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Symmetry in nature

Usual scenario: physical systems are /ess
symmelric at low temperatures/energies
(via phase transitions):

 crystals vs gas/liquid

* (anti-)ferromagnets vs paramagnets

* liquid crystals vs normal liquids

* superconductors vs normal metals

 superfluids vs normal fluids
« SUR)xU()vsU,_,(1)....

1. Condensed matter physicists spend
money to cool things down and find
broken symmetries.

High energy physicists spend (a lot
more) money to “heat things up” and
access more symmetric states.

Water and ice
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Less common: emergent symmetries

Emergent symmetries: the low-energy sector 1s more symmetric than the
high-energy one (via )

* Critical Ising model in a small magnetic field: E¢ Lie group! (A. B.

Zamolodchikov, Int. J. Mod. Phys. ‘89). Experimental realization: (R. Coldea et al.,
Science 327, 177 (2010))

* Tricritical Ising model: SUSY (D. Friedan, Z. Qiu, S. Shenker, PRL “85).
* Quantum spin-2 chains: SU(3) (P. Chen et al., PRL ‘15)
* Certain quantum critical points: gauge symmetry

(Senthil, Vishwanath, Balents, Sachdev, Fisher,
Science 303, 1490 (2004))....

* Symmetry-protected topological states: fermions
and gauge fields (Xiao-Gang Wen)...........




Less common: emergent symmetries

1. Known examples are few and far between.
2. Generic mechanism not known. General 1deas:
1. Stable low-T fixed point with group G

2. Irrelevant operators break G into g (g CQG)

3. No recipe for its construction: case by case...
(C. Itoi, S. Qin, and 1. Affleck, PRB 61, 6747 (2000))




Disordered Heisenberg chain

H=3 JiSi-Sii FININS e s\
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J; > 0: distributed according to P(J;€2)
Q2 1s the high energy cutoff
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Strong disorder RG method

o — Z T« Fona J. > 0— di.stributed according to P,(J;Q);
y Q2 1s the high energy cutoff

Decimation procedure:
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1. Find t.he strongest 0 Diagonalize Srp=1= E;, = ZQ S=1
coupling Q=max{J}. H > 3 I O
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2. Treat H = J1S1-Ss2 + J3S3 - S4 in 2nd order perturbation theory
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Net result: S, and S; disappear and new coupling between S, and S, appears
Topology of the (infinite) chain is preserved.

S. K. Ma, C. Dasgupta, and C.-K. Hu, Phys. Rev. Lett. 43, 1434 (1979), C. Dasgupta, and S. K. Ma, Phys. Rev.
B 22, 1305 (1980).




Universality

All 1nitial distributions have the same fate

P(J)} T, |
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The effective disorder increases without limit!

The method 1s asymptotically exact: the wider the distribution, the more
accurate the decimations.




Spatial distribution of strong bonds

Decimation procedure:




Spatial distribution of strong bonds

Decimation procedure:
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Find the strongest coupling




Spatial distribution of strong bonds

Decimation procedure:
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Spatial distribution of strong bonds

Decimation procedure:

Renormalize
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Spatial distribution of strong bonds

Decimation procedure:
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Spatial distribution of strong bonds

Decimation procedure:
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Spatial distribution of strong bonds

Decimation procedure:




Spatial distribution of strong bonds

Decimation procedure:
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Spatial distribution of strong bonds

Decimation procedure:
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Random-Singlet ground state

Ground state

IRandom Singlet phasel
Well-separated, strongly bound spin pairs
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Excitations

@m

Excitations are localized: breakup of long bonds.
Energy of an excitation of length L:

1 . ; :
Q) ~ e_Llp | == ‘Activated dynamical scaling’
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With this scaling, we can get exact results for low-energy properties
(susceptibility, specific heat), which I will not discuss.

D. S. Fisher, PRB 50, 3799 (1994).




The correlation function at T=0

Wm

Typical pairs are weakly correlated

(Si - Sigr) =0

(Si - Sitr)typ ~ exp(—r")

1
Y=o

D. S. Fisher, PRB 50, 3799 (1994).




The correlation function at T=0
@\o O/w

(Si -+ Sitr) = O(1)

But average value 1s dominated by rare singlets

—1)" A
(Si - Sivr)av ~ ( r¢) P((Si - Si4r))

b =2

D. S. Fisher, PRB 50, 3799 (1994).




Disordered spin-1 chains

The most general disordered spin-1 chain with global SU(2) invariance.

2
Hjyp = Z [JiSi - Siv1+D; (S - Sit1) }
)
Note: the two terms are linearly dependent for spin-1/2, but not for spin-1.
Hip —ZE [COSHS SZ_|_1—|—SII19 (S Sz—l—l) }
D;
J

May be experimentally realized in optical lattices loaded with cold *Na

Garcia-Ripoll, Martin-Delgado, & Cirac, PRL 93, 250405 (2004)
Imambekov, Lukin, & Demler, PRA 68, 063602 (2003)

E \/J2—|—D tan@i—

What 1s the behavior at strong disorder?




RG step for generic spin-1 chains

. — S=2
Ho = J3Ss-S3+ Dy (Sy - S3)
OR OR

|
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Boechat, Saguia & Continentino
Solid State Commun. '96
Yang & Bhatt, PRL '98

Triplet (S=1) ground state I

arctan(1/3)

Singlet (S=0) ground state I




Disordered spin-1 chains: phase
dia gram v.L Quito, I. A. Hoyos, EM., PRL 115, 167201 (2015)

We first consider the case of random £ but|fixed 6

H;p = ZEZ {COS ST Sz’—I—l + sin 6 (Sz ' Si_|_1)2



Random singlet pairs




Random singlet pairs

In phase 2, there 1s a conventional
random singlet phase: asymptotically,
— / A only singlet-forming decimations occur
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() ~ e_Lw
etd(i—7j)
(Si+Sj)ay ~ ——
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—37/4
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/2 Heisenberg point Uy = 5 drr = 2




Random singlet trios

In phase 1, the ground state 1s
made of random spin trios (and
less frequent sextets, etc.). At
each step both singlets and
spins-1 are formed.

arctan(1/3)




Random singlet trios

In phase 1, the ground state 1s
made of random spin trios (and
less frequent sextets, etc.). At
each step both singlets and
spins-1 are formed.

oo o
il

P~ °
L




Random singlet trios

In phase 1, the ground state 1s
made of random spin trios (and
less frequent sextets, etc.). At
each step both singlets and
spins-1 are formed.

() ~ e_Lw
etd(i—7j)
(S5 S5) g ~ —
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Emergent SU(3) symmetry



Special SU(3) points
HJD — ZEZ [COS QSZ y Sf,;_|_1 + sin 6 (Sz y SZ'_|_1)2}
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Where did SU(3) come from?

SU(N): group of N x N unitary matrices with determinant equal to 1

U = 6iH if H 1s Hermitian and traceless

For N=2, the Pauli matrices are a complete basis for traceless Hermitian

matrices: U — o 0o

For N=3, the following 8 spin-1 operators form an analogous complete set:

W, =858 =F 845

U — iZizl Calla
Al :Sx, A5 =5.5, + S5z, c

. ANg =5,5, + 5.5, These 8 operators are the
J A =852 — §2 generators of the fundamental
As =5, v (‘quark’) representation of SU(3).

As :% (287 — 87— S7).




Where did SU(3) come from?

SU(N): group of N x N unitary matrices with determinant equal to 1

U = 6iH if H 1s Hermitian and traceless

For N=2, the Pauli matrices are a complete basis for traceless Hermitian

matrices: U — o 0o

For N=3, the following 8 spin-1 operators form an analogous complete set:

Wy, = = 58, 4 5,5,
Al :Sx, As =— 5.5, + SzSa:7
Ay =5y, A R e If we change the sign of A,

Ay =S5 gy = — S;% — S:ga (a=4,5,6,7,8) we have the
- 1 ‘antiquark’ one.

7 (257 — S - 52).

U — 6i Zizl Calla

Ag = —




Special SU(3) points

T

H (9 = Z> = ZE@A@’,@A(@'H),@ = ZEiAi A

— SU(3) - (quark-quark)
D

FM
2 ‘ Quarks disguised as spins!
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Special SU(3) points

H (9 = —g) = Z EiNi aN(i41),0 = ZEiAi - At

—37 /4

FM

1 /4

P Quarks/antiquarks disguised as
spins!

q—q94—q9—9—q9—9—¢q

—7/2) «—— SU(3) - (quark-antiquark)




SpeCial SU(3) pOintS SU(3) - (quark-quark)

q—4—q9—9—-9—-9q4—q

J. A. Hoyos and E. M., PRB 70, 180401(R) (2004)
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—3m/4




Special SU(3) points

J. A. Hoyos and E. M., PRB 70, 180401(R) (2004)
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dq—494—39—94—qg—9q—¢q

/wM;¢M2

—3m/4
=



The pair singlet 1s angle-
independent: 1t 1s both an SU(2) and
an SU(3) singlet.

(é?@

At long length scales, the state 1s the same
throughout region 2, including —/2:

—
ﬂﬂ emergent SU(3)

—3m /4




Emergent SU(3) symmetry

At long length scales, the state 1s the same
throughout region 1, including mt/4:
emergent SU(3)

-\)\(Ef\

The trio singlet 1s also angle-
independent: 1t 1s both an SU(2) and
an SU(3) singlet.




Baryonic random singlet phase

H = Z FE; [COSH S; - Si;+1 +sinf (S; - Si+1)2]

Random three-quark SU(3) singlets (baryons):
baryonic random singlet phase
—3m / 4 The response of the state 1s SU(3) symmetric




Mesonic random singlet phase

H = Z FE; [COSH S; - Si;+1 +sinf (S; - Si+1)2]

Random quark-antiquark SU(3) singlets
(mesons):

mesonic random singlet phase

Again, the response of the state 1s SU(3)
symmetric

FM
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Emergent SU(3) symmetry

<S’i'Sj>aUN ‘Z_]’gb — <AaiAaj>avN ‘Z_]‘(b (CL:l,...,8)
t z gz But note:

* The exponents are all the same.

A3 =5, ]
’ * The numerical pre-factors are the same only at the

Ay = 5.5, + 5,5z,

As = S.S, + 5.5, SU(3) points or at very strong initial disorder. The
Ag = S, S, + 8.8, emergent SU(3) only appears asymptotically, the
Ar=S2—S2, procedure is inaccurate at the beginning of the flow.

Ag=—(252-52-57).

5 =




Full phase diagram

Allowing for spatial fluctuations of 6 in the initial distribution
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Can this be a more general
phenomenon?

Chains with spins S > 1: (V. L. Quito, J. A. Hoyos, E.M., arXiv:1512.04542)

H = Za%(si :Sit1) + (S - Siv1)’ + ...+ 0% (Si - Si41)*°

* Conventional random singlet phases with SU(25+1) symmetry: only
spin pairs (mesons), =" ,...
* Phases with y= 1/3, but no emergent higher symmetry.

Can we find phases (more than
singlet) with emergent symmetries?




Can this be a more general
phenomenon?

But S =1 is also the fundamental representation of SO(3).
* So instead of

SU(2) with 5=1 — SU(2) with §> 1
e we tried

SO(3) — SO(N) (with the fundamental repres.)

(V. L. Quito, P. L. S. Lopes, J. A. Hoyos, E.M., in progress)




Can this be a more general
phenomenon?

Hsovy = Y  |Ji » L¥PLE, + Di(y LPLE,)?

t L a<b a<b i

* Most general SO(/N) invariant Hamiltonian.
L% generates rotations is the ab plane

L b)) =ila)
L% |a) = —i|b)
L%|cy =0 c#a,b

Note that SO(5) symmetry can be realized in S=3/2 fermionic cold atoms
(C. Wu PRL 95,155115 (2005))




Emergent SU(2N+1) in SO(2N+1) chains

Baryonic phase with @ = 1/(2N+1) and emergent SU(2N+1) symmetry

SO(5) case

SU (2N + LMaryon

4 2
Al 57

1
arctan SN 1
N\, 7

. 1
arctan N1

(VBS)

*—> |

SU(2N + 1) meson

5-spin singlet

The case of SO(2N) 1s more involved and 1s still in progress...




Conclusions

* Infinite effective disorder in spin-1/2 and spin-1 chains.

 Emergence of SU(3) symmetry in an SU(2)-1nvariant system:
Hadrons 1n condensed matter physics.

* Emergence of SUQ2N+1) symmetry in SO(2N+1) chains:
Composite singlets with 2N+1 constituents.



