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Problem 1: Can catastrophic events in 
dynamical systems be predicted in advance?

Early Warning?

A related problem: Can future behaviors of time-varying 
dynamical systems be forecasted?



Problem 2: Reverse-engineering of 
complex networks

network
Measured
Time Series

Full network topology?
Assumption: all nodes are

externally accessible



Problem 3: Detecting hidden nodes
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No information is available from the black node. How can we 
ascertain its existence and its location in the network?



Basic idea (1)
Dynamical system:    dx/dt = F(x),         x ∈  Rm   
Goal: to determine F(x) from measured time series x(t)!
Power-series expansion of jth component of vector field F(x)

[F(x)] j = ... (a j
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xk − kth component of x;            Highest-order power: n
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 - coefficients to be estimated from time series 

- (1+n)m  coefficients altogether
If F(x) contains only a few power-series terms, most of the 
coefficients will be zero. 

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, 
Physical Review Letters 106, 154101 (2011).



Basic idea (2)
Concrete example:  m = 3 (phase-space dimension): (x,y,z)
                                n = 3 (highest order in power-series expansion)
                                total (1 + n)m = (1+3)3 = 64 unknown coefficients
[F(x)]1 = (a1)0,0,0x

0y0z0 + (a1)1,0,0x
1y0z0 + ... + (a1)3,3,3x

3y3z3

Coefficient vector a1=
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       - 64×1   

Measurement vector  g(t) = [x(t)0y(t)0z(t)0, x(t)1y(t)0z(t)0, ... , x(t)3y(t)3z(t)3]
                                            1 ×  64
So  [F(x(t))]1 = g(t)•a1      



Basic idea (3)
Suppose x(t) is available at times t0,t1,t2,...,t10  (11 vector data points)
dx
dt

(t1) = [F(x(t1))]1 = g(t1)•a1

dx
dt

(t2 ) = [F(x(t2 ))]1 = g(t2 )•a1

 ...
dx
dt

(t10 ) = [F(x(t10 ))]1 = g(t10 )•a1

 Derivative vector  dX  = 

(dx/dt)(t1)
(dx/dt)(t2 )

...
(dx/dt)(t10 )

!

"

#
#
#
##

$

%

&
&
&
&&

10×1

;  Measurement matrix G =  

g(t1)
g(t2 )


g(t10 )
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10×64

 
We finally have   dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1   



Basic idea (4)
 dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1

Reminder: a1  is the coefficient vector for the first dynamical variable x.
To obtain [F(x)]2,  we expand
[F(x)]2 = (a2 )0,0,0x

0y0z0 + (a2 )1,0,0x
1y0z0 + ... + (a2 )3,3,3x

3y3z3

with a2,  the coefficient vector for the second dynamical variable y. We have
dY  = G•a2                 or       dY10×1  = G10×64 • (a2 )64×1

where

 dY = 

(dy/dt)(t1)
(dy/dt)(t2 )

...
(dy/dt)(t10 )
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Note: the measurement matrix G is the same.
Similar expressions can be obtained for all components of the velocity field.



Compressive sensing (1)

Look at 
dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1

Note that a1  is sparse   - Compressive sensing!

Data/Image compression:
Φ :  Random projection (not full rank)
x  - sparse vector to be recovered

Goal of compressive sensing: Find a vector x with minimum number of 
entries subject to the constraint  y = Φ•x



Compressive Sensing (2)

 Why l1 − norm? - Simple example in three dimensions

Find a vector x with minimum number of entries 
subject to the constraint  y = Φ•x:  l1 − norm

E. Candes, J. Romberg, and T. Tao, IEEE Trans. Information Theory 52, 489 (2006),
Comm. Pure. Appl. Math. 59, 1207 (2006);

D. Donoho, IEEE Trans. Information Theory 52, 1289 (2006));
Special review: IEEE Signal Process. Mag. 24, 2008



Predicting catastrophe (1)
Henon map: (xn+1, yn+1) = (1- axn

2 + yn, bxn )
Say the system operates at parameter values: a = 1.2 and b = 0.3.
There is a chaotic attractor.
Can we assess if a catastrophic bifurcation (e.g., crisis) is imminent
based on a limited set of measurements?

Step 1: Predicting system equations

Distribution of predicted values of ten power-series coefficients:
constant,    y,   y2,    y3,   x,   xy,   xy2,   x2,   x2y,   x3 # of data points used: 8



Predicting catastrophe (2)

Step 2: Performing numerical bifurcation analysis

Boundary
CrisisCurrent operation point



Predicting catastrophe (3)

Examples of predicting continuous-time dynamical systems

Classical Lorenz system
dx/dt = 10y - 10x
dy/dt = x(a - z) - y
dz/dt = xy - (2/3)z

Classical Rossler system
dx/dt = -y - z
dy/dt = x + 0.2y
dz/dt = 0.2 + z(x - a)

# of data points used: 18



Performance analysis
Standard map Lorenz system

nm −  # of measurements
nnz −  # of non-zero coefficients;  nz −  # of zero coefficients
(nnz + nz )−  total # of coefficients to be determined
nt −  minimum # of measurements required for accurate prediction



Effect of noise

Standard mapHenon map

nm = 8
(nnz + nz ) =16

nm =10
(nnz + nz ) = 20

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, 
Physical Review Letters 106, 154101 (2011).



Predicting future attractors of 
time-varying dynamical systems (1)

Dynamical system:    dx/dt = F[x,p(t)],         x ∈  Rm   
p(t) - parameters varying slowly with time
TM −  measurement time period;
x(t) - available in time interval:   tM -TM  ≤ t ≤ tM
Goal: to determine both F[x,p(t)] and p(t) from available time series x(t)
so that the nature of the attractor for  t > tM  can be assessed.
Power-series expansion
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Predicting future attractors of 
time-varying dynamical systems (2)

Formulated as a CS problem:



Predicting future attractors of 
time-varying dynamical systems (3)
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Measurements
Actual time series
Predicted time series

(b)

Time-varying Lorenz system
dx/dt = -10(x - y) + k1(t) ⋅ y
dy/dt = 28x - y - xz + k2 (t) ⋅ z
dz/dt = xy - (8/3)z + [k3(t) + k4(t)] ⋅ y

k1(t) = - t2

k2 (t) = 0.5t
k3(t) = t
k4(t) = - 0.5t2

k1(t) = 0
k2 (t) = 0
k3(t) = 0
k4(t) = 0

R. Yang, Y.-C. Lai, and C. Grebogi,
“Forecasting the future: is it possible
for time-varying nonlinear dynamical
systems,” Chaos 22, 033119 (2012).



Uncovering full topology of 
oscillator networks (1)

A class of commonly studied oscillator -network models:
dxi
dt

  =  Fi  (x i ) + Cijj=1,j≠i

N
∑ • (x j  - x i )     (i = 1, ... , N)

- dynamical equation of node i 
N - size of network,   xi∈ Rm,  Cij  is the local  coupling matrix

Cij =

Cij
1,1 Cij

1,2  Cij
1,m
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    - determines full topology

If there is at least one nonzero element in Cij,  nodes i and j are coupled.

Goal: to determine all Fi(xi) and Cij from time series.



Uncovering full topology of 
oscillator networks (2)

X  = 

x1

x2

...
xN
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−Network equation is dX
dt

 = G(X), where

                                  [G(X)]i  = Fi  (x i ) + Cijj=1,j≠i

N
∑ • (x j  - x i )

• A very high-dimensional (Nm-dimensional) dynamical system;
• For complex networks (e.g, random, small-world, scale-free), 
   node-to-node connections are typically sparse;
• In power-series expansion of [G(X)]i,  most coefficients will be
   zero - guaranteeing sparsity condition for compressive sensing.

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, M. A. F. Harrison,
“Time-series based prediction of complex oscillator networks via compressive

sensing”, Europhysics Letters 94, 48006 (2011).  



Evolutionary-game dynamics 

Strategies:   cooperation    S(C) = 1
0
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Payoff matrix:      P(PD) = 1 0
b 0
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Payoff of agent x  from playing PDG with agent y:      M x←y = Sx
TPSy

For example,   MC←C = 1
                        MD←D = 0
                        MC←D = 0
                        MD←C = b

Example: 
Prisoner’s dilemma game



Evolutionary game on network 
(social and economical networks) 

Full social network structure
Compressive sensing

Time series of
agents 
(Detectable)

(1) payoffs
(2) strategies

A network of agents playing games with one another:

     Adjacency matrix =
... ... ...
... axy ...

... ... ...
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:   
axy =1  if x  connects with y
axy = 0  if no connection

'
(
)

 

Payoff of agent x  from agent y: M x←y = axySx
TPSy



Prediction as a CS Problem
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Compressive sensing

Payoff of x  at time t:  Mx (t) = ax1Sx
T (t)PS1(t)+ ax2Sx

T (t)PS2 (t)++ axNSx
T (t)PSN (t)   
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              X : connection vector of agent x    (to be predicted)

Φ =

Sx
T (t1)PS1(t1) Sx

T (t1)PS2 (t1)  Sx
T (t1)PSN (t1)

Sx
T (t2 )PS1(t2 ) Sx

T (t2 )PS2 (t2 )  Sx
T (t2 )PSN (t2 )

   
Sx
T (tm )PS1(tm ) Sx

T (tm )PS2 (tm )  Sx
T (tm )PSN (tm )
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 Y     =      Φ    X              Y,Φ:  obtainable from time series

W.-X. Wang, Y.-C. Lai, C. Grebogi, 
and  J.-P. Ye, “Network reconstruction 
based on evolutionary-game data,”
Physical Review X 1, 021021 (2011).



Success rate for model networks 



Reverse engineering of 
a real social network 

Friendship network

Experimental record of two players
22 students play PDG together and
write down their payoffs and strategies

Observation:
Large-degree nodes
are not necessarily
winners



Detecting Hidden Node 
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• Two green nodes: immediate
neighbors of hidden node

• Information from green nodes
is not complete

• Anomalies in the prediction of 
connections of green nodes 

• R.-Q. Su, W.-X. Wang, and Y.-C. Lai, “Detecting hidden nodes in 
Complex networks from time series,” Physical Review E 106, 058701R (2012).

Variance of predicted 
coefficients



Distinguishing between effects 
of hidden node and noise (1) 



Distinguishing between effects 
of hidden node and noise (2)
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R.-Q. Su, Y.-C. Lai, X. Wang, and Y.-H. Do, “Uncovering hidden nodes in complex networks in the 
presence of noise,” Scientific Reports 4,  Article number 3944 (2014).



Discussion (1)

1. Key requirement of compressive sensing – the vector to be 
determined must be sparse.
Dynamical systems - three cases:

• Vector field/map contains a few Fourier-series terms - Yes
• Vector field/map contains a few power-series terms - Yes
• Vector field /map contains many terms – not known

Mathematical question: given an arbitrary function, can one find 
a suitable base of expansion so that the function can be 
represented by a limited number of terms?

Ikeda Map:   F(x, y)= [A + B(xcosφ − ysinφ),B(xsinφ + ycosφ)]

        where    φ ≡ p− k
1+ x2 + y2      - describes dynamics in an optical cavity



Discussion (2)

2. Networked systems described by evolutionary games – Yes
3. Measurements of ALL dynamical variables are needed. 

Outstanding issue
If this is not the case, say, if only one dynamical variable can
be measured, the CS-based method would not work.
Delay-coordinate embedding method?

- gives only a topological equivalent of the underlying 
dynamical system (e.g., Takens’ embedding theorem
guarantees only a one-to-one correspondence between 
the true system and the reconstructed system). 

4.   In Conclusion, much work is needed!


