen

by the explicit powers of 1/c in the magnetic moment.
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as

Box =
1

16π2

∫
dt1dt2dt

′
1dt
′
2

∫
[d4k]

k2
0 − ~k2 + iε

[d4p]

p2
0 − ~p2 + iε

Nijkl(k, p)e
−ik0(t1−t′1)+i~k·(~x1(t1)−~x2(t′1))e−ip0(t2−t′2)+i~p·(~x1(t2)−~x2(t′2))∑

n,m

∫
dτ

1

τ − iε
〈0 | pa(0) | n〉〈n | pb(0) | 0〉(δiaδjbe−i(E0−En+τ)(t1−t2) + δibδjae

−i(E0−En+τ)(t2−t1))

×
∫
dτ ′

1

τ ′ − iε
〈0 | pc(0) | m〉〈m | pd(0) | 0〉(e−i(E0−Em+τ ′)(t′1−t′2)δckδdl + δclδdke

−i(E0−Em+τ)(t′2−t′1))

(98)

Nijkl is the tensor that arises from

〈T (EiEk)〉〈T (EjEl)〉 = 〈T ((∂iA0−∂0Ai)(∂kA0−∂0Ak))〉〈T ((∂jA0−∂0Aj)(∂lA0−∂0Al)〉 (99)

which we will return to in a moment. Next we perform the time integrals ,

Box =
(2π)3

16π2
δ(0)

∫
[d4k]

k2
0 − ~k2 + iε

[d3p]

k2
0 − ~p2 + iε

Nijkl(k, p)e
i~k·(~x1−~x2)ei~p·(~x1−~x2)

∑
n,m

〈0 | (pa(0) | n〉〈n | pb(0)) | 0〉(δiaδjb
1

En − E0 − k0 − iε
+ δibδja

1

En − E0 + k0 − iε
)

× 〈0 | (pc(0) | m〉〈m | pd(0)) | 0〉( 1

Em − E0 + k0 − iε
δckδdl + δclδdk

1

Em − E0 − k0 − iε
)

(100)

Following an analogous calculation it is straightforward to show that the cross-box diagram

gives the same contribution as a consequence of the fact that the initial and final states are

identical on both sides of the diagram.

Let us pause at this point to discuss the power counting. This integral has two relevant

external scales: 1/r and ∆E, the energy splittings. By studying the pole structure we can

see that the k0 integral will get contributions from both of these scales and on dimensional

grounds |~k|∼ 1/r. Now since we are interested in the regime where ∆E � 1/r the integral

will be dominated by the region where k0 ∼ ∆E, so to leading order we may drop k0 in the

photon propagator. Thus the photon is a potential mode and instantaneous. We will return

to the systematics of this approximation in the next section. If we only keep the leading
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order terms in k0, we have

Nijkl = kipjkkpl. (101)

Dropping terms which have poles on the same side of the k0 real axis we find

Box = i
2

4× 9

(2π)2T

4π2

∫
[d3k]

~k2

[d3p]

~p2
Niikk(k, p)e

i~k·(~x1−~x2)ei~p·(~x1−~x2)

∑
n,m

〈0 | (pA(0) | n〉〈n | pA(0)) | 0〉 × 1

−2E0 + En + Em
〈0 | (pB(0) | m〉〈m | pB(0)) | 0〉).

(102)

To evaluate this we will need the integral

I1 =

∫
[d3p]

(
pipj
p2

)
ei~p·~r = ∂i∂j

1

4πr
=

1

4πr3
(δij − 3

rirj
r2

), (103)

where we have used spherical symmetry to reduce the matrix elements and then re-express

them in terms of the dipole moment along the z axis to get the final result into the text

book form

−iVbox(r) = 2× i6
4

1

(4π)2r6

∑
n,m

| 〈0 | pz | n〉 |2| 〈0 | pz | m〉 |2

−2E0 + En + Em − iε
. (104)

Adding in the crossed box gives the final result

VV dV (r) = − 3

8π2r6

∑
n,m

| 〈0 | pz | n〉 |2| 〈0 | pz | m〉 |2

−2E0 + En + Em
(105)

Which is the standard result that one could get, much more simply, using simple time

independent quantum mechanical perturbation theory. Notice that we can drop the iε since

the pole is never reached.

Notice that our method of calculation violated a basic precept of effective field theory

in that the integrand did not scale homogeneously in the power counting parameter. That

is because when we started the calculation we were working in some hybrid theory where

we had degrees of freedom living on the worldline and we had yet to sort out the power

counting. Now that we know that the photon exchange is instantaneous (which we might

have guessed with a little theory) we could go back and work at the level of the action
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FIG. 10. The Feynman diagram on the left are the full theory diagrams. The intermediate line is

off shell and can be shrunk to a point and generates the F 2 operator.

and separate the soft radiation and potential modes, to generate interactions which scale

homogeneously. This will be discussed later in the chapter.

III. MATCHING THE COEFFICIENTS CE AND CB

When we work with the theory (88), valid for 1/r � ∆E, we have two unknown co-

efficients when we include the leading order finite size effects, CE and CB. If we did not

know the underlying theory, then this is about all we could say. We would have to fit the

coefficients of the finite size operators using the data. This is not to say we would not have

predictive power, since there are numerous observables but only a fixed number of coeffi-

cients at any finite order. However, we would not really know when the theory broke down,

we could only make an educated guess that it would be near r ∼ R, since a naive guess

would be ∆E ∼ 1/Ri. The only way we would know for sure would be to compare our

predictions with experiment for smaller and smaller values of R, until our predictions fail

by factors of order unity.

However, we do know the the underlying theory, it is given by the action (95). Thus we

can perform a matching procedure to fix the coefficients CE, CB as well as the coefficients

of all other higher dimensional operators in the action. The matching is performed by

calculating some quantities in the full and effective theories. We then expand the full theory

result to the order in the power expansion of interest and choose the matching coefficients

to reproduce the full theory result. Note that we are free to match any calculable matrix

element, which need not even be physical.

For the problem at hand, we will choose the scattering of low energy (i.e. k ∼ 1/r)

photons off of the worldline. An incoming photon 30 will polarize the particle prior to it re-

radiating. The relevant diagrams are shown in figure (10). The result of these two diagrams

30 We can choose to match with physical radiation photons or off shell potential photons since gauge invari-

ance implies that there is only one matching coefficient.
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will fix the matching coefficients. The sum of these two diagrams is given by

iM = 2×
∫
dtdt′

(i)2

2
〈T
(
~p(t) · (~εk0 − ~kε0)~p(t′) · (~ε?p0 − ~pε?0)

)
〉e−ip·x(t′)eik·x(t),

(106)

The two follows from the fact that the diagrams give the same result.

Expanding out the time ordered product as in the previous calculation we find

iM = −(4πi)δ(k0 − p0)
∑
n

〈0 | pi(0) | n〉〈n | pj(0) | 0〉
E0 − En − k0 − iε

(εik
0 − kiε0)(ε?jp

0 − pjε?0)ei~p·~xe−i
~k·~x

≈ −(4πi)δ(k0 − p0)
∑
n

〈0 | pi(0) | n〉〈n | pj(0) | 0〉
E0 − En

(εik
0 − kiε0)(ε?jp

0 − pjε?0)ei~p·~xe−i
~k·~x + ...

(107)

Where we have expanded in small k0. If we were interested in matching to operators with

more then two derivatives we would have to keep higher orders in k0.

The goal now is to find operators in the effective theory which will reproduce this result

to the order we are interested. Let us consider the contributions in the effective theory from

the operators F 2 and (v ·F 2). For incoming momentum polarization (k, ερ(k)) and outgoing

(p, εσ(p))

iMF 2 = 2× iCB(2π)δ(k0 − p0)e−i
~k·~xei~p·~x(k[µερ])(p[µε

?

ρ]) (108)

iMv·F 2 = 2× iCE(2π)δ(k0 − p0)e−i
~k·~xei~p·~xvµ(k[µερ])vα(p[αε?ρ]) (109)

The overall factors of two coming from the fact that we can contract the external photons

in two ways, both of which give the same result. To solve for the two unknowns we may

choose two different final state polarization configurations. Let us choose two (unphysical)

timelike polarizations ε0ε0

iMF 2 = 2× iCB(2π)δ(k0 − p0)e−i
~k·~xei~p·~xε0ε

?0(−2~p · ~k)) (110)

iMv·F 2 = 2× iCE(2π)δ(k0 − p0)e−i
~k·~xei~p·~xε0ε

?0(−~p · ~k)) (111)
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Comparing to the full theory side (107), and using our assumption of spherical symemtry

we can exract

(CE + 2CB) = −
∑
n

〈0 | pz(0) | n〉〈n | pz(0) | 0〉
En − E0

(112)

Now recall we have previously concluded in section (76) that electric susceptability is given

by

χE = (2CE + 4CB) = −2
∑
n

〈0 | pz(0) | n〉〈n | pz(0) | 0〉
En − E0

, (113)

which agrees with the standard text book result for the static polarizability. To isolate the

individual coefficients we then need to calculate another chose of observables, such as the

scattering involving spatial polarizations.

IV. POWER CORRECTIONS

A. Corrections to the Casimir Polder Result

Our leading order finite size operators start at O(R3)31 , and the first corrections to our

calculation will come from the next set of allowable higher dimensional terms. These terms

are restricted by gauge and Lorentz invariance. In addition, when going to higher orders we

also have to consider charge conjugation invariance which reduces to the statement that the

action should be invariant under 32

Aµ → −Aµ. (114)

Finally, we have reparameterization invariance which can necessitate the inclusion of factors

of
√
v2 in the operator. We have one other constraint at our disposal. We may eliminate

operators which vanish by use of the equations of motion. So for instance, any operator

which contains ∂µF
µν may be set to zero. To illustrate this point in a simple example let’s

consider a scalar field instead of the photon. Furthermore, let us suppose we added a term

to the free worldline action such that

S = −
∫
d4y

1

2
φ∂2φ+

∫
dτCRnF (φ)∂2φ, (115)

31 Again ignoring terms which vanish in the static limit.
32 The current must transform as well.
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where C is dimensionless and n is fixed by the units of F . We can see that we can eliminate

this term via the field redefinition

φ(y)→ φ(y) + CRnF (φ)δ4(yµ − xµ(τ)). (116)

Note that, in general, this transformation will generate new operators on the world line. For

instance plugging in the shift into the worldline operator itself will generated a, divergent,

order O(R2n) contribution. But since we have to write down all possible operators to begin

with, that operator was already there anyway. This shift will renormalize the (unknown

until fixed) coefficient of that operator. One can think of this as a change of basis. There is

some freedom in choice of world line operators, and the coefficients will depend upon that

choice of basis.

It is interesting to ask whether or not we are free to eliminate operators which vanish by

use of the leading order equations of motion for the worldline itself? That is, suppose we

had a term in the worldline action of the form

S =

∫
dτaµF µ(x, v) (117)

where aµ is the four acceleration. Can we drop this term if there are no external forces? The

answer is yes, but [14] the appropriate coordinate transformation will lead to a change into

a non-inertial frame. In general relativity this is of course a non-issue [15]. Note however,

that at the level of the equations of motion, we may indeed use the lower order equations of

motion in higher order corrections. This is sometimes called “order reduction”, and is really

just implementing perturbation theory. In fact, it is crucial that when solving the equations

of motion, that all finite size effects be treated as perturbations. Typically the finite size

effects lead to higher time derivatives of the worldline coordinate, and if we were to treat

these as leading order contributions we would run into all sorts of pathologies.

We are now in a position to write down the first corrections the action. For our neutral

particle interaction example, we may ignore acceleration dependent terms. In which case

the first terms which have been left off in the action (2) will contain four photon fields. The

enumeration of the these terms will be left as an exercise for the reader.
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B. Corrections to the Van der Waals Result

There are multiple sources of corrections to the classic Van der Waals result. We have

restricted ourselves to one particular expansion parameter, ∆Er, ignoring corrections from

the magnetic dipole moment which we took to be suppressed by an additional parameter

v, the velocity of the internal constituents of the composite particle. If we wished we could

include those effects with relative ease by including the coupling to the magnetic field.

Note that these velocity dependent corrections should be distinguished from the velocity

dependent corrections which would arise from the motion of the composites themselves.

These corrections could also be easily included by covariantizing the theory. We will discuss

such a covariant theory in the next chapter.

If we continue to restrict ourselves to only ∆Er corrections, the next order multipole

moment would be the electric quadrapole Qij which couples via the interaction

S =

∫
dtQij∂iEj. (118)

On dimensional grounds, since Qij ∼ x2, this operator will be suppressed by one power

of R/r relative to the dipole. The inclusion of such power correction effects is left as an

exercise.

The existence of additional sources of power corrections follows from our investigation of

the box and crossed box diagrams. We noticed previously that the result in (100) does not

scale homogeneously in our expansion parameter. These diagrams get contributions from

two regions of the momentum integral

k0 ∼| ~k |∼ 1/r,

k0 ∼ ∆E, | k |∼ 1/r. (119)

The reason we are still getting this mixing of scales is that we have one more step to

perform, before reaching our final low energy theory which only contains the lowest energy

scale ∆E � 1/r. We must integrate out the scale 1/r. To accomplish this goal we now

match onto an effective theory, which in this case is nothing but a set of potentials. In a

sense the lowest energy theory is rather simple since there are no photons left. The only

dynamical degrees of freedom left are the word-line excitations over which we will sum.
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In this case the matching procedure is rather trivial because the effective theory has no

diagrams to calculate. So we all we have to do is to calculate in the full theory and expand

in powers of δ ≡ ∆Er. This will generate a set of potentials. Fortunately, we have already

done all the work. The relevant integral is given by (100). To match we calculate this

integral and then expand it in δ. Or we can asymptotically expand the integrand to pick

out the relevant pieces as we shall now do.

Consider matching at next order. As previously discussed there are two regions of k0

space which dominate the integral. The leading piece came from the region where k0 ∼ ∆E

and | ~k |∼ 1/r and gave us the Van der Walls result. Going to next order in k0/ | ~k | (staying

in this region) we have two contributions. One from the time derivative terms (O(k2
0)) we

drop in (99), and the other from expanding the denominator.

The result of keeping the O(k2
0) pieces of the numerator is to use

Nijkl = −((E0 − En)2δikkjkl + (E0 − Em)2δjlpjpl) (120)

in equation (102). However this leads to a contribution proportional to δ3(~x1−~x2) and thus

vanishes.

So the first power correction comes from expanding the denominator.

iMfull ≈ 2× (2π)3

16π2
δ(0)

∫
[d4k]k2

0

~k4

[d3p]

~p2
Nijkl(k, p)e

i~k·(~x1−~x2)ei~p·(~x1−~x2)

×
∑
n,m

〈0 | (pa(0) | n〉〈n | pb(0)) | 0〉(δiaδjb
1

En − E0 − k0 − iε
+ δibδja

1

En − E0 + k0 − iε
)

× 〈0 | (pc(0) | m〉〈m | pd(0)) | 0〉( 1

Em − E0 + k0 − iε
δckδdl + δclδdk

1

Em − E0 − k0 − iε
),

(121)

where the factor of two comes from the fact that we can expand either denominator. This

integral is down by (∆Er)2 relative to the leading order result. Performing the energy

integral by contours contracting all the indices and utilizing the tensor integral (103), the

correction of order (∆Er)2 stemming from dipole fluctuations is given by

V ret
V dW = − 3

16π2

1

x4

∑
n,m

| 〈0 | (pa(0) | n〉 |2| 〈0 | (pc(0) | m〉 |2
[
(
(En − E0)2 + (Em − E0)2

En + Em − 2E0

).

]
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Physically we may interpret this correction as being a retardation effect.

The attentive reader should be puzzled by this result. What seems odd is that we have

a sum over exicted states that is not restricted. It is natural to ask, in what sense is this

correction suppressed? We claimed it was down by (∆Er)2, but what precisely do we mean

by ∆E. We assumed that we are probing the system at short enough wavelengths that some

set of excited states act as long (relative to the time scale 1/r) lived intermediate states. But

surely there will be some subset of the excitations which will not satisfy this criteria. Those

states should not be included in the sums. We should truncate the sum, and not include any

state En for which En−E0 > 1/r. On the other hand these additional states will have some

effect, albeit suppressed, on the force law. How do they show up? The answer is that they

get integrated out, and generate the operators F 2 and (v.F )2. So if we restrict ourselves to

the electric dipole sector of the theory, then we have the following result for the corrections

to force law. Assuming, again, for the sake of simplicity that the two particles have the

same excitation spectrum

δV = −15CE(Ec+1)2

π3r7
+

3

32π2

1

r4

∑
n,m
| 〈0 | pa(0) | n〉 |2| 〈0 | pc(0) | m〉 |2

[
(

(En − E0)2

En + Em − 2E0

).

]
(122)

where the barred sum is over all states whose energy is less then (Ec−E0) > 1/r. The most

energetic of such states is labelled by Ec. The Wilson coefficient C(Ec+1) for the Casimir-

Polder term is fixed by the matching calculation (112) but now the sum only include states

whose energy is above Ec.

So in the end which of the two terms in (122) dominates? The ratio of the two terms

scales as

VC−P/Vret ∼ 1/(r3(E0 − Ec+1)2(E0 − Ec)). (123)

Also note that in physical systems the contributions of excited states in the sum are sup-

pressed by small overlap factors 〈m | p | 0〉, so the sum over states is really dominated by

the first excited state. This factor also suppresses coefficients C(Ec+1). Finally we may ask

what happens in the regime where 1/r ∼ E0? In this case we can no claim that the potential

region dominates and we can expand the integrand (100) however, there is no reason why

the multipole expansion should be tossed out at this point. We can see this by considering

Hydrogen in the limit where 1/r ∼ E0 ∼ α2me, and rB/r ∼ α, where rB is the Bohr radius.
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V. GENERALIZING THE THEORY

This world line theory can be generalized to include multiple sources of higher order

effects. For instance, we might be consider absorptive effects which arise as a consequence of

the finite life-times of intermediate states. We will consider such effects when we study power

loss for inspiralling black holes in the next chapter. Relativistic effects are also includable

by covariantizing the theory. This introduces a complication due to the fact that the dipole

(e.g.) degree of freedom must be elevated to a four-vector which introduces an extra degree

of freedom. To make sense of this theory one must consistently impose a constraint on the

system. In the next chapter we will study spinning black holes which will serve of such an

example of a constrained system. Finally, non-linear effects can be accounted for by the

inclusion of higher dimensional operators such as

O1
NL = F 4. (124)

These operators will have coefficients which will have to be matched onto some model of the

full theory.

VI. APPENDIX: CALCULATING THE VACUUM PERSISTENCE AMPLITUDE

USING FEYNMAN DIAGRAMS

This appendix is meant to allow those who have little or no experience using Feynman

diagrams to calculate the potentials discussed in this chapter. Readers interested in more

details are urged to consult [16] or some equivalent text. We start with the definition of

the vacuum persistence amplitude33 (partition function) for a photon (Aµ) coupled to a

source J and split the Lagrangian into a leading order (kinetic piece) L0 and an interaction

Lagrangian LI .

Z[J ] =

∫
DAµe

i
∫
d4x(L0(A,∂A)+λLI(Aµ)+JµAµ) (125)

where we include the gauge fixing term in the leading order action

L0(A, ∂A) = −1

4
F 2 − 1

2
(∂ · A)2. (126)

33 We will ignore the denominator in the definition since it is independent of the sources and only serves to

change an irrelevant overall factor.
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The interaction will be treated in an expansion in λ and LI is a polynomial in Aµ. Thus we

may write

Z[J ] = ei
∫
d4xLI( δ

δJ
)

∫
DAµe

i
∫
d4x(L0(A,∂A)+JµAµ) (127)

Since L0 is quadratic in the fields, we may perform the Gaussian integral over the fields

leaving

Z[J ] = ei
∫
d4xLI( δ

δJ
)e−

i
2

∫
d4xd4y(Jµ(x)GµνF (x−y)Jν(y)). (128)

This is the master formula from which all diagrams will follow. For now we will leave the

currents arbitrary, and at the end we will set

Jµ(x) =
∑
i

∫
dτieiv

µ
i (τi)δ

(4)(xµ − yµi (τi)), (129)

in accordance with the theory introduced in this chapter.

The finite size effects are incorporated into LI . Let us consider the case where

LI =
∑
i

∫
dτiC

i
EF

2(x(τi)) = −2Ci
E

∑
i

∫
dτiAµ(x(τi))(∂

2gµν − ∂µ∂ν)Aν(x(τi)) (130)

Instead of working out a general set of Feynman rules we will consider one simple example.

It will hopefully be clear how the rules follow from a general interaction.

Let us now see how we can reproduce the result for the Casimir-Polder potential (94).

Since we are interested in the potential between the worldlines, the leading order contribution

will come from expanding LI to linear order in each of the Ci
E. To this order we have

Z[J ] |C2
E

= 4(i)2

∫
dτ1dτ2C

1
EC

2
E(∂[µ

δ

δJν](x(τ1))
)(∂[µ δ

δJν](x(τ1))
)(∂[ρ

δ

δJσ](x(τ2))
)(∂[ρ δ

δJσ](x(τ2))
)

e−
i
2

∫
d4xd4y(Jµ(x)GµνF (x−y)Jν(y))

(131)

There are various ways in which the functional derivatives can hit the exponential, and

each possibility corresponds to a particular Feynman diagram, some of which give identi-

cal contributions, and others of which will give irrelevant (divergent) constants which are

independent of the spatial separations of the wordlines. For instance, when two derivatives
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FIG. 11. The Feynman diagram corresponding to the contribution from (133).

acting with the same wordline argument hit the same quadratic, i.e.

δ

δJν](x(τi))

δ

δJν](x(τi))

∫
d4xd4y (Jµ(x)Gµν

F (x− y)Jν(y)) , (132)

we get a contribution of the form

(4i2)(−i)2

∫
dτ1dτ2C

1
EC

2
E(∂2gµν − ∂µ∂ν)GF

µν(0)(∂2gρσ − ∂ρ∂σ)GF
ρσ(0).

(133)

Now we can draw the corresponding Feynman diagram. For each photonic Greens function

−iGF (x − y) we associate a curly line which extends from x to y. We may write the two

worldlines as solid lines which traverse the top and the bottom of the diagram. For the con-

tribution (133) we have GF (0) which arises from GF (x(τi)− x(τi)). Thus the corresponding

diagram is show in figure (11). These diagrams are divergent and, as should be clear, inde-

pendent of the distance to the worldline, they contribute an overall constant that plays no

physical role34.

The first relevant contribution comes from the diagram (9). This diagram arises from the

contribution where one functional derivative from each worldline hits the same quadratic.

A little algebra shows that there are two ways in which this can occur and the resulting

contribution is given by

2× 4× (4i2)(−i)2

∫
dτ1dτ2C

1
EC

2
E(∂x1µ ∂

x2
[ρ Gνσ](x1 − x2) + ∂x1ν ∂

x2
[σ G

F
µρ](x1 − x2))∂µx1∂

ρ
x2
GF
νσ(x1 − x2).

(134)

where the factor of two comes from the ways in which we can get this contribution after

34 The divergent constant can be absorbed into the masses.
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FIG. 12. Two F 2 vertex insertions which generate all possible diagrams at this order.

differentiating, and the four comes from the anti-symmetry property of the field strength.

In retrospect we can see that we can generate all the possible contributions by drawing

two vertices each with two photon lines coming out of them as shown in (12), and then

contracting the lines in all possible ways. The possibilities corresponds to the ways in which

the functional derivatives can hit the exponential.

Doing things in this way is rather cumbersome. There is a simple mnemonic device which

greatly simplifies matters. If were interested in a contribution (diagram) coming from two

insertions of the F 2 operator, then after expanding the interaction Lagrangian piece of the

exponential, we may write the contribution as an expectation value namely

(i2)

∫
dτ1dτ2〈FµνF µν(x1)FρσF

ρσ(x2)〉 (135)

Then we associate pairs of Aµ with a factor of −iGF which we write as

−iGµν
F ≡ 〈A

µAν〉, (136)

and contract the pairs in all possible ways. This is called Wicks’ theorem and follows from

expanding the expression (128).

The contribution, corresponding to figure (11) gives the product of GF (0)2 which we have

already discussed while the other is given by

2× (i2)

∫
dτ1dτ2〈Fµν(x1)F µν(x2)〉〈Fρσ(x1)F ρσ(x2)〉. (137)

where the two follows from the fact that we have two ways of contracting which are identical.

Factors such as this are usually called “symmetry factors”. This final result reproduces the

result (90).
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When doing simple diagrams such as this one it is easy to simply expand out the ex-

ponential and use Wicks’ theorem to contract the fields. However, when we consider more

complicated diagrams it is simpler to first write down, all the possible diagrams and then

use a set of Feynman rules to write down the corresponding integral expression.

Let us consider working in the effective non-relativistic theory to see how we can reproduce

to the electromagnetic potential up to O(v2). The leading order Lagrangian is given by

L0 =

∫
dt

∫
~k

1

2
~k2Aµ

~k
A−~kµ(t) (138)

and the interaction, or perturbing, Lagrangian is given by

LI =
∑
i

∫
dtiei

∫
~k

ei
~k·~xi(ti)A~k0(ti)−

∑
i

ei

∫
~k

ei
~k·~xi(ti)vai A

a
~k
(ti)dti +

1

2

∫
dt

∫
~k

∂0A~kµ∂0A
µ

−~k

(139)

Notice that the first term, a propagator correction, is order v2 while the second a vertex

correction, is only down by v. However, in the Feynman gauge, we will need two vertices

will be needed to get a non-vanishing result.

Let’s start with the leading order, Coulomb potential. Using the standard notation that

the value diagram is equal to iM we have

iM = (i)2〈
∫
dt1dt2e1e2

∫
~k

ei
~k·~x1(t1)A~k0(t1)

∫
~k′
ei
~k′·~x2(t2)A~k′0(t2)〉 (140)

there is only one possible contraction, corresponding to single photon exchange. Then using

the result (55)

〈A~kµ(t1)A~qν(t2)〉 ≡ Gµν(~k) = (2π)3δ(t1 − t2)δ3(~k + ~q)
igµν
~k2

, (141)

we find

iM = −ie2e2

∫
[d3k]

~k2
ei
~k·(~x1−~x2) = −i

∫
dt

e1e2

4π | ~x1 − ~x2 |
(142)

It is hopefully clear to the read that we could have avoided using Wicks theorem by just

drawing the diagram involving the leading order vertex in figure (2), and the propagator

connecting them.

The relevant pieces on the Lagrangian at O(v2) are the last two terms in (139). The first
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of these terms generates a correction to the propagator . To see how this comes about we can

consider Wicks theorem. When expanding the exponential we will get a piece proportional

to

iM =
(i)3

2
〈
∫
dt1dt2e1e2

∫
~k

ei
~k·~x1(t1)A~k0(t1)

∫
~k′
ei
~k′·~x2(t2)A~k′0(t2)

∫
dt

∫
~k

∂0A~kµ∂0A
µ

−~k
〉 (143)

There are two possible ways of contracting the fields, which will kill the overall factor of

1/2. The contractions give two propagators except now we have two derivatives hitting the

delta functions.

VII. PROBLEMS

1. Consider the vacuum energy for two static sources. In the text we said that we need

not include diagrams which are interactions of lower order diagrams. Another way of

saying this is that we don’t include diagrams which are not two particle irreducible

(2PI). A diagram is 2PI when you can cut it in two by cutting the top and bottom

sources lines.

Sum to all orders the boxed and cross boxed diagrams and show that they exponen-

tiate. To do this you will need to account for the combinatorial factors which arise

from keeping track of the number of ways you can connect the two worldlines. Also

remember to account factors for 1/n! the arise when expanding the exponential.

2. Show that the result for diagram (4c) is given by

V
(2)
b = ~v1 · ~v2

V0

2
− (~v1 · ~X)(~v2 · ~X)

V0

2X2
(144)

In deriving this result you will run into tensor integrals. The simplest way to evaluate

such integrals is to use the covariance under rotations to make the ansatz

I1 =

∫
[d3p]

(
pipj
p4

)
ei~p·

~X = Aδij +BXiXj (145)

Then solve for A and B by contracting with δij and XiXj.

3. Derive the Feynman rule shown in figure (2b).
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4. Introduce an electric quadrapole Qij(t) degrees of freedom onto the worldline and use

it to calculate the quadrapole-dipole force analog of the the Van der Waals force. You

may compare your answer to the result in [13]

5. Calculate the contribution to Casimir Polder force due to the operator OB = (v · F )2.

Consider the full integral for the box and cross-box (100) and take the limit where

∆E � 1/r. Show that one can directly reproduce the result for the Casimir-Polder

force (94) once the contribution from OB is included.

6. List the set of operators which correspond to the leading corrections to (2). Then draw

the Feynman diagrams which will generate the first corrections to the 1/r7 potential

when 1/r � ∆E. On dimensional grounds determine how these corrections scale in

powers of 1/r.

7. Suppose we allow our neutral particles to be asymmetric. Furthermore suppose that

the charge distribution is such that these particles have no dipole moments. The

asymmetry of the particle breaks the rotational invariance of the world line physics.

To account for this we introduce a tensor κaij associated with particle a which as

we shall see will be related to the tensor susceptibility of the particles. We would

like to determine the force between two such asymmetric particles. Working in the

non-relativistic approximation we may write down the wordline coupling

S =

∫ ∑
a

dλa(κ
a
ijEiEj). (146)

Use this interaction to calculate the force between two static particles. Then use the

matching procedure to show relate κaij to the tensor susceptibility χij defined via the

relation

Pi = χijE
B
i . (147)

Show that your answer for the energy reduces to (94) in the limit where χij = δij.

8. This problem35 has to do with the gravitational Van Der Waals interaction. That

is, we will consider a set of cases where force between two massive objects is purely

35 This problem is for those who have some training in general relativity and is highly instructive. Those

who do not have the background may wish to first read the next chapter and return to this problem.
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quantum mechanical, since the loop expansion is also an expansion in h̄. This scenario

arises for co-dimension two 36 objects.

First let us show that the classical force between such objects vanishes, when we take

the tension (mass per unit length) of the objects to be small compared to the Planck

scale Mpl, where GN = 1/(32πM2
pl). This approximation allows us to expand the

metric around flat space, such that

gµν = ηµν +
hµν
Mpl

. (148)

The action for the strings are given by

S = −
∑
i

τi

∫
d4x
√
giδ(2)(x− xi) (149)

where τi and gi are the tension and induced metric of the i’th string. For simplicity

we will take the string to lie along one coordinate axis and we will choose the local

space-time coordinates on the string to coincide with the global coordinate system. In

this way the induced metric is just the value of the bulk metric on the string restricted

to the 0, 1 coordinates.

We expand the action using

√
gi ≈ 1 +

hba
2Mpl

+
haah

b
b

8M2
pl

− hbah
b
a

4M2
pl

+ .... (150)

where the indices are now summed only over the two dimensional sub-space. The

classical force will then arise from the one graviton exchange diagram. Using the

background field method discussed in this chapter, where the graviton propagator

takes the form

Dµν,ρσ(q) = −i
ηµσηνρ + ηνσηνρ − 2

d−1
ηµνηρσ

~q2
(151)

show that the classical force vanishes.

To prove that the classical force vanishes, to all orders in the tension, one must solve

the full einstein equations to account for the curving of the space. However, as was

36 This means that the spatial dimensions of the objects equals d − 2, where d is the number of spatial

dimensions.
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shown in [17], co-dimension two objects leave space uncurved. The net effect of the

tension is to remove a deficit angle in the space-time. That is, the space is conical.

Thus there is no classical force to all orders in the tension.

To find the first correction due to the tension on the force, we consider the analog of

figure (9). Using the action (52) show that this diagram generates the potential per

unit length

V = − τ1τ2

64π3R2M4
pl

(152)

where R is the distance between the strings.

Note that in gravity we have additional contributions beyond those in diagram (9) aris-

ing from graviton self interactions. For the discussion of the complete force including

these effects see [18].
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