

Overview

Eco-Evolutionary Dynamics Modelling Frameworks Biodiversity Dynamics Mathematical Connections Adaptive Speciation Niche Theory

Modelling Frameworks

Ecoevolutionary feedback

Traditional View of Evolution

Envisaging evolution as a hill-climbing process on a static fitness landscape is attractively simple, but essentially wrong, especially in community ecology

Modern View of Evolution

Generically, fitness landscapes change in dependence on a community's current composition

"WRITE, IF YOU ESTABLISH A NICHE."

Niche Construction

Through niche construction, an organism alters its environment, creating a feedback with natural selection

Niche construction is especially evident when environmental alterations persist for generations, leading to ecological inheritance

Frequency-dependent Selection

Phenotypes, densities, and fitness x_1, n_1, f_1 and x_2, n_2, f_2

- Assumption in classical genetics f₁ is a function of x₁
 - **Density-dependent selection** f_1 is a function of x_1 and $n_1 + n_2$
- Frequency-dependent selection f_1 is a function of x_1 and $n_1 / (n_1 + n_2)$ and x_2

Both are generic in nature

Frequency-dependent Selection

Frequency dependence arises whenever selection pressures in a population vary with its phenotypic composition

- Virtually any ecologically serious consideration of lifehistory evolution implies frequency-dependent selection
- Only carefully crafted (or ecologically unrealistic) models circumvent this complication

Origin of Frequency-dependent Selection

Trait dependence
Density regulation

When trait dependence and overlap along a life cycle, eco-evolutionary feedback and frequency-dependent selection typically ensue

Dynamic fitness landscapes

Ecological Equilibration

Growing abundance

Shrinking abundance

Equilibrated abund.

Ecological Stability

Fitness Phenotype

Ecologically stable

Ecologically unstable

Evolutionary Equilibration

Directional selection Disruptive selection

Stabilizing selection

Convergence Stability

Fitness

Convergence stable

Convergence unstable

Evolutionary Stability

Fitness

Evolutionarily unstable

Community Closure

Fitness

Phenotype

Closed to invasion

Open to invasion

1. Invasion range

2. Invasion speed

Illustration of Niche Evolution

Two functional traits

- Unimodal carrying capacity
- Strength of competition attenuates with trait difference

Low Initial Biodiversity

Fitness

Higher Initial Biodiversity

Fitness

With Gradual Evolution

With Speciation

Fitness

Summary

Dynamic fitness landscapes permit assessing
(1) ecological equilibration, ecological stability,
(2) evolutionary equilibration, evolutionary stability, convergence stability, and
(3) community closure

In the absence of community closure, such fitness landscapes reveal open niches, the speed or likelihood of their being invaded, and the initial direction of invader adaptation

Evolutionary games

Strategies and Payoffs

- Evolutionary games are often based on discrete strategies and on pairwise interactions
- Pairwise interactions result in payoffs that depend on the strategies chosen by the interacting players
 - The payoff values are compiled in a payoff matrix and define the evolutionary game:

If I play... A B A B ... I receive this payoff: A W_{AA} W_{AB} B W_{BA} W_{BB}

Example: Hawk-Dove Game

- A hawk (H) strategist fights for a resource
- A dove (D) strategist yields to a hawk and shares with a dove, both without fighting
- Getting the resource confers a benefit b and losing fights implies a cost c

If I play	and my opp	oonent plays D
H	I receive this payoff: b/2 – c/2 b	
D	0	b/2

Average Payoffs

- Assumptions: Populations are large, and individuals encounter each other at random
- If strategies A and B have abundances n_A and n_B , their average payoffs are then given by $W_{AA} n_A + W_{AB} n_B$ and $W_{BA} n_A + W_{BB} n_B$, respectively
- Using the matrix W and the vector n = (n_A, n_B), we see that these expressions are simply the entries of Wn:

$$Wn = \begin{pmatrix} W_{AA} & W_{AB} \\ W_{BA} & W_{BB} \end{pmatrix} \begin{pmatrix} n_{A} \\ n_{B} \end{pmatrix} = \begin{pmatrix} W_{AA}n_{A} + W_{AB}n_{B} \\ W_{BA}n_{A} + W_{BB}n_{B} \end{pmatrix}$$

Replicator Dynamics

- Assumption: The abundances n_i of strategies i = A, B, ... increase according to their average payoffs: $\frac{d}{dt}n_i = (Wn)_i$
- Their relative frequencies p_i then follow the replicator equation:

$$\frac{d}{dt}p_i = (Wp)_i - \underbrace{p \cdot Wp}_{i}$$

Average payoff in entire population

Outcomes of Hawk-Dove Game 1/2

The evolutionary equilibrium in this game is attained after the frequency of H, $p_{\rm H} = 1 - p_{\rm D}$, has changed so that the payoffs for H and D have become equal:

$$p_{\rm H}(\frac{1}{2}b - \frac{1}{2}c) + (1 - p_{\rm H})b = p_{\rm H}0 + (1 - p_{\rm H})\frac{1}{2}b$$
$$p_{\rm H}(\frac{1}{2}b - \frac{1}{2}c - b + \frac{1}{2}b) = -b + \frac{1}{2}b$$
$$-\frac{1}{2}cp_{\rm H} = -\frac{1}{2}b$$
$$p_{\rm H} = b/c$$

Outcomes of Hawk-Dove Game 2/2

Η

Н

 $p_{\rm H} = 1$

If the cost is larger than the benefit, c > b:

If the cost is smaller than the benefit, c < b:</p>

D A pure strategy results

- Owing to the focus on frequencies, the replicator equation cannot capture density-dependent selection
- Nonlinear payoff functions naturally arise in applications, but cannot be captured by matrix games
- Continuous strategies are often needed for comparisons with data
- Since the replicator equation cannot include innovative mutations, it describes short-term, rather than long-term, evolution

Quantitative genetics

p_i

Dynamics of Trait Distributions

Models of quantitative genetics describe evolution in polymorphic populations:

Examples are reaction-diffusion dynamics: $\frac{d}{dt}p_i(x_i) = f_i(x_i, p)p_i(x_i) + \frac{1}{2}\mu_i(x_i)\sigma_i^2(x_i) * \frac{\partial^2}{\partial x_i^2}b_i(x_i, p)p_i(x_i)$

Reaction dynamics

Diffusion dynamics

Х;

Problem: Moment Hierarchy

Oth moments: Population densities $\frac{d}{dt}n_i = \dots n \dots x \dots \sigma^2 \dots$

1st moments: Mean traits $\frac{d}{dt}x_i = \dots n \dots x \dots \sigma^2 \dots$

2nd moments: Trait variances and covariances $\frac{d}{dt}\sigma_i^2 = \dots n \dots x \dots \sigma^2 \dots$ skewness

Lande's Equation

- **Assumptions:** Populations are large, and total population densities, variances, and covariances are all fixed
- Then, the rates of change in mean trait values are given by

