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The 115 compounds

● RIn3, MIn2 planes.

● Interesting physics dominated by 
4f electrons. 

● Heavy fermion behavior (up to  
x1000 mass enhancement).

● Unconventional superconductivity.

● Complex magnetic states.

● While Co, Rh and Ir are isovalent, 
they produce very different 
ground states in the R=Ce 
compounds. 



  

Properties of R=Ce 115 compounds

P. G. Pagliuso et al., Physica B 312 129 (2002)

● CeCoIn5 TC=2.3K

● CeRhIn5 TN=3.6K

● CeIrIn5 TC=0.4K



  

Magnetism and superconductivity in 
CeRhIn

5

G. Knebel et al., Phys Rev B 74 020501 (2006)



  

Magnetic 115 compounds
● Magnetic moments in the 4f 

levels of the Rare Earth.
● Exchange interactions mediated 

by conduction electrons.
● C-type antiferromagnet:

– DyRhIn5 (magnetization),

– HoRhIn5 (magnetization),

– NdRhIn5 (neutron diffraction)

– GdRhIn5 (resonant x-ray 
diffraction)

● Competition between 
antiferromagnetic couplings K0 
& K1
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Néel temperatures



  

Néel temperatures

Variation of T
N
 dominated by the de Gennes factor



  

GdMIn
5

● Appealing compound to study the role of the 
transition metal M:
– Gd3+ ions → S=7/2, L=0, J=7/2

– We can neglect spin-orbit coupling effects.

– Large magnetic moment takes the magnetic energy 
contribution to the total energy above the DFT 
(GGA+U) energy resolution.

– No heavy fermion or superconducting behavior.



  

Relative energies (in K)



  

Mean field



  

Mean field
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Quantum Monte Carlo

ALPS Library, Anders W. Sandvik, Phys. Rev. B 59, R14157(R) (1999)

● Sign problems for the full magnetic Hamiltonian.

● Let's Include quantum fluctuations to the mean field 
solution.

● We perform the Quantum Monte Carlo calculations in a cubic 
lattice with an effective nearest neighbor coupling Keff.

● Systems with up to        sites.



  

QMC results

● Quantum fluctuations reduce the Néel 
temperature.

● A better agreement with the experimental 
results is obtained:



  

QMC results



  

Toy model for the K
2
 coupling

● Gd 4f orbitals not hybridized with the conduction electrons.
● Gd 5d bands almost unoccupied.
● M d bands partially filled (~4 electrons).
● Wannier orbital analysis:Largest hybridization between Gd 

5d orbitals and M d orbitals.
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Toy model for the K
2
 coupling

● Consider 4f local magnetic moments as static



  

Toy model for the K
2
 coupling



  

Toy model for the K
2
 coupling



  

Parameter estimation



  

Magnetic contribution to the specific 
heat (phonon specific heat 

subtraction)
● We calculated the phonon contribution to the specific 

heat using density functional theory (GGA+U) within a 
frozen phonon approximation.

● Experiments performed at constant pressure and finite 
temperatures.

● Calculations done at zero temperature and fixed volume.
● Anharmonic effects?
● Using thermodynamic relations and some simplifying 

assumptions we get (see e.g. Wallace book): 



  

Phonon contribution subtraction 
and anharmonicity



  

Magnetic contribution to the specific 
heat (phonon specific heat 

subtraction)
● Experimentally: subtraction of the specific heat of 

an isostructural non-magnetic compound.

● Usual non-magnetic analogues: YMIn5 and LaMIn5.

● Why should this subtraction work?
● We calculated the phonon contribution to the 

specific heat of a variety of compounds using 
density functional theory (GGA+U) within a frozen 
phonon approximation.



  

Phonon contribution to the specific 
heat

Jorge I. Facio et al., J. Magn. Magn. Mater. 407, 406 (2016)



  

Debye temperatures



  

Phonon spectral density



  

c-axis compression and expansion

Work in progress....



  

Conclusions

● Reduced interplane magnetic coupling K2 dominates reduction of 
Néel temperature in Co compounds compared to Rh and Ir 
compounds.

● Reduction of K2 is mainly due to a reduced hybridization between 
Gd 5d and Co 3d orbitals.

● More 2D magnetic behavior in Co compounds but no clear 
signature of a more 2D behavior observed in the electronic 
structure. 

● Best non-magnetic compound to extract phonon specific heat in 
Gd compounds depends on the transition metal.

● Future work: include spin-orbit coupling effects (Tb compounds)

D. Betancourth et al., J. Magn. Magn. Mater. 374, 744 (2015)
Jorge I. Facio et al., Phys. Rev. B 91, 014409 (2015)
Jorge I. Facio et al., J. Magn. Magn. Mater. 407, 406 (2016)
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