Introduction to Systems Biology of Cancer Lecture 4

Gustavo Stolovitzky IBM Research Icahn School of Medicine at Mt Sinai DREAM Challenges

www.starhtml.de/matrix

Modeling in biological processes of relevance in cancer

Modeling

"... In that Empire the Art of Cartography was so Perfect that the map of a single province occupied a whole city, and the map of the Empire, a whole Province. With the passing of time, these Huge Maps wouldn't be enough and the Colleges of the Cartographers erected a Map of the Empire that equaled in width the Empire itself..."

J.L. Borges: El Hacedor, 1960.

All models are wrong ... but some are useful.

Attributed to George Box

Roles of p53

- Transcription factor
- Central role in defending genomic stability
- Decides on cell cycle arrest and apoptosis
- Implicated in over 50% of cancers

p53 is highly regulated

p53 – MDM2 auto-regulation

Reflects population but not single cells

Digital Clock: individual cells

Oscillations are not damped at single cell level

Digital Clock: individual cells

Fraction of cells with zero, one, two or more pulses as a function of γ -IR dose:

Pulse width and height as a function of γ -IR dose:

С

е

Pulse height (AU)

Pulse width (min) 00 00

°ò

150

100

50

0

2

2 4 6 8 10

Second pulse

Irradiation dose (Gy)

8 10

Irradiation dose (Gy)

Digital behavior at single cell level: mean <u>number</u> of pulses but not the amplitude or frequency depends on input signal.

Pathways to oscillations

From Ciliberto, Novak, Tyson model, cell-cycle, 2005

Modeling digital behavior

From Ciliberto, Novak, Tyson model, cell-cycle, 2005

Pathways to oscillations

Pathways to oscillations

Modeling digital behavior

Basic structure of the model

Repair of double strand breaks (DSBs)

- Distribution of initial DSBs ~ Poisson Distribution
- Mean of number of DSBs proportional to IR dose (30-40 Gy⁻¹ cell ⁻¹)

Two-Lesion-Kinetics (TLK)

- Biphasic repair process: rapid repair of simple lesions + slower repair of complex lesions
- Two repair mechanisms: NHEJ (Non-Homologous End-Joining) & HR (Homologous Recombination)

Löbrich et al., PNAS, 1995

Rothkamm et al., MCB, 2003

Model: stochastic TLK of DSB repair

- Limiting pool of repair proteins
- DSB-enzyme complexes necessary for DNA damage repair

Pathway 1: fast DSB lesion repair $D_{1} \underbrace{\frac{RP^{*}(k_{fbl} + k_{cross}^{*}(D_{1} + D_{2}))}{k_{rbl}}}_{K_{rbl}} C_{1} \underbrace{k_{ftxl}}_{F_{1}} F_{1}$

Pathway 2: stow DSB lesion repair:

$$D_2 \underbrace{\frac{\mathsf{RP}^*(k_{fb2} + k_{cross}^*(\mathsf{D}_1 + \mathsf{D}_2))}{k_{rb2}}}_{k_{rb2}} C_2 \xrightarrow{k_{fbx2}} \mathsf{F}_2$$

RP: repair protein (Mre11/Rad50/Nbs1 cmplx)

- D: intact DSB
- C: DSB-enzyme complex
- F: fixed DSB

Simulation: DNA repair process

Implemented using Monte-Carlo method:

Basic structure of model

Ataxia telangiectasia mutated (ATM): mutated in disease AT, a human genetic disorder characterized by neural degeneration, immunodeficiency, sterility, cancer predisposition, etc.

ATM activation

Bakkenist & Kastan, Nature 2003

- Dimer in normal cells
- Intermolecular autophosphorylation
- Direct activation by DSBs
- Nucleation formed by DSB and ATM*

Model: ATM activation

ATM_D: ATM dimer ATM : inactive ATM monomer ATM^{*} : active ATM monomer

 $2ATM_{D}+ATM+ATM^{*}=ATM^{T}$

$$\frac{dATM_{D}}{dt} = \frac{1}{2} k_{dim} ATM^{2} - k_{undim} ATM_{D}$$

$$\frac{dATM}{dt} = 2k_{undim} ATM_{D} \cdot \frac{1}{2} k_{dim} ATM^{2} - k_{af} f(C, ATM^{*}) ATM + k_{ar} ATM^{*}$$

$$\frac{dATM^{*}}{dt} = k_{af} f(C, ATM^{*}) ATM - k_{ar} ATM^{*}$$

Where $f(C, ATM^*) = (\alpha_1 C + \alpha_2 C * ATM^* + \alpha_3 ATM^*)$ and C is DSB complex

Simulation: Switch like behavior of ATM*

Basic structure of model

Modified p53 – Mdm2 oscillator

Stommel & Wahl, EMBO 2004

p53 – Mdm2 oscillator: equations

$$\begin{aligned} \frac{dp53}{dt} &= s_{p53} - \delta_{p53} p53 \\ \frac{dmdm2}{dt} &= s_{mdm2} + k_{mdm2} \frac{[TP53^*(t-\tau)]^n}{[TP53^*(t-\tau)]^n + K^n} - \delta_{mdm2} mdm2 \\ \frac{dTP53}{dt} &= r_{TP53} p53 - \mu_{TP53} TP53 - \nu_{TP53} MDM2 \frac{TP53}{TP53 + K_d} + k_{rp} TP53^* - k_{fp} ATM^* \frac{TP53}{TP53 + K_p} \\ \frac{dTP53^*}{dt} &= k_{fp} ATM^* \frac{TP53}{TP53 + K_p} - k_{rp} TP53^* - \nu_{TP53^*} MDM2 \frac{TP53^*}{TP53^* + K_d^*} \\ \frac{dMDM2}{dt} &= r_{MDM2} mdm2 - [\mu_{MDM2} + (\nu_{MDM2} - \mu_{MDM2})] \frac{ATM^*}{ATM^* + K_a} MDM2 \\ n=4 \end{aligned}$$

mRNA: p*53, mdm*2 Protein: TP53 (inactive), TP53* (active / phosphorylated), MDM2

Complete Model Results

Complete Model Results

Stochasticity in oscillation: IR of 5 Gy induces one, two or three oscillations

Time (min)

Complete Model Results

- Number of pulses increases as IR dose increases
- Less stochasticity than experiment

Digital behavior

Pulse width and height as a function of γ -IR dose:

Simulating a cell population

0 15'30'1h 2h 3h 4h 5h 6h 7h 8h 10h

Digital response of tumor suppressor p53 to

Ma, Wagner, Rice, Hu, Levine and Stolovitzky, A plausible model for the digital response of p53 to DNA damage, Proc. Natl. Acad. Sci. U S A. 102, 14266 (2005).

Wagner; Ma; Rice; Hu; Levine; Stolovitzky, p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback, IEE PROCEEDINGS SYSTEMS BIOLOGY, 152, 3, 109-118 (2005).

Lahav et al., Nature Genetics 2004

800

1.000

400 600 Time (min)

200

Predictions

Figures 4 and 8 from Ma, Wagner et al.,

Figure 4 (From Ma, Wagner et.al.) - Diagram of the p53-Mdm2 oscillator. p53 is translated from *p53* mRNA and inactive for induction of its targets. Phosphorylated by ATM*, p53 becomes active (p53*), and able to transcribe (after a time delay) *Mdm2* which also has a basal transcription rate. Mdm2 protein promotes a fast degradation of p53 and a slow degradation of p53*. In addition to a basal self-degradation, Mdm2 is degraded by a mechanism stimulated by ATM*

Figure 8 (From Ma, Wagner, et. al.) - Onedimensional bifurcation diagrams of steady-state p53 versus single parameter variation of *Mdm2* basal transcription rate (A) or *p53* basal transcription rate (B). The stable equilibrium is represented by solid line. The lower and upper bounds of stable oscillation are represented by paired dotted lines.

Specific Predictions About Bifurcations

Mdm2 SNP309: T \rightarrow G SNP Increases Mdm2

Bond et al, Cell, 2004.

	T/T	T/G	G/G
Mdm2 mRNA	1X		8X
Mdm2 Protein	1X	2X	4X

•Quantitative data at cellular level explained by a point mutation.
•T → G increases affinity for Sp1
•MCF-7 cell line is T/G

•SNP status correlates with cancer risk

Predictions T/T & T/G Oscillate, G/G Does Not

T/T & T/G Cell Lines H460 and MCF-7 Oscillate

Cells wild type (T/T, H460) or heterozygous (T/G, MCF-7) for SNP309 oscillate in response to 5Gy IR.

A) H460

B) MCF-7

NB: First p53 peak at 2 hours, second peak at 7 to 8 hours.

G/G Cell Lines A875 and Manca Do Not Oscillate

Two cell lines homozygous (G/G) for SNP309 do NOT oscillate in response to 5Gy IR.

NB: p53 peaks at 10 to 12 hours.

Model Predicts Hopf Bifurcations WRT p53 Production

Oscillations Require Intermediate p53 Production Rates

P53-null H1299-SW24 cells expressing p53 under tetracyclinedependent promoter.

