

From structure to function in proteins: SRICE the convergence of structure based models and co-evolutionary information

AAKAPSARGHATKPRAPKDAQHEAA AAKAPSARGHATKPRAPKDAQHEAA SAKEKNEKMKIVKN-LIDKGKKSGS TELETKFTLDQVKDQLEEQGKKRSS LAPSGNTALATAKKKEITDRTDDPV TELETKFTLDQVKPRAEKDGKKRSS

School on Physics Application in Biology ICTP SAIFR

> São Paulo, Brasil 22 January 2016

José N. Onuchic Center for Theoretical Biological Physics Rice University ctbp.rice.edu

Energy Landscape Idea

Good Funnel: Roughness is small compared to stabilizing free energy – E linear in Q

 $\Phi_i = \frac{\Delta \Delta G_i^{\ddagger}}{\Delta \Delta G_i^0} \approx -\frac{RT \ln(\mathbf{k_i}/\mathbf{k_{wt}})}{\Delta \Delta G_i^0}$

Analysis of two-state folders: Transition State structure for CI2 and SH3

These descriptions are in good agreement with experimental results (Jackson & Fersht 1991, Grantcharova et al. 1998).

C.Clementi, H.Nymeyer, J.Onuchic, JMB 2000

What are the folding routes for SH3?

Structure-based models of proteins

- Theory \implies Reduced Models
 - Native interactions are on average more stabilizing than non-native.
 - "Perfect funnel" structure-based models are the limiting case, force field completely specific to a native configuration
 - Baseline model can be extended by including non-native interactions, e.g. Debye-Huckel electrostatics or transferable backbones

Structure Based All-Atom Model - all available at <u>smog-server.org</u> Whitford, Noel, Gosavi, Schug, Sanbonmatsu & Onuchic (2009) *Proteins,* 75, 430-441. (Protein forcefield) Whitford, Schug, Saunders, Hennelly, Onuchic & Sanbonmatsu (2009) *Biophys.J.* 96,L7-9 (RNA forcefield) Extending the funnel ideas towards situations that we have limited information....

Mutations throughout history provide examples on structure conservation Helix-Turn-Helix Phylogeny (HTH_3) Organism: B. fragilis **AAKAPSARGHATKPRAPKDAQHEAA Organism**: Phage 434 **AAKAPSARGHATKPRAPKDAQHEAA** SAKEKNEKMKIVKN-LIDKGKKSGS **TELETKFTLDQVKDQLEEQGKKRSS** LAPSGNTALATAKKKEITDRTDDPV **Organism**: N. gonorrhoeae **TELETKFTLDQVKPRAEKDGKKRSS** Clostridia Clostridiales Eukaryota

Other sequences

Unclassified sequence

Unclassified

Organism: *C. difficile 630*

Residue-residue coevolution maintains protein structure

Identification of directly co-evolving residues is a challenge

Analysis of Correlated Residue Pairs

- The **problem of directly coupled residue pairs** has been a long standing challenge due to several factors:
 - 1. Correlations can be **direct** (e.g. physical contacts) or **indirect** (chain effects)
 - The use of local statistical models
 e.g. Mutual Information
 - 2. Noisy or incomplete data

- Recently the panorama has changed:
 - Increase of sequence information
 - A formal concept of a protein family (e.g. Pfam)
 - Global statistical models (traditionally intractable) can be attacked with novel approximate solutions

Direct Coupling Analysis predicts 3D contacts in proteins

To disentangle direct from indirect correlations we developed a statistical inference method called Direct Coupling Analysis (DCA).

Available – dca.rice.edu

Sequence probability distribution depends on pairwise and single site parameters

AAKAP ARGHATKPRA KDAQHEAA AAKAP ARGHATKPRA KDAQHEAA SAKEK KEKMK VKN-L OKGKKSGS TELET KFTLD VKDQL EQGKKRSS LAPSG TALA AKKKE TDRTDDPV

Input Data :

$$P_i(A_i) \equiv f_i(A_i)$$

$$P_{ij}(A_i, A_j) \equiv f_{ij}(A_i, A_j)$$

 $f_{6,17}(S_6, P_{17}) = 2/6$

i = 6 j = 17

Using maximum entropy principle to model the joint probability distribution

$$P(A_1, \dots, A_L) = \frac{1}{Z} \exp\{\sum_{i < j} e_{ij}(A_i, A_j) + \sum_i h_i(A_i)\}$$
$$e_{ij}(A, B) \approx -(C^{-1})_{ij}(A, B)$$

Disentangling direct and indirect correlations

Using maximum entropy principle to model the joint probability distribution

$$P(A_1, \dots, A_L) = \frac{1}{Z} \exp\{\sum_{i < j} e_{ij}(A_i, A_j) + \sum_i h_i(A_i)\}$$

An expansion of the energy summations yields

$$e_{ij}(A,B) = -(C^{-1})_{ij}(A,B)$$

This relates pairwise energies and single and pairwise frequency counts

$$C_{ij}(A,B) = f_{ij}(A,B) - f_i(A)f_j(B)$$

Direct Information Metric

Direct Probabilities are defined as:

$$P_{ij}^{(dir)}(A,B) = \frac{1}{Z} \exp\{e_{ij}(A,B) + \hat{h}_i(A) + \hat{h}_i(B)\}$$

The probabilities for residue couplets are ranked using Direct Information

$$DI_{ij} = \sum_{A,B=1}^{q} P_{ij}^{(dir)}(A,B) \ln \frac{P_{ij}^{(dir)}(A,B)}{f_i(A) f_j(B)}$$

True positive contacts (<8A) are evaluated from top couplets

True Positive (TP) rates DCA accurately infers contacts in protein families

• **DCA** infers high quality contacts for a large number of domain families:

DCAfold predicts Peptidoglycan-Associated lipoprotein

RMSD: 1.5 Å

PAL Native structure PDB:10ap

Non-local information: Local information: DCA Known

Red link (DCA True Positive < 8Å) Green link (DC

[Sulkowska, Morcos et al. PNAS 2012]

< 8Å) Green link (DCA False Positive > 8Å)

Review: Marks et al. Nature Biotechnology 2012

DCA accurately infers contacts in protein families

• **DCA** infers high quality contacts for a large number of domain families:

Multimerization contacs have high DI rank

Multimerization contacs have high DI rank

• A monomeric False positive is in fact a multimerization contact

Multimerization contacs have high DI rank

• A monomeric False positive is in fact a multimerization contact

Multimerization Contacs have high DI rank

• All 3 monomeric False positives are in fact multimerization contacts

Highest DI values reflect interprotein contacts between HK and RR

Conformational plasticity in ligand bound proteins

Name	Family	Sequences M	Effective Seq. Meff	PDB open/closed	Protein Length
L-leucine binding protein	Peripla_BP_4 Solute Binding Periplasmic	7K	3.3K	1usg/1usi	345

Ligand: L-Leucine

Conformational plasticity in ligand bound proteins

Name	Family	Sequences M	Effective Seq. Meff	PDB open/closed	Protein Length
L-leucine binding protein	Peripla_BP_4 Solute Binding Periplasmic	7К	3.3K	1usg/1usi	345

[Morcos et al. PNAS 2013]

SBM+DCA finds hidden conformations

СТВР

D-Ribose binding protein

[Morcos et al. PNAS. 2013]

- D-Ribose intermediate state could facilitate ribose transfer in the permease complex. Ravindranathan et al. J. Mol. Biol. (2005)
- Twisted state suggested for D-Glucose binding protein, based on disulfitetrapping and fluorescence spectroscopy. C. L. Careaga et al. Biochemistry. (1995)
- Accelerated MD suggested a semi-closed state for Maltose binding protein
 D. Bucher et al. PLoS Comput Biol. (2011)

Coevolutionary Information in Protein-Protein Interactions

Ricardo Nascimento dos Santos and Faruck Morcos *Scientific Reports*, in press

- Direct Coupling Analysis can be easily extrapolated to protein pairs
- Protein interfaces are preserved by coevolving residues
- Sequence pairing can be done by genomic adjacency, annotation or single copies per organism

Methyltransferase PDB (1UAL)

[Dos Santos, Morcos et al. 2015, in press]

Protein association predicted in cancer proteins

Integrated strategy reveals the protein interface between cancer targets Bcl-2 and NAF-1

PNAS

Sagi Tamir^a, Shahar Rotem-Bamberger^b, Chen Katz^b, Faruck Morcos^c, Kendra L. Hailey^d, John A. Zuris^d, Charles Wang^d, Andrea R. Conlan^d, Colin H. Lipper^d, Mark L. Paddock^d, Ron Mittler^e, José N. Onuchic^{c,f,g,h,1}, Patricia A. Jennings^{d,1}, Assaf Friedler^{b,1}, and Rachel Nechushtai^{a,1}

^aThe Alexander Silberman Institute of Life Science and ^bInstitute of Chemistry, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel; ^cCenter for Theoretical Biological Physics and Departments of ^fPhysics and Astronomy, ^gChemistry, and ^hBiochemistry and Cell Biology, Rice University, Houston, TX 77050; ^dDepartment of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093; and ^eDepartment of Biological Sciences, University of North Texas, Denton, TX 76203

Background on Two-component signaling

10²-10³ TCS partners in bacteria

How does a TCS protein coevolved to stay faithful to its signaling partner?

Can we identify the molecular determinants of *interaction recognition* from abundant sequence data and limited structural data?

[Laub, Goulian. Annu Rev Genet. 2007]

Alanine-scanning mutagenesis of SpoOF (Tzeng and Hoch, JMB 1997)

Phosphorelay

DCA-based recognition metric between interacting protein partners

Histidine Kinase (HK)

Response Regulator (RR)

Related to Direct Information (DI):

$$DIScore = \sum_{i \in HK, j \in RR} P_{ij}^{(dir)}(S_i, R_j) \ln\left(\frac{P_{ij}^{(dir)}(S_i, R_j)}{f_i(S_i) f_j(R_j)}\right)$$

Testing predictive power in capturing interaction preference between different sporulation proteins of the HK and RR families

Sporulation kinase	Sporulation response regulator			
	Spo0F	Spo0A		
KinA	5.91	5.31		
KinB	5.44	5.06		
KinC	5.54	5.05		
KinD	5.91	5.38		
KinE	5.44	4.96		

Higher values appears to reflect preference of sporulation kinase to Spo0F but meaning of magnitude of this metric or relative differences between sporulation kinases is still being understood

Protein Recognition in TCS can be characterized with DCA

DNA-binding

domain

His-P

- **Construct database:** multiple 1) sequence alignments of known interacting partners, i.e., cognate pairs (30,623 sequences)
- **Key assumption:** HK and RR that are adjacent on operon are cognate pairs
- 2) DCA: computation of direct couplings between interprotein residues

Using our **metric** to **infer** mutational effects on the functional **interaction** (i.e., phosphotransfer) between TCS proteins

Asp

cognate assumption

$$DIScore = \sum_{i \in HK, j \in RR} P_{ij}^{(dir)}(S_i, R_j) \ln \left(\frac{P_{ij}^{(dir)}(S_i, R_j)}{f_i(S_i) f_j(R_j)} \right)$$

Sequence = $(S_1, ..., S_{N_{HK}}, R_{N_{HK}+1}, ..., R_{N_{HK}+N_{RR}})$

[Early work: Li et al. PNAS 2003, White et al. Methods Enzymology 2007, Skerker et al. Cell 2008]

Specificity score requires substraction of generic features

Specificity score requires substraction of generic features

Response Regulator REC domain

Alanine-scanning mutagenesis of SpoOF (Tzeng and Hoch, JMB 1997)

Prediction of cognate pairs in E. Coli

DIS 0 2 4 6 8

DIS^(specific)

Cartoon depiction of a hybrid TCS protein

Hybrid TCS proteins (~17,000) do not need to have a highly co-evolved recognition interface since tethering greatly increases their rate of encounter.

(Consistent with Townsend *et al*, PNAS 2013)

P.F. Collaborators

Postdocs: Faruck Morcos, Heiko Lammert, Ellinor Haglund, Jeff Noel, Ryan Cheng, Mingyang Lu, Fang Bai, Michele Di Pierro Alex Schug - Karlsruher Institut für Technologie (KIT) Biman Jana – Indian Assoc. Cultivation of Science -India Joanna Sulkowska - University of Poland **Koby Levy - Weizmann Institute Changbong Hyeon - KIAS, Korea Cecilia Clementi – Rice University** Joan-Emma Shea – UCSB Adelia Aquino – Texas Tech Steve Plotkin – UBC, Canada Osamu Miyashita - RIKEN, Japan John Finke - University of Washington, Tacoma Antitsa Stoycheva - Gilead Sciences, Inc. Nick Socci – Sloan Katering Yoko Suzuki - Meisei University - Tokyo Jorge Chahine - Unesp, Brazil Chigusa Kobayashi - RIKEN, Japan Eric Nelson – UTSWMC, Texas Jian Liu - NIH Shachi Gosavi - NCBS – India **Daniel Schultz – Harvard** Leandro Oliveira - CTBE, Brazil

Marcio de Mello Cardoso – UFRJ, Brasil

Students Ricardo dos Santos, Ryan Hayes, Li Sun, Nathan Eddy, Xingcheng Lin, Mohit Raghunathan, Bin Huang, Kareen Mehrabiani, Marcelo Boareto

Paul Whitford – Northeastern University Hugh Nymeyer –Florida State University Marcos Betancourt - IUPUI Vitor Leite - Unesp, Brazil Leslie Chavez - LANL Margaret Cheung - University of Houston Sichun Yang – Case Western University Peter Leopold – BioAnalyte Inc.

Collaborators

Peter Wolvnes, Herbie Levine and Eshel Ben-Jacob Jianpeng Ma – Baylor College of Medicine **Angel Garcia - RPI** Pat Jennings and Terry Hwa- UCSD Martin Weigt – Univ. Paris, France Zan Luthey-Schulten – UIUC Karissa Sanbonmatsu - LANL **Hualiang Jiang – SIMM Chins Charles Brooks – U. Michigan Stefan Klumpp – MPIKG, Germany** Shoji Takada - Kobe, Japan Ashok Deniz – TSRI Mikael Oliverberg – Stockholm Antonio Francisco Pereira de Araujo - Brasilia Yoshitaka Tanimura - Kyoto, Japan Yuko Okamoto - Nagoya University, Japan Ulrich Hansmann – University of Arkansas **Rachel Nechushtai – Hebrew University Ron Mittler – Univ. North Texas**

National Science Foundation WHERE DISCOVERIES BEGIN

CANCER PREVENTION & RESEARCH INSTITUTE OF TEXAS

