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Adaptive Dynamics Theory 

The theory of adaptive dynamics extends evolutionary 
game theory and quantitative genetics theory in a number 
of respects: 
 Evolving traits are continuous 
 Trait dynamics are described 
 Mutational covariances and constraints can be examined 
 Arbitrary density and frequency dependence is allowed 
 Coevolution is integrated 
 Structured population dynamics are allowed 
 Non-equilibrium population dynamics are allowed 
 Fitness landscapes are derived 

Extensions 
of EGT 

Extensions 
of both 

EGT 
and QGT 



Invasion Fitness 

 Initial per capita growth rate of a small 
variant population within a large resident population 
at ecological equilibrium: 
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Metz et al. (1992) 



Pairwise Invasibility Plots 
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+ Invasion of the variant 
into the resident population 
is possible 

– Invasion is impossible  

One trait substitution  

Evolutionarily singular 
phenotype  

Trait substitution  sequence 

Matsuda & Abrams (1985) 
Metz et al. (1992) 



Recursion relations 
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Comparison with Recursions 



Reading PIPs:  Evolutionary Stability 

 Is a singular phenotype immune to invasions by 
neighboring phenotypes? 
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Reading PIPs:  Convergence Stability 

 When starting from neighboring phenotypes, do 
successful invaders lie closer to the singular one? 
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Reading PIPs:  Invasion Potential 

 Is the singular phenotype capable of invading into all 
its neighboring types? 
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Reading PIPs:  Mutual Invasibility 

 Can a pair of neighboring phenotypes on either side 
of a singular one invade each other? 
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Reading PIPs: 
Four Independent Properties 

 Evolutionary stability 
 

 Convergence stability 
 

 Invasion potential 
 

 Mutual invasibility 

Geritz et al. (1997) 



M
ut

an
t t

ra
it

Resident trait

Pairwise Invasibility Plot Classification Scheme
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(1) Evolutionary stability, (2) Convergence stability, (3) Invasion potential, (4) Mutual invasibility   
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Reading PIPs: 
Eightfold Classification 

Geritz et al. (1997) 
Dieckmann (1997) 



Two Interesting Types of PIPs 

 Garden of Eden  Branching Point 

+ 

+ 

– 
– 

Resident trait 

Va
ria

nt
 tr

ait
 + 

+ 

– 

– 
Resident trait 

Va
ria

nt
 tr

ait
 



Resource 
gradient x 

Resource 
distribution k(x) Competition 

function a(x-x0) 

Dynamics of population sizes ni of strategy xi 
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Example: 
Resource Competition Roughgarden (1976) 



Analysis of Example 1/2 

 Invasion Fitness 
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Analysis of Example 2/2 

 Pairwise Invasibility Plots 
 With k = k0 N(0,σk) and a = N(0,σa) we obtain 
     for σa > σk                                          for σa < σk 
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Evolutionary stability Evolutionary branching 
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Evolutionary Branching 

Convergence to disruptive selection leads 
to endogenous creation of diversity 



 Symmetric intraspecific competition (Doebeli 1996a, 1996b; Metz et al. 1996; 
Dieckmann and Doebeli 1999) 

 Asymmetric intraspecific competition (Kisdi 1999; Doebeli and Dieckmann 
2000; Kisdi et al. 2001) 

 Interspecific competition (Law et al. 1997; Kisdi and Geritz 2001) 
 Resource specialization (Meszéna et al. 1997; Geritz et al. 1998; Day 2000; 

Kisdi 2001; Schreiber and Tobiason 2003; Egas et al. 2004, 2005) 
 Ontogenetic niche shifts (Claessen and Dieckmann 2002) 
 Mixotrophy (Troost et al. 2005) 
 Phenotypic plasticity (Van Dooren and Leimar 2003; Ernande and 

Dieckmann 2004; Leimar 2005) 
 Dispersal evolution (Doebeli and Ruxton 1997; Johst et al. 1999; Parvinen 

1999; Mathias et al. 2001; Parvinen and Egas 2004), 
 Mutualism (Doebeli and Dieckmann 2000; Law et al. 2001; Ferdy et al. 2002; 

Ferriére et al. 2002; Day and Young 2004) 
 Emergent cooperation (Doebeli et al. 2004) 

Published Analyses 1/2 



 Predator-prey interactions (Brown and Pavlovic 1992; Van der Laan and 
Hogeweg 1995; Doebeli and Dieckmann 2000; Bowers et al. 2003) 

 Cannibalism (Dercole 2003) 
 Host-parasite interactions (Boots and Haraguchi 1999; Koella and Doebeli 

1999; Regoes et al. 2000; Gudelj et al. 2004) 
 Sex-ratio evolution (Metz et al. 1992; Reuter et al. 2004) 
 Evolution of selfing (Cheptou and Mathias 2001; De Jong and Geritz 2001) 
 Evolution of mating traits (Van Doorn et al. 2001, 2004) 
 Evolution of anisogamy (Maire et al. 2001) 
 Seed evolution (Geritz et al. 1999; Mathias and Kisdi 2002) 
 Microbial cross-feeding (Doebeli 2002) 
 Prebiotic evolution (Meszéna and Szathmáry 2001) 
 Community assembly (Jansen and Mulder 1999; Bonsall et al. 2004) 
 Food-web formation (Loeuille and Loreau 2005; Ito et al. 2009; Brännström et 

al. 2010) 

Published Analyses 2/2 



Canonical Equation 

 Assumptions: Populations are large, and mutational 
steps are both rare and small 

 Then, the evolutionary rates are given by 

* 21 ( ) ( ) ( ) ( , )
2 i i

i i i i i i i i x x
i

d x x n x x f x x
dt x

µ σ
′=

∂ ′=
′∂

evolutionary 
rate in species i  

equilibrium 
population 

size 
mutation 

variance-covariance 

invasion 
fitness 

mutation 
probability 

local 
selection 
gradient 

Dieckmann & Law (1996) 



Synthetic Perspective 

 The common form of the canonical equation of 
adaptive dynamics and of Lande’s equation of 
quantitative genetics is reassuring 

 In first approximation, evolutionary rates are 
proportional to the gradient of a frequency-dependent 
fitness 

 Beyond this commonality, the two dynamics differ, 
describing different kinds of evolutionary processes 



Reminder: 
Four Independent Properties 

 Evolutionary stability 
 

 Convergence stability 
 

 Invasion potential 
 

 Mutual invasibility 

Geritz et al. (1997) 



 Invasion fitness 

 Selection gradient 

 Hessians of invasion fitness 
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Conditions for Evolutionary Branching 

 Evolutionary stability: no 
 
 Convergence stability: yes 
 
 Invasion potential 
 
 Mutual invasibility 
 

0mmh <

0mm rrh h− <

0rrh >
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0mm mrh h+ <(or  ) 

These conditions 
apply to one-

dimensional traits. 
For higher-

dimensional traits, 
they involve 

matrices and are a 
bit more complex. 



Summary: 
Main Tools of Adaptive Dynamics Theory 

 Individual-based modelling 

 Invasion fitness 

 Pairwise invasibility plots 

 Canonical equation 

 Evolutionary branching conditions 
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Mathematical 
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Four Types of Evolutionary Dynamics 
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Birth-Death-Mutation 
Processes 

Birth 
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Individual-based Evolutionary Dynamics 
Polymorphic and Stochastic Dieckmann (1994) 

 Parameters 
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Individual-based Evolutionary Dynamics 
Polymorphic and Stochastic 

 Master equation 

Measure-valued stochastic process in the space of atomic 
distributions (Dirac measures) 

Dieckmann (1994) 
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Evolutionary time 
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Individual-based Evolutionary Dynamics 
Polymorphic and Stochastic Dieckmann (1994) 



Effect of Mutation Probability 

Small: 0.1% 
Mutation-limited 

evolutionary dynamics 

“Staircase” 

Evolutionary time 

Large: 10% 
Dynamic mutation-selection 

equilibrium 

“Moving cloud” 
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Probability for a 
Trait Substitution 

   Survival probability of rare mutant 

Invasion fitness Death rate  

f+ / (f + d) 

d f 

Invasion probabilities can alternatively be based on the Moran process, on 
diffusion approximations, or on graph topologies 

Dieckmann & Law (1996) 
Geritz et al. (2002) 

Population 
dynamics 

Mutation 

Branching 
process theory 

Invasion 

Invasion 
implies fixation 

Fixation 



Evolutionary Random Walk 
Monomorphic and Stochastic 
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Real-valued stochastic process in trait space 

Dieckmann & Law (1996) 
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Evolutionary Random Walk 
Monomorphic and Stochastic Dieckmann & Law (1996) 
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 Canonical equation of adaptive dynamics 
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Gradient-Ascent on Adaptive Landscapes  
Monomorphic and Deterministic Dieckmann & Law (1996) 



Gradient-Ascent on Adaptive Landscapes  
Monomorphic and Deterministic Dieckmann & Law (1996) 
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Reaction-Diffusion Dynamics 
Polymorphic and Deterministic 

 Kimura limit 
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capita death rate 
results in 
compact support 



Reaction-Diffusion Dynamics 
Polymorphic and Deterministic 

 
Kimura (1965) 
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Summary of Connections 

large population size 
small mutation probability 

 
small mutation variance 

large population size 
large mutation probability 

PS MS MD PD 

fixed standing variance 



Eco-genetic 
models 



Eco-Genetic Models 

Eco-genetic models are 
process-based and 
designed to incorporate 

 Ecological detail 

together with 

 Genetic detail 

in the context of a 
stock’s life cycle 



Population Structure 

 Individuals differ in physiological states and heritable 
traits; population structure thus arises from both 

 Relevant physiological states may include 
 (1) Age 
 (2) Length 
 (3) Weight 
 (4) Condition 
 (5) Maturity status 
 (6) Sex 
 (7) Stock component 



Phenotypic Plasticity 

 Phenotypes are not determined by genotypes alone, 
but also depend on environmental conditions 

 Systematic effects of the latter kind are known as 
phenotypic plasticity 

 Broader and narrower definitions exist: in a broader 
sense, learning and growth variation induced by 
resource availability are considered plastic responses 

 The level and kind of phenotypic plasticity can itself 
evolve, and thus may be fine-tuned by selection 



Genetic Variation 

 Without genetic variation, selection pressures cannot 
elicit selection responses 

 Without a correlation between the phenotypes of 
parents and their offspring (heritability), the effects of 
selection cannot be transmitted between generations 

 Heritabilities are defined as the ratio between (additive) 
genetic variance and total phenotypic variance 

 Genetic variances (and covariances) are insufficient 
for predicting selection responses when selection is 
strong, since genotypic distributions are then usually 
not normal 
 



Purposes of Eco-Genetic Models 

 Evaluate hypotheses advanced for explaining 
observed data 

 Understand and quantify anthropogenic selection 
pressures 

 Forecast the direction, speed, and outcome of 
evolutionary changes 

 Predict the differential evolutionary vulnerability of 
species and populations 

 Investigate the consequences of alternative 
management scenarios 



Modelling Frameworks: Summary  

(1) (2) 

(1) Ecological complexity, including both frequency- and density-dependent selection 
(2) Genetic variation, enabling predicting the speed of evolution 

Game-theoretical models No No 

Quantitative genetics models No Yes 

Adaptive dynamics models Yes No 

Eco-genetic models Yes Yes 
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