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Problem 1: Can catastrophic events in
dynamical systems be predicted in advance?
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A related problem: Can future behaviors of time-varying
dynamical systems be forecasted?
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complex networks
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Assumption: all nodes are - /
externally accessible Full network topology?
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Problem 3: Detecting hidden nodes

No information is available from the black node. How can we
ascertain its existence and its location in the network?
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Basic idea (1)
Dynamical system: dx/dt = F(x), x € R”

Goal: to determine F(Xx) from measured time series x(t)!

Power-series expansion of jth component of vector field F(x)

[F(x)], —22 2<a Vs, X X5 oen X0

1,=0 1,=0

— kth component of x; Highest-order power: n

(a;),, ., - coefficients to be estimated from time series

- (14n)™ coefficients altogether
If F(x) contains only a few power-series terms, most of the

coefficients will be zero.

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis,and C. Greboqi,
Physical Review Letters 106, 154101 (2011).
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Concrete example: m = 3 (phase-space dimension): (X,y,z)

n = 3 (highest order in power-series expansion)

total (1 +n)” = (1 +3)’ = 64 unknown coefficients

1.0_0

3..3.3

[FX)], =(@,)000X Y Z 4 (@), 00X ¥ 2"+ oo + (8))33,3X°y 2

[ (@)0p0 |

.. (a )
Coefficient vector a,= 17100

\ (@))333 )

- 64 x1

Measurement vector g(t) = [x(t) y(1)’z(t)’, x()'y(t)°z(t)’, ... , x(t)’y(t)’z(t)’]

1 x 64

So [F(x()], =g(t)*a,
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Basic idea (3)

Suppose x(t) is available at times t; t t,,....t;; (11 vector data points)

%(u) = [F(x(t,)], =g,

)ea,

%(tz) =[F(x(t,))], =g(t,)*a,

%(tlo) = [F(x(t,))]; = g(t,,)*a,

Derivative vector dX =

We finally have dX =Gea,

[ (@dx/dyt,) )
(dx/doxe,)

| (@odt,)

10x1

or

: Measurement matrix G =

XmOxl = G10x64 ¢ (a1)64x1

gy
b;‘

( g(t,) \
g(t,)

\ g(tlo ) )
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10x64
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Basic idea (4) D e

dX =Gea, or dX a1 = Gioxes ® (A6

Reminder: a, is the coefficient vector for the first dynamical variable x.

To obtain [F(x)],, we expand

[F(x)], = (az)O’O’OXOyOZO+ (az)l,o’oxlyozo+ ..+ (a, )3’3,3X3y3z3

with a,, the coefficient vector for the second dynamical variable y. We have
dY =G-ea, or dY 01 = Gioues ® (@364

where
[ (dy/do)t,) )

by o | @ydne)

| (@y/doe,)

Note: the measurement matrix G is the same.

10x1

Similar expressions can be obtained for all components of the velocity field.
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Look at
dX =Gea, Or AX 0 = Glones ® (A gsx

Note that a, 1s sparse - Compressive sensing!
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Compressive sensing (1) Eé;omsﬁmw

~

Yy P X
Data/Image compression: M % 1t i .::'r::: -; E ]\Sfp a>r<sel
® : Random projection (not full rank) . % y signal
X - sparse vector to be recovered M x N s no{ge .

entries/

\K<M<<N

Goal of compressive sensing: Find a vector x with minimum number of

entries subject to the constraint y = @ ®x
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Find a vector x with minimum number of entries
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subject to the constraint y = ®®x: [ —norm

Why [ —norm? - Simple example in three dimensions

H H

(a) (b) ()

E. Candes, J. Romberg, and T. Tao, IEEE Trans. Information Theory 52,489 (2006),
Comm. Pure. Appl. Math. 59,1207 (2006);

D. Donoho, IEEE Trans. Information Theory 52,1289 (2006));

Special review: IEEE Signal Process. Mag.24,2008
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Henon map: (x,,,,y,,,) = (1-ax_+y_, bx )

Predicting catastrophe (1)
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Say the system operates at parameter values: a= 1.2 and b =0.3.

There 1s a chaotic attractor.

Can we assess 1f a catastrophic bifurcation (e.g., crisis) is imminent

based on a limited set of measurements?

Step 1: Predicting system equations
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Predicting catastrophe (2)

Step 2: Performing numerical bifurcation analysis
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Predicting catastrophe (3)
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Examples of predicting continuous-time dynamical systems
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Classical Lorenz system
dx/dt = 10y - 10x
dy/dt=x(a-z)-y

dz/dt = xy - (2/3)z

# of data points used: 18
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Classical Rossler system
dx/dt=-y -z

dy/dt=x + 0.2y
dz/dt=0.2 + z(x - a)
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Standard map Lorenz system
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% Effect of noise

Henon map Standard map
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W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi,
Physical Review Letters 106, 154101 (2011).



% Predicting future attractors of %u;otﬁglﬁ%é&
time-varying dynamical systems (1)

Dynamical system: dx/dt = F[x,p(t)], x € R”
p(t) - parameters varying slowly with time

T,, — measurement time period;

x(t) - available in time interval: t,,-T, <t<t,,

Goal: to determine both F[x,p(t)] and p(t) from available time series x(t)

so that the nature of the attractor for t>t,, can be assessed.

Power-series expansion

[F(x)]; = éii CH XIX2...xm E(ﬁj)wtw

ll =O 12 =0

m

n Vv
_ Lol Ly 4w
= 2 E(CJ)ll’___,lm;wxlxz....xm t" <> CS framework

lovosd,, =0 w=0



% Predicting future attractors of $olﬂ'§'§’§a§$q
time-varying dynamical systems (2)

Formulated as a CS problem:
(@)  Assumption (b) Observation

t ’ Y
X Y e Z \ :
{ t:xt pt - 72 & T 5 Y\ s m

(c) ‘ A L e [y t

-

X)) y() - z) @ v zZ)'t (| a | | X(0)

x(1,) y(tz)tQ" 2(1,)" : x(,), y(tz)tzt 2(1,)", 6:2 _ 56(‘12)

_x(fM)y(iM): e 2(ly)” 1 Xty Mg Yty - Z(’M)ZIM_ _J'f(;M)_
il




% Predicting future attractors of "R UNIVERSITY
time-varying dynamical systems (3)

l Measurements I I i

1. _Q_ Actual: time series (kl (t) = 0\
|

|

Predicted time series a

< | ] A k.(t) =0
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k,() =0
k,()=0
- y,

(kO =-t* )
K, (t) = 0.5t
K.(0) =t

\k4(t) = - O.5t)2

Time-varying Lorenz system

dx/dt = -10(x - y) + k1(t) .y R. Yang, Y.-C. Lai, and C. Grebogi,

“Forecasting the future: 1s it possible
dy/dt =28x -y -xz+ k, (1) z for time-varying nonlinear dynamical

dz/dt = xy - (8/3)z + [k3(t) + k4 0]y systems,” Chaos22,033119(2012).
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oscillator networks (1)

A class of commonly studied oscillator -network models:

dx;, N . -
—-=F (xi)+2j=1’j¢icij x,-x) (i=1,..,N)

- dynamical equation of node 1

N - size of network, x,& R", C, is the local coupling matrix

( C;-’l C;,Z . C;.’m \
2,1 2,2 . %,m
C, = C’f C’i" . C’{ - determines full topology
m,l m,2 m,m
\ G G G )

If there 1s at least one nonzero element in C.

ij?

nodes 1 and j are coupled.

Goal: to determine all Fy(x;) and C;; from time series.
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oscillator networks (2)

(

X, \

x=| % — Network equation is (Z—)f = G(X), where
X

\ N / Nmx1

N

[GX)), =F, (x)+ )

* A very high-dimensional (Nm-dimensional) dynamical system:;

Ci*(x; -x;)

=1,

* For complex networks (e.g, random, small-world, scale-free),
node-to-node connections are typically sparse;
* In power-series expansion of [G(X)],, most coefficients will be

zero - guaranteeing sparsity condition for compressive sensing.

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, M. A. F. Harrison,
“Time-series based prediction of complex oscillator networks via compressive
sensing”, Europhysics Letters 94,48006 (2011).
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Cooperate Defect

Defect win much-lose much loge-lose

Strategies: cooperation S(C )=( (1) ); defection S(D)=

Example: Cooperate WIR-win l0se much-win much
Prisoner’s dilemma game
0
1
1 0O
b 0

Payoff of agent x from playing PDG with agent y: [ M, = SzPSy J
For example, M. _.=1
M, ,=0
M. =0
M,_.=b

Payoff matrix: P(PD)= b - parameter




%‘ Evolutionary game on network
(social and economical networks)

A network of agents playing games with one another:

/ coe coe coe \

Adjacency matrix =| ... a_. .. [I 1

Payoff of agent x from agenty: M,_ =a, S, PS,

~

a, =1 1t x connects with y

a, = 0 1f no connection

"

(" )

Compressive sensing

Time series of (1) payoffs _
agents { (2) strategies — Full social network structure

(Detectable) )
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%ﬂ Prediction as a CS Problem

Payoff of x at time #: M () =a_S.(6)PS,(t)+a_,S.()PS,(t)+---+a S (1)PS, (1)

( ( \
M (1)) \ a.
M (t
Y= ".( 2) X= af‘z X : connection vector of agent x (to be predicted)
| M) \ v
\
ST(t)PS,(t,) S.(t)PS,(t) -+ S.()PS,(1) W.-X. Wang, Y.-C. Lai, C. Grebogi,
Si (t,)PS, (1,) Sz (t,)PS,(t,) - Si (t,)PS, (t,) and J.-P. Ye, “N.etwork reconstruction
O = , _ ) ) based on evolutionary-game data,”
: : : : Physical ReviewX'1,021021 (2011).
[Y = ¢ X Y,®: obtainable from time series ]
l Compressive sensing
axl
|| o X matching
N + mmmmmm)  Full network structure
axN

Neighbors of x
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success rate

Success rate for model networks
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success rate
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success rate

Reverse engineering of

a real social network

22 students play PDG together and
write down their payoffs and strategies

Friendship network

1 a4 % %

EEUNIVERSITY
P or ABERDEEN

Experimental record of two players
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Two green nodes: immediate
neighbors of hidden node
Information from green nodes
is not complete

Anomalies in the prediction of
connections of green nodes
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Detecting Hidden Node
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R.-Q. Su, W.-X. Wang, and Y.-C. Lai, “Detecting hidden nodes in
Complex networks from time series,” Physical Review E 106, 058701R (2012).
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% Distinguishing between effects %;ﬁ'gﬁfgg&
of hidden node and noise (2)

1

—&— Hidden
Cancellation ratio . — +— Noise

Local noise
. r
Hidden node source

#20 |
#14 @
' Variance in
/ predicted
coefficient
vector
0.6 0:7 0:8 (0] 9 1
R
m

R.-Q. Su, Y.-C. Lai, X. Wang, and Y.-H. Do, “Uncovering hidden nodes in complex networks in the
presence of noise,” Scientific Reports 4, Article number 3944 (2014).
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1. Key requirement of compressive sensing — the vector to be
determined must be sparse.

Dynamical systems - three cases:
* Vector field/map contains a few Fourier-series terms - Yes
* Vector field/map contains a few power-series terms - Yes

* Vector field /map contains many terms — not known

(Ikeda Map: F(x,y=[A+B(xcosg-ysing),B(xsing+ycosg)] A

where ¢=p- K —~ - describes dynamics in an optical cavity

\ l+x°+y )
Mathematical question: given an arbitrary function, can one find
a suitable base of expansion so that the function can be
represented by a limited number of terms?
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2. Networked systems described by evolutionary games — Yes
3. Measurements of ALL dynamical variables are needed.
Outstanding 1ssue

If this 1s not the case, say, 1f only one dynamical variable can
be measured, the CS-based method would not work.
Delay-coordinate embedding method?

- gives only a topological equivalent of the underlying
dynamical system (e.g., Takens’ embedding theorem
guarantees only a one-to-one correspondence between
the true system and the reconstructed system).

4. In Conclusion, much work 1s needed!



