

Overview

Eco-Evolutionary Dynamics Modelling Frameworks Mathematical Connections Biodiversity Dynamics Adaptive Speciation Niche Theory

Adaptive dynamics

Adaptive Dynamics Theory

The theory of adaptive dynamics extends evolutionary game theory and quantitative genetics theory in a number of respects:

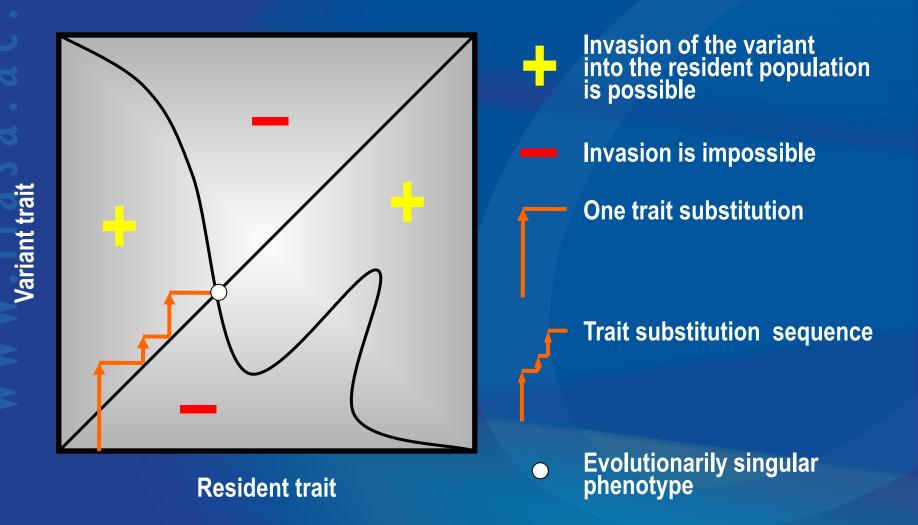
- Evolving traits are continuous
 - Trait dynamics are described
 - Mutational covariances and constraints can be examined
- Arbitrary density and frequency dependence is allowed
- Coevolution is integrated
- Structured population dynamics are allowed
- Non-equilibrium population dynamics are allowed
- Fitness landscapes are derived

Extensions of both EGT and QGT

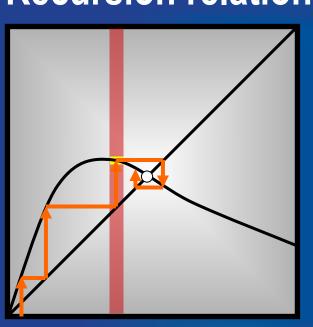
Extensions

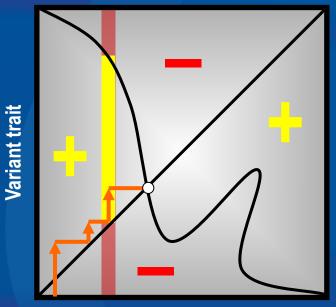
of EGT

Invasion Fitness


Metz et al. (1992)

Initial per capita growth rate of a small variant population within a large resident population at ecological equilibrium:


Matsuda & Abrams (1985)Pairwise InvasibilityPlotsMetz et al. (1992)

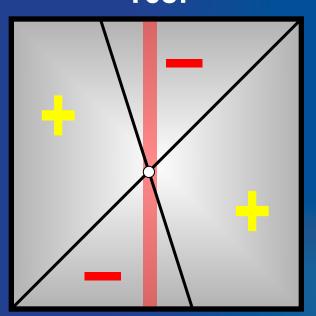

Comparison with Recursions

Next state

Current state

Recursion relations Trait substitutions

Resident trait

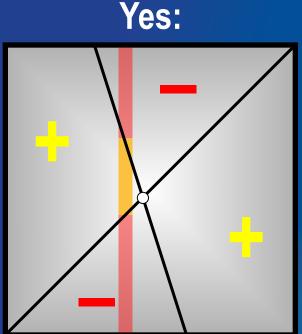

Size of vertical steps deterministic

Size of vertical steps stochastic

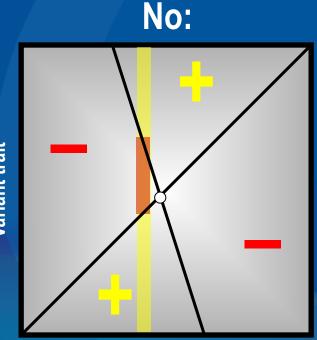
Is a singular phenotype immune to invasions by neighboring phenotypes?

Yes:

No:

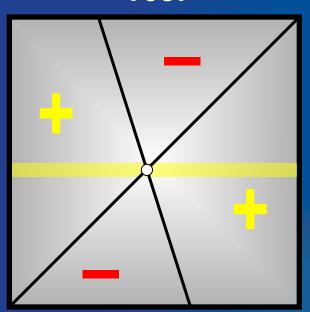

Resident trait

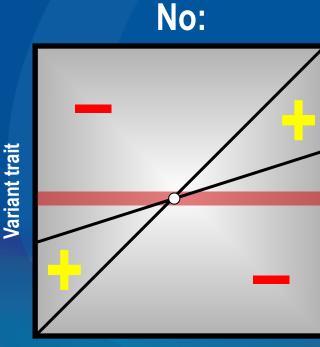
Resident trait



When starting from neighboring phenotypes, do successful invaders lie closer to the singular one?

Variant trait

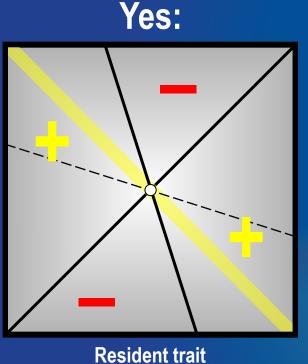

Resident trait



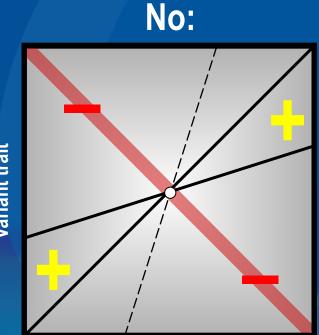
Variant trait

Is the singular phenotype capable of invading into all its neighboring types?

Yes:



Resident trait



Can a pair of neighboring phenotypes on either side of a singular one invade each other?

Variant trait

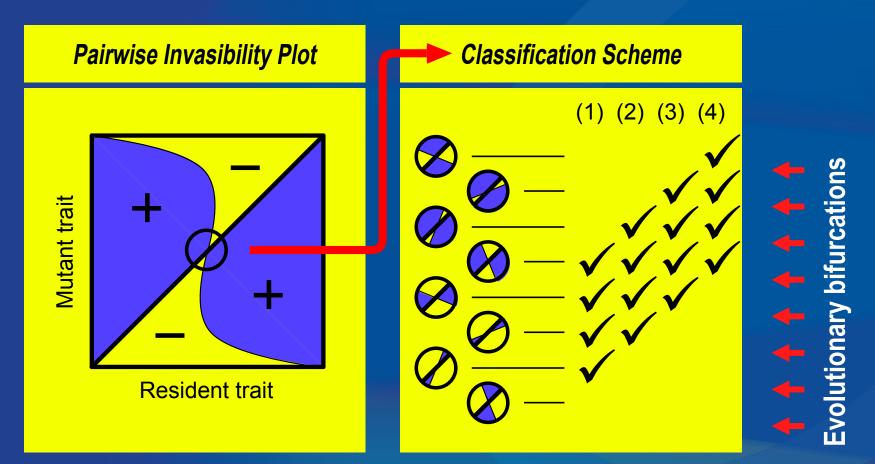
Variant trait

Reading PIPs: Four Independent Properties Geritz et al. (1997)

Evolutionary stability

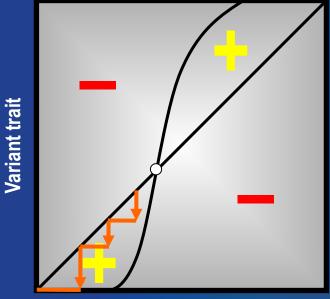
Convergence stability

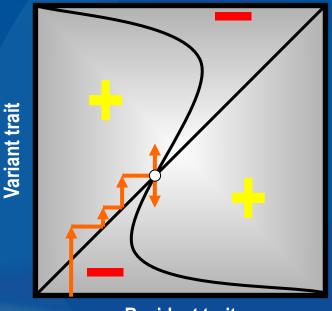
Invasion potential



Reading PIPs: Eightfold Classification

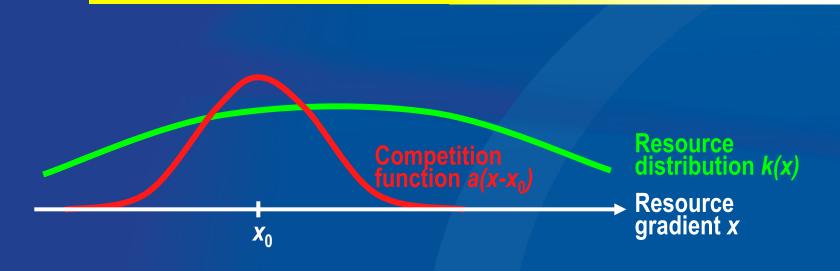
Geritz et al. (1997) Dieckmann (1997)


(1) Evolutionary stability, (2) Convergence stability, (3) Invasion potential, (4) Mutual invasibility


Two Interesting Types of PIPs

Garden of Eden

Branching Point



Resident trait

Example: Resource Competition

Roughgarden (1976)

Dynamics of population sizes n_i of strategy x_i $\frac{d}{dt}n_i = r n_i \left[1 - \frac{1}{k(x_i)} \sum_{j=1}^{n_j} \frac{a(x_i - x_j)n_j}{a(x_j - x_j)}\right]$

Analysis of Example 1/2

Invasion Fitness $\int f(x',x) = r \left[1 - \frac{1}{k(x')} (a(0)n' + a(x' - x)n) \right]$ $n' \to 0$ $2 \qquad n \to n_{\rm eq} = k(x)$ $f(x', x) = r \left[1 - a(x' - x) \frac{k(x)}{k(x')} \right]$

Analysis of Example 2/2

Pairwise Invasibility Plots With $k = k_0 N(0, \sigma_k)$ and $a = N(0, \sigma_a)$ we obtain for $\sigma_a > \sigma_k$ for $\sigma_a < \sigma_k$

Variant trait, *x*

Resident trait, *x* Evolutionary stability

Resident trait, *x* Evolutionary branching

Evolutionary Branching

Branching point

Convergence to disruptive selection leads to endogenous creation of diversity

Time

Published Analyses 1/2

- Symmetric intraspecific competition (Doebeli 1996a, 1996b; Metz et al. 1996; Dieckmann and Doebeli 1999)
- Asymmetric intraspecific competition (Kisdi 1999; Doebeli and Dieckmann 2000; Kisdi et al. 2001)
- Interspecific competition (Law et al. 1997; Kisdi and Geritz 2001)
- Resource specialization (Meszéna et al. 1997; Geritz et al. 1998; Day 2000; Kisdi 2001; Schreiber and Tobiason 2003; Egas et al. 2004, 2005)
- Ontogenetic niche shifts (Claessen and Dieckmann 2002)
- Mixotrophy (Troost et al. 2005)
- Phenotypic plasticity (Van Dooren and Leimar 2003; Ernande and Dieckmann 2004; Leimar 2005)
- Dispersal evolution (Doebeli and Ruxton 1997; Johst et al. 1999; Parvinen 1999; Mathias et al. 2001; Parvinen and Egas 2004),
- Mutualism (Doebeli and Dieckmann 2000; Law et al. 2001; Ferdy et al. 2002; Ferriére et al. 2002; Day and Young 2004)
- Emergent cooperation (Doebeli et al. 2004)

Published Analyses 2/2

- Predator-prey interactions (Brown and Pavlovic 1992; Van der Laan and Hogeweg 1995; Doebeli and Dieckmann 2000; Bowers et al. 2003)
- Cannibalism (Dercole 2003)
- Host-parasite interactions (Boots and Haraguchi 1999; Koella and Doebeli 1999; Regoes et al. 2000; Gudelj et al. 2004)
- Sex-ratio evolution (Metz et al. 1992; Reuter et al. 2004)
- Evolution of selfing (Cheptou and Mathias 2001; De Jong and Geritz 2001)
- Evolution of mating traits (Van Doorn et al. 2001, 2004)
- Evolution of anisogamy (Maire et al. 2001)
- Seed evolution (Geritz et al. 1999; Mathias and Kisdi 2002)
- Microbial cross-feeding (Doebeli 2002)
- Prebiotic evolution (Meszéna and Szathmáry 2001)
- **Community assembly (Jansen and Mulder 1999; Bonsall et al. 2004)**
- Food-web formation (Loeuille and Loreau 2005; Ito et al. 2009; Brännström et al. 2010)

Canonical Equation

Assumptions: Populations are large, and mutational steps are both rare and small

 $\frac{d}{dt}x_i = \frac{1}{2}\mu_i(x_i)n_i^*(x)\sigma_i^2(x_i)\frac{\partial}{\partial x_i'}f_i(x_i',x)\Big|_{x_i'=x_i}$

Then, the evolutionary rates are given by

evolutionary rate in species *i* mutation probability

eauilibrium population size

local selection gradient

invasion fitness

mutation ce-covariance

Synthetic Perspective

- The common form of the canonical equation of adaptive dynamics and of Lande's equation of quantitative genetics is reassuring
- In first approximation, evolutionary rates are proportional to the gradient of a frequency-dependent fitness
 - Beyond this commonality, the two dynamics differ, describing different kinds of evolutionary processes

Reminder: Four Independent Properties Geritz et al. (1997)

Evolutionary stability

Convergence stability

Invasion potential

Fitness, Gradient, Hessians

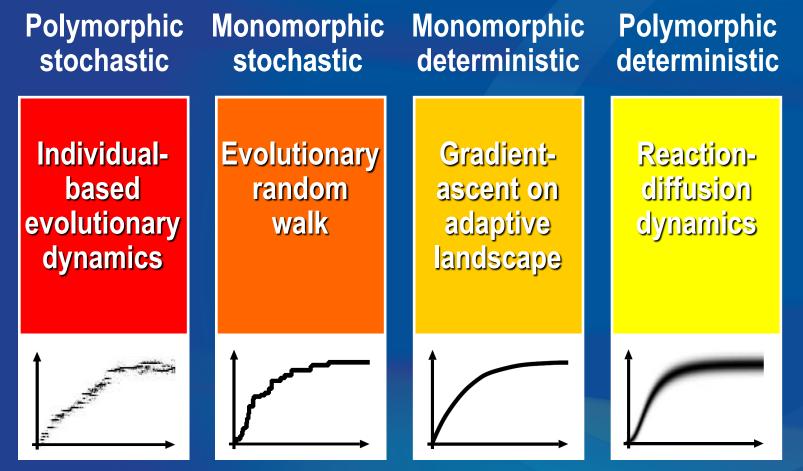
Invasion fitness f(x, x) = 0 at ecological equilibrium f(x',x)Selection gradient $g(x) = \frac{\partial}{\partial x'} f(x', x) \Big|_{x'=x}$ at evolutionary equilibrium $g(x^*) = 0$ Hessians of invasion fitness $h_{mm} = \frac{\partial^2}{\partial x'^2} f(x', x) \Big|_{x'=x=x^*} \quad h_{rm} = \frac{\partial^2}{\partial x' \partial x} f(x', x) \Big|_{x'=x=x^*}$ $h_{rr} = \frac{\partial^2}{\partial x^2} f(x', x) \Big|_{x'=x=x^*} \qquad h_{mr} = \frac{\partial^2}{\partial x \partial x'} f(x', x) \Big|_{x'=x=x^*}$

Conditions for Evolutionary Branching

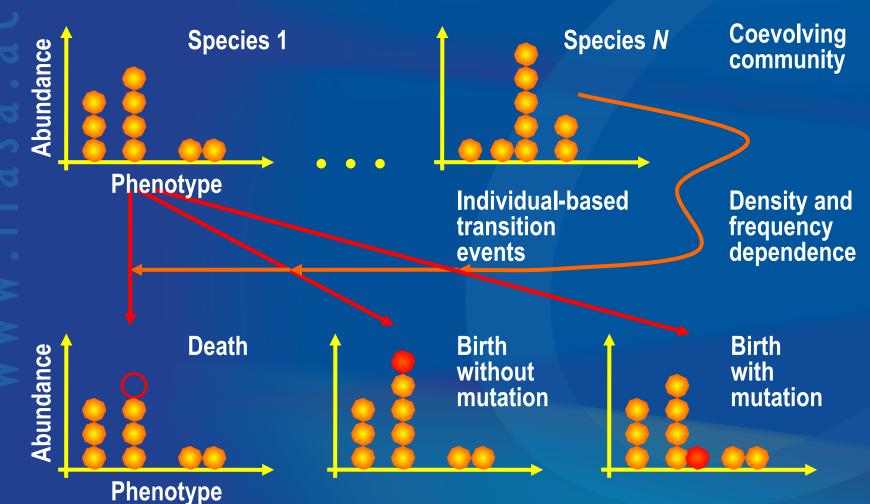
Evolutionary stability: no $h_{mm} < 0$ Convergence stability: yes $h_{mm} - h_{rr} < 0$ (or $h_{mm} + h_{mr} < 0$) Invasion potential $h_{rr} > 0$ **Mutual invasibility** $h_{mm} + h_{rr} > 0$

These conditions apply to onedimensional traits. For higherdimensional traits, they involve matrices and are a bit more complex.

Summary: Main Tools of Adaptive Dynamics Theory


- Individual-based modelling
- Invasion fitness
- Pairwise invasibility plots
- Canonical equation
- Evolutionary branching conditions

Interlude: Mathematical Connections


Four Types of Evolutionary Dynamics

Birth-Death-Mutation Processes

Dieckmann (1994)

Individual-based Evolutionary Dynamics Dieckmann (1994) **Polymorphic and Stochastic**

State variables

 $p_i = \sum_{k=1}^{n_i} \delta_{x_{ik}}$

Phenotypic distribution in species *i*

Parameters

 $b_i(x_i, p) \quad d_i(x_i, p)$

Per capita birth rate in species *i*

Per capita death rate in species *i*

 $f_i(x_i, p) = b_i(x_i, p) - d_i(x_i, p)$

 $\mu_i(x_i)$

Mutation probability in species *i*

Phenotypic distribution

of entire community

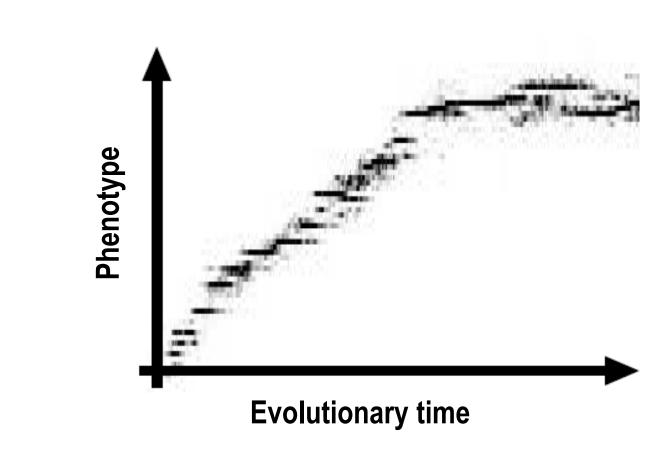
 $p = (p_1, ..., p_N)$

 $M_i(x_i', x_i)$

Mutation distribution in species *i*

Fitness-generating function in species *i*

Master equation


 $\frac{d}{dt}P(p) = \int \left[w(p \mid p')P(p') - w(p' \mid p)P(p)\right]dp'$

 $w(p' | p) = \sum_{i=1}^{N} \int \left[d_i(x'_i, p) p_i(x'_i) \Delta(p_i - \delta_{x'_i} - p'_i) \prod_{j \neq i} \Delta(p'_j - p_j) + \int b_i(x_i, p) p_i(x_i) B_i(x'_i, x_i) dx_i \Delta(p_i + \delta_{x'_i} - p'_i) \prod_{j \neq i} \Delta(p'_j - p_j) \right] dx'_i$

Measure-valued stochastic process in the space of atomic distributions (Dirac measures)

Individual-based Evolutionary Dynamics Polymorphic and Stochastic Dieckmann (1994)

Effect of Mutation Probability

Large: 10%

Dynamic mutation-selection equilibrium

Small: 0.1%

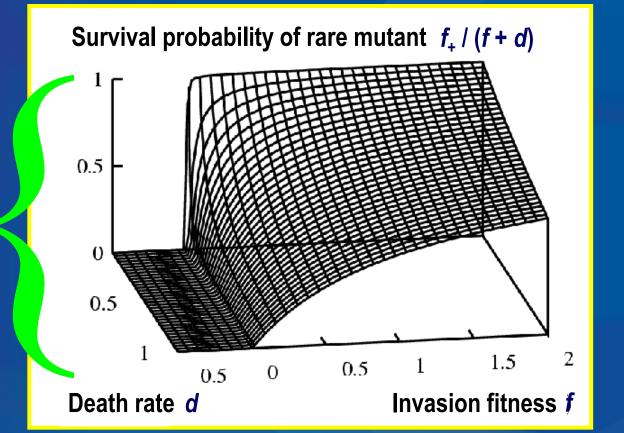
Mutation-limited evolutionary dynamics

"Moving cloud"

"Staircase"

Evolutionary time

Evolutionary time


Probability for a Trait Substitution

Dieckmann & Law (1996) Geritz et al. (2002)

Mutation Population dynamics

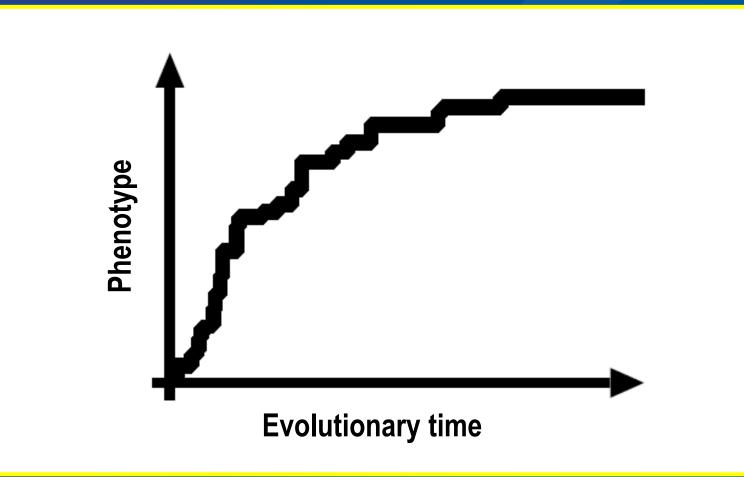
Invasion Branching process theory

Fixation Invasion implies fixation

Invasion probabilities can alternatively be based on the Moran process, on diffusion approximations, or on graph topologies

Evolutionary Random Walk Monomorphic and Stochastic Die

Dieckmann & Law (1996)


Master equation $\frac{d}{dt}P(x) = \int \left[w(x \mid x')P(x') - w(x' \mid x)P(x)\right] dx'$ $w(x' \mid x) = \sum_{i=1}^{N} w_i(x'_i, x) \prod_{i \neq i} \delta(x'_j - x_j)$ $w_i(x'_i, x) = \mu_i(x_i)b_i(x_i, x)n_i^*(x)M_i(x'_i, x_i) \cdot (f_i(x'_i, x))_+ / b_i(x'_i, x)$

Real-valued stochastic process in trait space

Evolutionary Random Walk Monomorphic and Stochastic Die

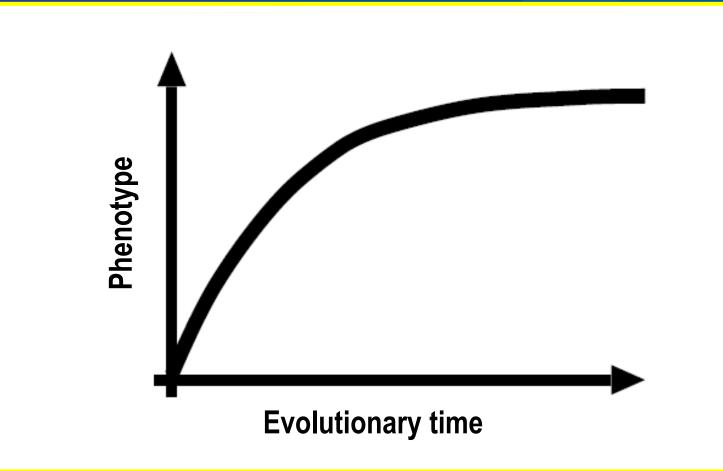
Dieckmann & Law (1996)

Gradient-Ascent on Adaptive Landscapes Monomorphic and Deterministic Dieckmann & Law (1996)

 $\frac{d}{dt}x_i = \frac{1}{2}\mu_i(x_i)n_i^*(x)\sigma_i^2(x_i)\frac{\partial}{\partial x'_i}f_i(x'_i,x)\Big|_{x'_i=x_i}$

Canonical equation of adaptive dynamics

evolutionary rate in species *i*


mutation probability

equilibrium population size mutation variance-covariance local f selection gradient

fitness

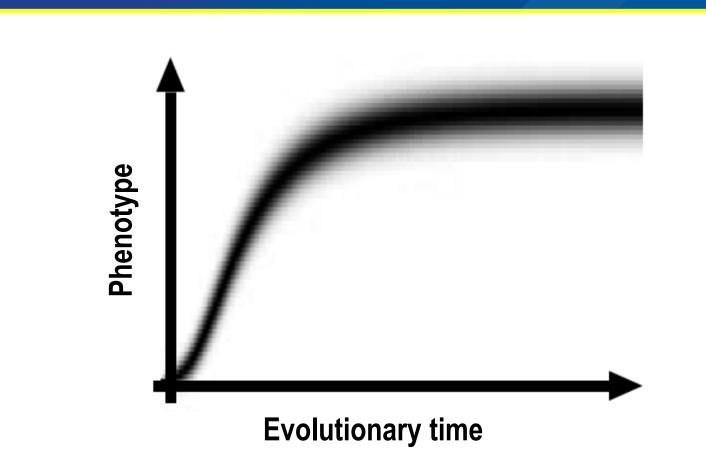
Gradient-Ascent on Adaptive Landscapes Monomorphic and Deterministic Dieckmann & Law (1996)

Reaction-Diffusion Dynamics Kimura (1965) Polymorphic and Deterministic Dieckmann (unpublished)

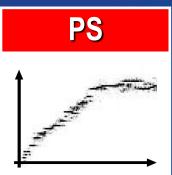
Kimura limit

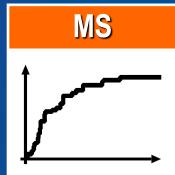
$$\frac{d}{dt}p_i(x_i) = f_i(x_i, p)p_i(x_i) + \frac{1}{2}\mu_i(x_i)\sigma_i^2(x_i) * \frac{\partial^2}{\partial x_i^2}b_i(x_i, p)p_i(x_i)$$

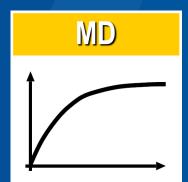
Finite-size corrections

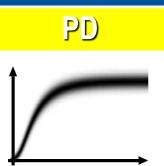

Additional per capita death rate results in compact support

X


Reaction-Diffusion Dynamics Polymorphic and Deterministic


Kimura (1965)

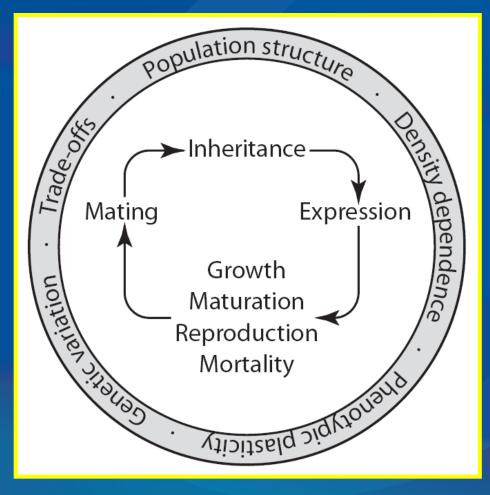




large population sizefixed standing variancesmall mutation probabilitysmall mutation variance

large population size large mutation probability

Eco-genetic models



Eco-Genetic Models

Eco-genetic models are process-based and designed to incorporate **Ecological detail** together with

Genetic detail

in the context of a stock's life cycle

Population Structure

Individuals differ in physiological states and heritable traits; population structure thus arises from both

Relevant physiological states may include (1) Age (2) Length (3) Weight (4) Condition (5) Maturity status (6) Sex (7) Stock component

Phenotypic Plasticity

- Phenotypes are not determined by genotypes alone, but also depend on environmental conditions
- Systematic effects of the latter kind are known as phenotypic plasticity
- Broader and narrower definitions exist: in a broader sense, learning and growth variation induced by resource availability are considered plastic responses
- The level and kind of phenotypic plasticity can itself evolve, and thus may be fine-tuned by selection

Genetic Variation

- Without genetic variation, selection pressures cannot elicit selection responses
- Without a correlation between the phenotypes of parents and their offspring (heritability), the effects of selection cannot be transmitted between generations
- Heritabilities are defined as the ratio between (additive) genetic variance and total phenotypic variance
- Genetic variances (and covariances) are insufficient for predicting selection responses when selection is strong, since genotypic distributions are then usually not normal

Purposes of Eco-Genetic Models

- Evaluate hypotheses advanced for explaining observed data
- Understand and quantify anthropogenic selection pressures
- Forecast the direction, speed, and outcome of evolutionary changes
- Predict the differential evolutionary vulnerability of species and populations
- Investigate the consequences of alternative management scenarios

Modelling Frameworks: Summary

	(1)	(2)
Game-theoretical models	No	oľ
Quantitative genetics models	No	Yes
Adaptive dynamics models	Yəs	No
Eco-genetic models	Yes	Yes

Ecological complexity, including both frequency- and density-dependent selection
 Genetic variation, enabling predicting the speed of evolution