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Why we need accurate quantum simulations to 
understand quantum materials



A model of modeling
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Inferring values for theory

More data

Larg
er sig

n
al

f(x) = ax+ c�

Effect (Tc)
Microscopic 
Descriptor

Confounding factors 
Errors in descriptor

a

p(a)

(c=0.2)



Adding an extra parameter

More data

Larg
er sig

n
al

a

p(a)

f(x) = ax+ b+ c�

(c=0.2)



Stability of prospective materials

False positive:

False negative:

Can be conservative and miss 
things or be thorough.

Narayan, Bhutani, Rubeck, Eckstein, Shoemaker, Wagner 
arXiv:1512.02214 

P (not stable|DFT says stable)

P (stable|DFT says not stable)

Estimates for DFT (PBE)
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Summary
To make inferences about descriptions of 
materials, we trade off: 

1) Number of experiments 
2) Number of plausible models 
3) Parameters in models 

Quantum/strongly correlated materials are often 
on the bad side of all these.

Higher accuracy calculations can reduce the number of 
parameters and plausible models.



First principles quantum Monte Carlo



First principles
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 ⇤(R,P)Ĥ (R,P)dRR

| (R,P)|2dR

Use Monte Carlo to 
evaluate high-
dimensional integral

 (r1, r2, r3, . . .) = exp(U)Det"Det#

rij

p
(r

ij
)

Short-range  
correlation

Charge 
rearrangement

Fumenal, Droghetti, Sanvito, Wagner 
(in preparation)



Diffusion Monte Carlo

Isomorphism to stochastic 
process 

Kinetic energy is diffusion, 
potential energy is birth/
death. 
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Realistic systems
Sample 1 Sample 2 Sample 3

Sample 4 Sample 5 Sample 6

Sample 1,000,000… get energy and other observables



Atomic positions

Density functional theory 

Slater determinant

Variational Monte Carlo

Slater-Jastrow

Fixed node diffusion Monte Carlo
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 (R),r (R),r2 (R)
Better wave functions:  
   just need to calculate 

Algorithms are very similar to  
Ceperley & Alder.  PRL 45 566 (1980) 
Reynolds et al. JCP 77 443766 (1983) 
Mitáš, et al. JCP 95 3467 (1991) 
Foulkes et al. RMP 73 33 (2001) 
Umrigar et al. PRL 98 110201 (2007)



Direct measurement of correlations

Long-range density-density 
correlations in graphene 

Huihuo Zheng, Yu Gan, P. Abbamonte, L.K.W. 
(in preparation)
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Difference in Coulomb energy: ~1.5 eV/electron

Huihuo Zheng



Special for transition metal systems

JOSHUA A. SCHILLER, LUCAS K. WAGNER, AND ELIF ERTEKIN PHYSICAL REVIEW B 92, 235209 (2015)
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FIG. 4. (Color online) The total absolute spin on the manganese
atoms increases with increasing exchange weight α. The spin on the
ZB phase is always lower than that of the RS phase.

IV. RESULTS FROM DMC DESCRIPTION

A. Effect of trial wave function

For the DMC calculations, our first goal is to determine
the trial wave function that gives the best description of each
phase. Figure 5 shows the total DMC energies for both the
RS (red) and ZB (blue) phases as a function of the α used
to generate the trial wave function for a 4-atom unit cell. As
DMC is a variational technique, the α that results in the lowest
DMC energy gives the best representation of the true nodal
surface. Thus, we can use α to vary the nodes of the trial wave
function. Although the exact nodal structure is not known, it is
expected to sample a wide range since this parameter tunes an
important physical quantity: the hybridization between oxygen
and manganese.

For both RS and ZB, a minimum in the DMC energy
is observed around α ≈ 25%. It is interesting to note that
this is similar to several other transition metal oxides for
which minima in DMC energy tend to occur in a range 15%
< α < 35%, including VO2 [27], FeO [30], CaCuO2 [36],
LaCuO4 [36], and ZnO [25]. We speculate that α = 25% may
tend to offer the best description of hybridization between
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FIG. 5. (Color online) The effect of varying the trial wave func-
tion in DMC using different DFT-PBE1x exchange weights α on the
DMC total energies for RS and ZB (error bars are smaller than the
marker size). Both phases demonstrate a minimum energy around
α = 25%, and maintain similar relative energies over the domain.

the transition metal d and the O 2p orbitals, although we
emphasize that this may not always be the case. For both
phases the overall variation of the total DMC energy is
less than 0.15 eV/fu across the full range sampled here,
indicating that variations in nodal structure can give rise to total
energy differences of roughly this magnitude. Nevertheless,
the exchange weight that offered the lowest ground state
DMC energy within the 4-atom system was used for both
polymorphs for all subsequent calculations. This exchange
weight was calculated by applying a Bayesian quadratic fit [37]
to the data of Fig. 5 from which a minimum was determined:
αmin ≈ 25.0 ± 0.7% for rocksalt, and αmin ≈ 28.1 ± 0.4% for
zinc blende.

From the parabolas in Fig. 5, it appears that, when com-
paring energy differences between two structures, variations
in the nodal structure benefit from a cancellation of errors.
The DMC energy differences (space between the parabolas
for a given α) are even less sensitive to changes in the nodal
surface that arise from varying α in the trial wave function.
The total variation in (EZB − ERS) per fu across the full range
of α spanned is now only 0.053 ± 0.010 eV (in spite of
the 0.3 eV/fu variation exhibited by the DFT starting point
calculations). We caution that, since these DMC results are for
4-atom cells, they suffer from finite-size effects, and therefore
the precise value (EZB − ERS) is not meaningful [we later
carry out a full extrapolation of (EZB − ERS) for increasing
supercell size]. Our focus here instead is on the sensitivity of
(EZB − ERS) to the trial wave function, which is quite small.
It is encouraging that DMC gives consistent results in spite of
the large variability of the starting point.

B. Effect of DMC time step

In diffusion Monte Carlo, a Green’s function approach is
used to propagate a set of walkers in a 3Ne-dimensional space
(Ne is the number of electrons), to statistically sample the
many-body wave function. The Green’s function projector is
exact only in the limit of vanishingly small time step, but in
practice implementation of DMC requires a finite time step,
which introduces an error in the projected energy [38,39].
Therefore, it is important to show that errors in the projected
energy due to the finite time step are small, in comparison to
the energies of interest. In Fig. 6, we show the DMC energy for
RS and ZB (4-atom supercells, twist averaged) as a function
of the DMC time step, and the extrapolation of the energy
to infinitesimal time step. For both phases the dependence
of the energy on the time step shows a linear or near-linear
dependence, which is expected for sufficiently small time
steps. For time steps smaller than 0.01 a.u., for each phase the
energy varies within ≈ 0.1 eV/fu of the extrapolated value.

Most importantly, the inset of Fig. 6 shows the energy
difference EZB − ERS (eV/fu) vs the DMC time step, which
is the quantity which we are ultimately interested in resolving.
This figure shows that energy differences somewhat benefit
from a cancellation of time step errors. For instance, in the limit
of zero time step, the energy difference is 0.04(1) eV/fu. For a
time step of 0.01 a.u., the computed energy difference instead
is around 0.03(1) eV/fu, which indicates a time step error in
the energy difference of ≈ 0.01(1) eV/fu. For a time step of
0.004 a.u., the computed energy difference is within error bars

235209-4

Use hybrid functional 
to generate orbitals 

Take lowest energy 
nodal surface

MnO

Adjusts the amount of 
density on the TM 
versus oxygen atom.

Ca2CuO2Cl2Schiller, Wagner, Ertekin 
PRB 92 235209 (2015)



Overall performance: gaps
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VO2: metal-insulator transition

Metal-insulator 
transition

Magnetic 
transition

First order

Kawakubo & Nakagawa 
J. Phys. Soc. Japan. 19 517 (1964)Huihuo Zheng



Structure

Rutile (high temp)

Monoclinic (low temp)



Cartoon explanations

Peierls

Formation of 
dimers is major 
effect. 

MIT is a function 
of structure

Mott

Formation of 
dimers is secondary 

MIT is a correlated 
‘traffic jam’ effect



DFT: a zoo of functionals

RAPID COMMUNICATIONS

GRAU-CRESPO, WANG, AND SCHWINGENSCHLÖGL PHYSICAL REVIEW B 86, 081101(R) (2012)

FIG. 1. Energies per VO2 formula unit of the monoclinic (M1)
and rutile (R) phases of VO2 as obtained with the HSE functional
in nonmagnetic (NM), ferromagnetic (FM), and antiferromagnetic
(AFM) configurations. All energies are given with respect to the NM
solution for the M1 phase, which should be (but is not for HSE) the
global ground state at zero temperature. The experimental latent heat
is taken from Ref. 12.

magnetic susceptibility, which is associated with van Vleck
paramagnetism, and therefore has no magnetic moments in
the ground state.18,19 The wrong ground state appears in HSE
calculations due to the Hartree-Fock exchange mixed in the
HSE functional, which is required for opening the band gap
in the M1 phase,4 but at the same time tends to stabilize
localized magnetic moments, in this case excessively (although
in other systems the same effect can actually lead to better
agreement with experiment).20 In our calculations we are using
the experimental crystal structure, but we have checked that
the magnetic moments on the V ions remain stable in the
HSE solution for the M1 phase upon changes of ±1% in the
cell parameters (HSE-optimized lattice parameters typically
deviate less than 1% from experimental values).3 We find
that the difference between the nonmagnetic and the magnetic

TABLE I. Band gaps obtained from HSE calculations of VO2

phases in different magnetic configurations. Experimental values are
from Refs. 19 and 21.

Eg (eV)

NM FM AFM Exp.

M1 0.98 1.35 2.23 0.6-0.8
R 0 1.43 1.82 0

solution (taken with FM ordering for calculation convenience)
increases 13% when the cell is expanded and decreases 13%
when the cell is compressed, but the solutions with magnetic
moments are always more stable than the nonmagnetic
ones.

For the R phase, HSE gives a FM insulator ground state
(Fig. 2), with local magnetic moments of ∼1 µB on the V
atoms, which is 739 meV per formula unit below the NM
solution. This solution is also 506 meV lower in energy
than the NM solution for the M1 phase. The AFM solution,
with V magnetic moments in alternate orientations along
the c axis, also has a band gap and is close in energy to
(but less stable than) the FM ground state. This situation
is again clearly unsatisfactory. Not only it is wrong from a
thermodynamic point of view that the ground state for the R
phase is significantly lower in energy than the M1 phase, but
also the magnetic insulator ground state found by HSE for the
VO2(R) structure is in conflict with experimental evidence.
The problem here is not the magnetic character, as VO2(R)
seems to be paramagnetic with a large temperature-dependent
susceptibility,19 but the insulating character of the solution.
HSE predicts large band gaps for both the FM and AFM
solutions (Table I). This is a serious problem, because the
metallicity of the R phase is well established experimentally
by conductivity measurements (e.g., Refs. 11 and 22). A
note of caution should be added here: Our spin-polarized
calculations of the R phase are based on magnetically ordered
cells, while the proximity in energy between the FM and
AFM solutions and also the experimental evidence suggest that
the system should have paramagnetic disorder. It is therefore
still possible in principle (although rather unlikely based on
the calculated gap values for the ordered configurations) that
the HSE can recover the correct metallic solution for the R
phase if magnetic disorder could be accounted for, due to
broadening of the bands. Unfortunately, this type of calculation
at the HSE level is beyond our computing capabilities at the
moment.

We also note that the HSE approximation to the latent heat
is pretty bad, regardless of which solutions are taken for the
calculation. The difference in energy between the magnetic
R phase and the nonmagnetic M1 phase is very large and of
opposite sign compared to experimental results. If we take
the (physically wrong) ground-state solutions for both phases,
the absolute value of the HSE latent heat becomes much
lower but still has the wrong sign. This is interesting because
previous calculations based on the local density approximation
(LDA), which is unable to account for the band gap opening
in VO2(M1), did show good agreement (within 10 meV)
with experiment in the latent heat of the transition.23 The
HSE functional thus performs worse than the simple LDA
functional in the description of the relative energies of the
phases.

The existence of incorrect ground states severely limits
the usefulness of the HSE approach in the investigation of
this important oxide and its phase transitions. Although it
can be argued that in the case of the M1 phase one can still
obtain a meaningful solution by forcing a non-spin-polarized
calculation, such an approach is not satisfactory. To illustrate
why, we consider the case of the tungsten-doped VO2(M1)
phase, which is interesting for applications (2 at.% doping with

081101-2Grau-Crespo, Wang & Schwingenschlögl. Phys. Rev. B 86, 081101 (2012). 

LDA: no insulator!

Hybrid: no metal!

LDA+U: depends sensitively 
on U (0.1 eV)

−1 eV becomes more intense. Recent VO2 photoemission
spectra taken at 520 eV photon energy15 agree with the ones
shown in Fig. 1, except for a considerably greater relative
weight of the coherent peak near EF in the metallic phase.
These spectral changes are consistent with the observation
that satellite peaks in low photon energy spectra tend to be
more pronounced as a result of a surface induced enhance-
ment of Coulomb correlations.22–24
Before analyzing the photoemission data we discuss the

single particle properties of VO2 obtained using density
functional theory. We have carried out full potential linear-
ized augmented plane wave !LAPW" calculations for the
rutile and monoclinic structures using the experimental lat-
tice parameters and treating exchange correlation within the
generalized gradient approximation !GGA".25 Due to the oc-
tahedral crystal field, the states near EF have V 3d t2g char-
acter. They are separated by a small gap from the empty eg
states, and from the O 2p states by a gap of about 1.0 eV.
The occupancy of the t2g manifold is 3d1. Our results quali-
tatively confirm previous LDA calculations.8–11 Figure 2!a"
shows a comparison of the V total t2g density of states for the
rutile and monoclinic phases of VO2. Although there are dif-
ferences in detail, the overall width of these distributions and
the shape of the occupied region are similar for both struc-
tures. Evidently, the GGA/LDA does not predict the insulat-
ing nature of the monoclinic phase. Moreover, on the basis of
these densities one would not expect correlations to play
very different roles in the two phases. However, if we plot
the subband contributions to the t2g density, the two struc-
tures are very different, as shown in Figs. 2!b" and 2!c".
Whereas in the rutile phase the t2g bands have similar occu-
pation numbers, in the monoclinic phase the dx2−y2 band is
significantly more occupied than the dxz,yz bands. !We adopt
the local coordinate system of Ref. 6, i.e., x denotes the c
axis, while y and z point along the diagonals of the a, b
plane." The origin of this orbital polarization is the VuV
dimerization along the c axis. The dx2−y2 band splits into
bonding and antibonding components, while the dxz,yz bands
are pushed upwards due to shortening of VuO distances.
Investigation of the energy bands shows that, in agreement
with earlier work,8,9 the top of the bonding dx2−y2 bands is
separated by a slight negative gap from the bottom of the
dxz,yz bands. In the following subsection we show that differ-
ent degree of orbital polarization in the rutile and monoclinic
phases has a pronounced effect on the quasiparticle spectra
of VO2.

A. Metallic rutile phase

Let us first discuss the rutile phase. Comparing the t2g
density of states with the photoemission spectra it is plau-
sible to associate the feature close to EF with emission from
metallic V 3d states. The peak near −1 eV, however, lies in
the gap between V 3d and O 2p states and cannot be under-
stood within the single particle picture. To describe the spec-
tra in the rutile phase it is clearly necessary to account for
dynamical Coulomb correlations. For the evaluation of the
quasiparticle distributions we use the dynamical mean-field
theory combined with the multiband quantum Monte Carlo

!QMC" method.16 Since hybridization among t2g states is
weak the local self-energy is taken as diagonal in orbital
space. The t2g density of states components shown in Fig.
2!b" then serve as input quantities accounting for the single
particle properties of the rutile structure. The local Coulomb
interaction defining the quantum impurity problem is charac-
terized by intraorbital and interorbital matrix elements U and
U!=U−2J, where J is the Hund’s rule exchange integral.
According to constrained LDA calculations, U#4.2 eV and
J#0.8 eV.11,26 The calculations are performed at T
#500 K with up to 106 sweeps. The quasiparticle distribu-

FIG. 2. VO2 3d density of states calculated within LAPW
method. !a" Total t2g densities for rutile and monoclinic phases; !b"
and !c" t2g density of states components for rutile and monoclinic
phases; EF=0.

LIEBSCH, ISHIDA, AND BIHLMAYER PHYSICAL REVIEW B 71, 085109 !2005"

085109-2

Wentzcovitch, Schulz, Allen 
Phys. Rev. Lett. 72 3389 
Liebsch, Ishida, Bihlmayer 
Phys. Rev. B 71 085109



DFT+DMFT

preted as an incoherent LHB, but rather as a quasiparticle
which has been gapped out (Zi can be interpreted as the
spectral weight of the gapped low-energy quasiparticle in
the insulator). Hence, at low energy, the physics is that of a
renormalized Peierls insulator [19]. The bonding-
antibonding splitting is renormalized down by correlations.
Indeed, a weaker a1g peak is visible in our spectra at the
upper gap edge, at an energy considerably smaller than the
antibonding peak in the LDA DOS. The e!g band, in con-
trast to the a1g, is weakly correlated, as evident from the
self-energy in Fig. 2 (inset) and expected from the low
electron occupancy. Its bottom lies in the same energy
range as the ‘‘renormalized’’ antibonding peak, so that
the gap can as well be considered to open between the
a1g and the e!g band.

Our findings for the spectral function explain the recent
photoemission data of Koethe et al. [17]. These authors
made the puzzling observation that a prominent peak be-
low the gap appears in the insulator but at an energy
(!"0:8 eV) which is shifted towards positive energy in
comparison to the (weak) LHB measured in the metallic
phase ( !"1:2 eV). We propose that this peak is actually
the coherent quasiparticle peak at the bottom of the gap,
rather than the LHB. The latter is present at higher (nega-
tive) energy but remains weak even in the insulator.
Figure 2 compares the total t2g spectral functions calcu-
lated for the metallic and the insulating phases.

Our results were obtained for a specific choice of the
interaction parameters U # 4 eV and J # 0:68 eV. We
have actually performed calculations for other choices
and found that it is possible to stabilize an insulating state
within C-DMFT for smaller values of U (e.g., U # 2 eV),

but only if the Hund coupling J is taken to be small (in
which case it is easier to redistribute the charge towards the
a1g orbital). Also, we found that a single-site DMFT
calculation leads to an insulating state for large values of
U (U $ 5 eV). However, this insulating solution is a con-
ventional Mott insulator with a local moment and therefore
displays a large magnetic susceptibility which does not
correspond to the actual physics of insulating VO2.

In conclusion, we have presented LDA% CDMFT cal-
culations for VO2. Both the metallic rutile and the insulat-
ing monoclinic phase are correctly captured by this
approach.

We are grateful to J.-P. Pouget, C. Noguera, F. Finocchi,
V. Eyert, A. Fujimori, and L. H. Tjeng for useful discus-
sions, and to the KITP Santa Barbara for hospitality and
support (NSF Grant No. PHY99-07949). S. B. and A. G.
acknowledge funding from CNRS and Ecole
Polytechnique, and A. P. from FOM. Computing time
was provided by IDRIS (Orsay) under Project No. 041393.
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FIG. 2. Spectral function of the t2g orbitals for R and M1

phases as calculated within DMFT/C-DMFT with U # 4 eV,
J # 0:68 eV. The LHB in the R phase is located at about
"1:2 eV, whereas the pronounced peak at "0:8 eV in the M1

phase corresponds to the gapped quasiparticle (see the text).
Inset: self-energies !&i!n' from the C-DMFT calculation (for
U # 4 eV, J # 0:68 eV) for the M1 phase, at low (imaginary)
frequency. Circles (triangles): imaginary part of the on-site
diagonal a1g (e!g ) component. Diamonds (stars): real (imaginary)
part of the intersite a1g component.
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preted as an incoherent LHB, but rather as a quasiparticle
which has been gapped out (Zi can be interpreted as the
spectral weight of the gapped low-energy quasiparticle in
the insulator). Hence, at low energy, the physics is that of a
renormalized Peierls insulator [19]. The bonding-
antibonding splitting is renormalized down by correlations.
Indeed, a weaker a1g peak is visible in our spectra at the
upper gap edge, at an energy considerably smaller than the
antibonding peak in the LDA DOS. The e!g band, in con-
trast to the a1g, is weakly correlated, as evident from the
self-energy in Fig. 2 (inset) and expected from the low
electron occupancy. Its bottom lies in the same energy
range as the ‘‘renormalized’’ antibonding peak, so that
the gap can as well be considered to open between the
a1g and the e!g band.

Our findings for the spectral function explain the recent
photoemission data of Koethe et al. [17]. These authors
made the puzzling observation that a prominent peak be-
low the gap appears in the insulator but at an energy
(!"0:8 eV) which is shifted towards positive energy in
comparison to the (weak) LHB measured in the metallic
phase ( !"1:2 eV). We propose that this peak is actually
the coherent quasiparticle peak at the bottom of the gap,
rather than the LHB. The latter is present at higher (nega-
tive) energy but remains weak even in the insulator.
Figure 2 compares the total t2g spectral functions calcu-
lated for the metallic and the insulating phases.

Our results were obtained for a specific choice of the
interaction parameters U # 4 eV and J # 0:68 eV. We
have actually performed calculations for other choices
and found that it is possible to stabilize an insulating state
within C-DMFT for smaller values of U (e.g., U # 2 eV),

but only if the Hund coupling J is taken to be small (in
which case it is easier to redistribute the charge towards the
a1g orbital). Also, we found that a single-site DMFT
calculation leads to an insulating state for large values of
U (U $ 5 eV). However, this insulating solution is a con-
ventional Mott insulator with a local moment and therefore
displays a large magnetic susceptibility which does not
correspond to the actual physics of insulating VO2.

In conclusion, we have presented LDA% CDMFT cal-
culations for VO2. Both the metallic rutile and the insulat-
ing monoclinic phase are correctly captured by this
approach.
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FIG. 2. Spectral function of the t2g orbitals for R and M1

phases as calculated within DMFT/C-DMFT with U # 4 eV,
J # 0:68 eV. The LHB in the R phase is located at about
"1:2 eV, whereas the pronounced peak at "0:8 eV in the M1

phase corresponds to the gapped quasiparticle (see the text).
Inset: self-energies !&i!n' from the C-DMFT calculation (for
U # 4 eV, J # 0:68 eV) for the M1 phase, at low (imaginary)
frequency. Circles (triangles): imaginary part of the on-site
diagonal a1g (e!g ) component. Diamonds (stars): real (imaginary)
part of the intersite a1g component.
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A theory of the metal-insulator transition in vanadium dioxide from the high- temperature rutile to the
low- temperature monoclinic phase is proposed on the basis of cluster dynamical mean-field theory, in
conjunction with the density functional scheme. The interplay of strong electronic Coulomb interactions
and structural distortions, in particular, the dimerization of vanadium atoms in the low-temperature phase,
plays a crucial role. We find that VO2 is not a conventional Mott insulator, but that the formation of
dynamical V-V singlet pairs due to strong Coulomb correlations is necessary to trigger the opening of a
Peierls gap.
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Vanadium dioxide (VO2) undergoes a first-order transi-
tion from a high-temperature metallic phase to a low-
temperature insulating phase [1] at almost room tempera-
ture (T ! 340 K). The resistivity jumps by several orders
of magnitude through this transition, and the crystal struc-
ture changes from rutile (R phase) at high temperature to
monoclinic (the so-called M1 phase) at low temperature.
The latter is characterized by a dimerization of the vana-
dium atoms into pairs, as well as a tilting of these pairs with
respect to the c axis.

Whether these structural changes are solely responsible
for the insulating nature of the low-T phase, or whether
correlation effects also play a role, has been a subject of
much debate. The strong dimerization, as well as the fact
that this phase is nonmagnetic, suggests that VO2 might be
a typical case of a Peierls insulator. However, pioneering
experimental work by Pouget et al. showed that minute
amounts of Cr substitutions [2], as well as, remarkably,
uniaxial stress applied to pure VO2 [3] lead to a new phase
(M2) in which only half of the V atoms dimerize, while the
other half forms chains of equally spaced atoms behaving
as spin-1=2 Heisenberg chains. That this phase is also
insulating strongly suggests that the physics of VO2 is
very close to that of a Mott-Hubbard insulator.
Zylbersztejn and Mott [4], Sommers and Doniach [5],
and Rice et al. [6] suggested that Coulomb repulsion in-
deed plays a major role in opening the gap.

The main qualitative aspects of the electronic structure
of VO2 were explained long ago by Goodenough [7]. In the
rutile structure (space group P42=mnm), the V atoms are
surrounded by O octahedra forming an edge-sharing chain
along the c axis. The d levels of the V ions are split into
lower lying t2g states and e!g states. The latter lie higher in
energy and are therefore empty. The tetragonal crystal field
further splits the t2g multiplet into an a1g state and an e"g
doublet (dk and "" states, respectively, in the terminology
of Ref. [7]). The a1g orbitals are directed along the c axis,

with good ! bonding of the V-V pair along this direction.
In the monoclinic phase (space group P21=c), the dimeri-
zation and tilting of the V-V pairs result in two important
effects. First, the a1g (dk) band is split into a lower-energy
bonding combination and a higher-energy antibonding
one. Second, the Vd-Op antibonding e"g ("") states are
pushed higher in energy, due to the tilting of the pairs
which increases the overlap of these states with O states.
In Goodenough’s picture, the single d electron occupies the
dk-bonding combination, resulting in a (Peierls-like) band
gap.

Electronic structure calculations based on density func-
tional theory within the local density approximation (DFT-
LDA) have since provided support for this qualitative
description in terms of molecular orbitals (see the recent
work of Eyert [8] for an extensive discussion and refer-
ences). Molecular dynamics calculations by Wentzcovitch
et al. [9] with variable cell shape successfully found the M1
structure to have the lowest total energy, with structural
parameters in reasonable agreement with experiment.
DFT-LDA calculations fail, however, to yield the opening
of the band gap: the top of the bonding dk band is found to
overlap slightly with the bottom of the "" band (only for a
hypothetical structure with larger dimerizations would the
band gap open). Not surprisingly, recent DFT-LDA calcu-
lations of the M2 phase [8] also fail in producing an
insulator.

Hence, only a theoretical treatment in which structural
aspects as well as correlations within V-V pairs are taken
into account on equal footing can decide on the underlying
mechanism for the metal-insulator transition in VO2. In
this Letter, we fulfill this goal by using a cluster extension
of dynamical mean-field theory (C-DMFT) [10] in combi-
nation with DFT-LDA calculations within the recently
developed Nth-order muffin-tin orbital (NMTO) [11] im-
plementation. This allows for a consistent description of
both the metallic R phase and the insulating M1 phase. We
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Setting up QMC

Exc ¼ ð1 − pÞEPBE
x þ pEHF

x þ EPBE
c ð1Þ

where EPBE
x and EPBE

c are the Perdew-Burke-Ernzerhof
(PBE) exchange and correlation functionals, respectively.
The simulations were performed on a supercell including 16
VO2 formula units with 400 valence electrons. A 4 × 4 × 8
Monkhorst-Pack k grid was chosen for sampling the first
Brillouin zone of the simulation cell. A Burkatzki-Filippi-
Dolg (BFD) pseudopotential [21,22] was used to represent
the He core in oxygen and Ne core in vanadium. The band
structure obtained using the BFD pseudopotential shows
good agreement with the all-electron DFT calculation [23]
(using the PBE functional).
The result of the DFT calculations is a set of Slater

determinants made of Kohn-Sham orbitals that have vary-
ing transition metal-oxygen hybridization and spin orders.
A Jastrow correlation factor was then added to these
Slater determinants as the trial wave functions for quantum
Monte Carlo calculations [24]. Total energies were aver-
aged over twisted boundary conditions and finite size
errors were checked to ensure that they are negligible
(see Supplemental Material [25]). The fixed-node error in
the FN-DMC calculations was checked by comparing the
energetic results from different trial wave functions from
DFT calculations with different p in Eq. (1). The trial wave
functions corresponding to the 25% Hartree-Fock mixing
(PBE0 functional [26]) produce the minimum FN-DMC
energy (Fig 1). The behavior in VO2 is commonly seen in
other transition metal oxides [27]. Thus, all our FN-DMC
results in the main Letter were produced using 25%mixing.
The gap was determined by promoting an electron from the
highest occupied band to the lowest unoccupied orbital in
the Slater determinant, then using that determinant as a trial
function for FN-DMC calculations.
The energetic results of the quantum Monte Carlo

calculations are summarized in Fig 2. Both the rutile
and monoclinic structures have the lowest energy with

antiferromagnetic ordering of the spins. The unpolarized
trial function has sufficiently high energy to remove it
from consideration of the low energy physics. The energy
difference between the ferromagnetic and antiferromag-
netic orderings changes from 24(6) meV to 123(6) meV
from the rutile to monoclinic structure. The energy differ-
ence between the lowest energy spin orderings for rutile
and monoclinic is 10(6) meV, which is within statistical
uncertainty of zero. The latent heat is 44.2(3) meV [28]; the
small discrepancy may be due to either finite temperature or
nuclear quantum effects, or fixed node error. In the
monoclinic structure, the vanadium atoms are dimerized,
which allows for a type of magnetic ordering in which the
intradimer vanadium dimers are aligned. This ordering
increases the energy by 13(6) meV.
The lowest energy wave functions all have magnetic

moments on the vanadium atoms close to 1 Bohr magneton.
In the rutile structure, the spins are coupled with a small
superexchange energy along the c axis. In the monoclinic
structure, the spins are coupled strongly within the vana-
dium dimers and weakly between them. The spin coupling
within the dimers should give rise to a spin excitation with
little dispersion at approximately 123(6) meV, which could

FIG. 1 (color online). FN-DMC energies of VO2 with trial
wave functions from DFT of different hybrid functionals. All
the energies are relative to the monoclinic AFM state:
−2830.836ð2Þ eV.
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FIG. 2 (color online). FN-DMC energetic results: (a) per VO2

unit for different magnetically ordered states, spin-unpolarized,
ferromagnetic (FM), and antiferromagnetic [AFM and AFM
(intra)]. Energies are relative to the monoclinic AFM state.
(b) Optical gaps for various states. (c) Spin density for various
states.
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where EPBE
x and EPBE

c are the Perdew-Burke-Ernzerhof
(PBE) exchange and correlation functionals, respectively.
The simulations were performed on a supercell including 16
VO2 formula units with 400 valence electrons. A 4 × 4 × 8
Monkhorst-Pack k grid was chosen for sampling the first
Brillouin zone of the simulation cell. A Burkatzki-Filippi-
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DFT calculations with different p in Eq. (1). The trial wave
functions corresponding to the 25% Hartree-Fock mixing
(PBE0 functional [26]) produce the minimum FN-DMC
energy (Fig 1). The behavior in VO2 is commonly seen in
other transition metal oxides [27]. Thus, all our FN-DMC
results in the main Letter were produced using 25%mixing.
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highest occupied band to the lowest unoccupied orbital in
the Slater determinant, then using that determinant as a trial
function for FN-DMC calculations.
The energetic results of the quantum Monte Carlo

calculations are summarized in Fig 2. Both the rutile
and monoclinic structures have the lowest energy with

antiferromagnetic ordering of the spins. The unpolarized
trial function has sufficiently high energy to remove it
from consideration of the low energy physics. The energy
difference between the ferromagnetic and antiferromag-
netic orderings changes from 24(6) meV to 123(6) meV
from the rutile to monoclinic structure. The energy differ-
ence between the lowest energy spin orderings for rutile
and monoclinic is 10(6) meV, which is within statistical
uncertainty of zero. The latent heat is 44.2(3) meV [28]; the
small discrepancy may be due to either finite temperature or
nuclear quantum effects, or fixed node error. In the
monoclinic structure, the vanadium atoms are dimerized,
which allows for a type of magnetic ordering in which the
intradimer vanadium dimers are aligned. This ordering
increases the energy by 13(6) meV.
The lowest energy wave functions all have magnetic

moments on the vanadium atoms close to 1 Bohr magneton.
In the rutile structure, the spins are coupled with a small
superexchange energy along the c axis. In the monoclinic
structure, the spins are coupled strongly within the vana-
dium dimers and weakly between them. The spin coupling
within the dimers should give rise to a spin excitation with
little dispersion at approximately 123(6) meV, which could
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wave functions from DFT of different hybrid functionals. All
the energies are relative to the monoclinic AFM state:
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where EPBE
x and EPBE

c are the Perdew-Burke-Ernzerhof
(PBE) exchange and correlation functionals, respectively.
The simulations were performed on a supercell including 16
VO2 formula units with 400 valence electrons. A 4 × 4 × 8
Monkhorst-Pack k grid was chosen for sampling the first
Brillouin zone of the simulation cell. A Burkatzki-Filippi-
Dolg (BFD) pseudopotential [21,22] was used to represent
the He core in oxygen and Ne core in vanadium. The band
structure obtained using the BFD pseudopotential shows
good agreement with the all-electron DFT calculation [23]
(using the PBE functional).
The result of the DFT calculations is a set of Slater

determinants made of Kohn-Sham orbitals that have vary-
ing transition metal-oxygen hybridization and spin orders.
A Jastrow correlation factor was then added to these
Slater determinants as the trial wave functions for quantum
Monte Carlo calculations [24]. Total energies were aver-
aged over twisted boundary conditions and finite size
errors were checked to ensure that they are negligible
(see Supplemental Material [25]). The fixed-node error in
the FN-DMC calculations was checked by comparing the
energetic results from different trial wave functions from
DFT calculations with different p in Eq. (1). The trial wave
functions corresponding to the 25% Hartree-Fock mixing
(PBE0 functional [26]) produce the minimum FN-DMC
energy (Fig 1). The behavior in VO2 is commonly seen in
other transition metal oxides [27]. Thus, all our FN-DMC
results in the main Letter were produced using 25%mixing.
The gap was determined by promoting an electron from the
highest occupied band to the lowest unoccupied orbital in
the Slater determinant, then using that determinant as a trial
function for FN-DMC calculations.
The energetic results of the quantum Monte Carlo

calculations are summarized in Fig 2. Both the rutile
and monoclinic structures have the lowest energy with

antiferromagnetic ordering of the spins. The unpolarized
trial function has sufficiently high energy to remove it
from consideration of the low energy physics. The energy
difference between the ferromagnetic and antiferromag-
netic orderings changes from 24(6) meV to 123(6) meV
from the rutile to monoclinic structure. The energy differ-
ence between the lowest energy spin orderings for rutile
and monoclinic is 10(6) meV, which is within statistical
uncertainty of zero. The latent heat is 44.2(3) meV [28]; the
small discrepancy may be due to either finite temperature or
nuclear quantum effects, or fixed node error. In the
monoclinic structure, the vanadium atoms are dimerized,
which allows for a type of magnetic ordering in which the
intradimer vanadium dimers are aligned. This ordering
increases the energy by 13(6) meV.
The lowest energy wave functions all have magnetic

moments on the vanadium atoms close to 1 Bohr magneton.
In the rutile structure, the spins are coupled with a small
superexchange energy along the c axis. In the monoclinic
structure, the spins are coupled strongly within the vana-
dium dimers and weakly between them. The spin coupling
within the dimers should give rise to a spin excitation with
little dispersion at approximately 123(6) meV, which could

FIG. 1 (color online). FN-DMC energies of VO2 with trial
wave functions from DFT of different hybrid functionals. All
the energies are relative to the monoclinic AFM state:
−2830.836ð2Þ eV.
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Optical excitation properties
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Magnetic properties
2

III. INTER-CHAIN COUPLING IN ISING MODEL SIMULATION

In our Ising model simulation, we take the following form,

E = J1
∑

intradimer<i,j>

σiσj + J2
∑

interdimer<i,j>

σiσj + Jint
∑

interchain<i,j>

σiσj + E0 . (1)

The only undetermined term is Jint, which is not too sensitive to the qualitative behavior of the magnetic susceptibility.
The results for different Jint are showed in Fig.SM 3
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FIG.SM 3. Magnetic susceptibility for different interchain coupling constant. The unit of the coupling strength is meV. The
circle dots and triangle dots are experimental data from Kosuge1 and Zylbersztejn2 respectively. There has been an overall
scale applied on the data.

IV. INTER-SITE ELECTRON COVARIANCE

We define the V sites and O sites by the Voronoi polyhedra surrounding the nuclei. For a given sample in the
FN-DMC calculation, we evaluate the number of up spins n↑,i and the number of down spins n↓,i on a given site i.
We then histogram the joint probability to obtain a set of functions ρi,j,σi,σj

(nσi

i , n
σj

j ). Using this join probability
we are able to compute the inter-site electron covariance on Fig.4(a). First, the expectation value of the number of
electron with specific spin is
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The total charge covariance is computed as
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Exc ¼ ð1 − pÞEPBE
x þ pEHF

x þ EPBE
c ð1Þ

where EPBE
x and EPBE

c are the Perdew-Burke-Ernzerhof
(PBE) exchange and correlation functionals, respectively.
The simulations were performed on a supercell including 16
VO2 formula units with 400 valence electrons. A 4 × 4 × 8
Monkhorst-Pack k grid was chosen for sampling the first
Brillouin zone of the simulation cell. A Burkatzki-Filippi-
Dolg (BFD) pseudopotential [21,22] was used to represent
the He core in oxygen and Ne core in vanadium. The band
structure obtained using the BFD pseudopotential shows
good agreement with the all-electron DFT calculation [23]
(using the PBE functional).
The result of the DFT calculations is a set of Slater

determinants made of Kohn-Sham orbitals that have vary-
ing transition metal-oxygen hybridization and spin orders.
A Jastrow correlation factor was then added to these
Slater determinants as the trial wave functions for quantum
Monte Carlo calculations [24]. Total energies were aver-
aged over twisted boundary conditions and finite size
errors were checked to ensure that they are negligible
(see Supplemental Material [25]). The fixed-node error in
the FN-DMC calculations was checked by comparing the
energetic results from different trial wave functions from
DFT calculations with different p in Eq. (1). The trial wave
functions corresponding to the 25% Hartree-Fock mixing
(PBE0 functional [26]) produce the minimum FN-DMC
energy (Fig 1). The behavior in VO2 is commonly seen in
other transition metal oxides [27]. Thus, all our FN-DMC
results in the main Letter were produced using 25%mixing.
The gap was determined by promoting an electron from the
highest occupied band to the lowest unoccupied orbital in
the Slater determinant, then using that determinant as a trial
function for FN-DMC calculations.
The energetic results of the quantum Monte Carlo

calculations are summarized in Fig 2. Both the rutile
and monoclinic structures have the lowest energy with

antiferromagnetic ordering of the spins. The unpolarized
trial function has sufficiently high energy to remove it
from consideration of the low energy physics. The energy
difference between the ferromagnetic and antiferromag-
netic orderings changes from 24(6) meV to 123(6) meV
from the rutile to monoclinic structure. The energy differ-
ence between the lowest energy spin orderings for rutile
and monoclinic is 10(6) meV, which is within statistical
uncertainty of zero. The latent heat is 44.2(3) meV [28]; the
small discrepancy may be due to either finite temperature or
nuclear quantum effects, or fixed node error. In the
monoclinic structure, the vanadium atoms are dimerized,
which allows for a type of magnetic ordering in which the
intradimer vanadium dimers are aligned. This ordering
increases the energy by 13(6) meV.
The lowest energy wave functions all have magnetic

moments on the vanadium atoms close to 1 Bohr magneton.
In the rutile structure, the spins are coupled with a small
superexchange energy along the c axis. In the monoclinic
structure, the spins are coupled strongly within the vana-
dium dimers and weakly between them. The spin coupling
within the dimers should give rise to a spin excitation with
little dispersion at approximately 123(6) meV, which could

FIG. 1 (color online). FN-DMC energies of VO2 with trial
wave functions from DFT of different hybrid functionals. All
the energies are relative to the monoclinic AFM state:
−2830.836ð2Þ eV.
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FIG. 2 (color online). FN-DMC energetic results: (a) per VO2

unit for different magnetically ordered states, spin-unpolarized,
ferromagnetic (FM), and antiferromagnetic [AFM and AFM
(intra)]. Energies are relative to the monoclinic AFM state.
(b) Optical gaps for various states. (c) Spin density for various
states.
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(PBE) exchange and correlation functionals, respectively.
The simulations were performed on a supercell including 16
VO2 formula units with 400 valence electrons. A 4 × 4 × 8
Monkhorst-Pack k grid was chosen for sampling the first
Brillouin zone of the simulation cell. A Burkatzki-Filippi-
Dolg (BFD) pseudopotential [21,22] was used to represent
the He core in oxygen and Ne core in vanadium. The band
structure obtained using the BFD pseudopotential shows
good agreement with the all-electron DFT calculation [23]
(using the PBE functional).
The result of the DFT calculations is a set of Slater

determinants made of Kohn-Sham orbitals that have vary-
ing transition metal-oxygen hybridization and spin orders.
A Jastrow correlation factor was then added to these
Slater determinants as the trial wave functions for quantum
Monte Carlo calculations [24]. Total energies were aver-
aged over twisted boundary conditions and finite size
errors were checked to ensure that they are negligible
(see Supplemental Material [25]). The fixed-node error in
the FN-DMC calculations was checked by comparing the
energetic results from different trial wave functions from
DFT calculations with different p in Eq. (1). The trial wave
functions corresponding to the 25% Hartree-Fock mixing
(PBE0 functional [26]) produce the minimum FN-DMC
energy (Fig 1). The behavior in VO2 is commonly seen in
other transition metal oxides [27]. Thus, all our FN-DMC
results in the main Letter were produced using 25%mixing.
The gap was determined by promoting an electron from the
highest occupied band to the lowest unoccupied orbital in
the Slater determinant, then using that determinant as a trial
function for FN-DMC calculations.
The energetic results of the quantum Monte Carlo

calculations are summarized in Fig 2. Both the rutile
and monoclinic structures have the lowest energy with

antiferromagnetic ordering of the spins. The unpolarized
trial function has sufficiently high energy to remove it
from consideration of the low energy physics. The energy
difference between the ferromagnetic and antiferromag-
netic orderings changes from 24(6) meV to 123(6) meV
from the rutile to monoclinic structure. The energy differ-
ence between the lowest energy spin orderings for rutile
and monoclinic is 10(6) meV, which is within statistical
uncertainty of zero. The latent heat is 44.2(3) meV [28]; the
small discrepancy may be due to either finite temperature or
nuclear quantum effects, or fixed node error. In the
monoclinic structure, the vanadium atoms are dimerized,
which allows for a type of magnetic ordering in which the
intradimer vanadium dimers are aligned. This ordering
increases the energy by 13(6) meV.
The lowest energy wave functions all have magnetic

moments on the vanadium atoms close to 1 Bohr magneton.
In the rutile structure, the spins are coupled with a small
superexchange energy along the c axis. In the monoclinic
structure, the spins are coupled strongly within the vana-
dium dimers and weakly between them. The spin coupling
within the dimers should give rise to a spin excitation with
little dispersion at approximately 123(6) meV, which could

FIG. 1 (color online). FN-DMC energies of VO2 with trial
wave functions from DFT of different hybrid functionals. All
the energies are relative to the monoclinic AFM state:
−2830.836ð2Þ eV.
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III. INTER-CHAIN COUPLING IN ISING MODEL SIMULATION

In our Ising model simulation, we take the following form,

E = J1
∑

intradimer<i,j>

σiσj + J2
∑

interdimer<i,j>

σiσj + Jint
∑

interchain<i,j>

σiσj + E0 . (1)

The only undetermined term is Jint, which is not too sensitive to the qualitative behavior of the magnetic susceptibility.
The results for different Jint are showed in Fig.SM 3
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FIG.SM 3. Magnetic susceptibility for different interchain coupling constant. The unit of the coupling strength is meV. The
circle dots and triangle dots are experimental data from Kosuge1 and Zylbersztejn2 respectively. There has been an overall
scale applied on the data.

IV. INTER-SITE ELECTRON COVARIANCE

We define the V sites and O sites by the Voronoi polyhedra surrounding the nuclei. For a given sample in the
FN-DMC calculation, we evaluate the number of up spins n↑,i and the number of down spins n↓,i on a given site i.
We then histogram the joint probability to obtain a set of functions ρi,j,σi,σj

(nσi

i , n
σj

j ). Using this join probability
we are able to compute the inter-site electron covariance on Fig.4(a). First, the expectation value of the number of
electron with specific spin is
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The total charge covariance is computed as
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much between the two structures. A one-dimensional
Hubbard model would have U=t̄≃ 2.0 to obtain the unlike
spin covariance that we observe, which puts VO2 in the
moderately correlated regime.
By performing detailed calculations of electron correla-

tions within VO2, we have shown that it is possible to
describe the metal-insulator transition by simply changing
the structure. To obtain the essential physics, it appears that
the change in structure is enough to cause the metal-
insulator transition. As has been noted before [15], the
calculated properties of VO2 are exceptionally sensitive to
the way in which correlation is treated. It is thus a detailed
test of a method to describe this transition. Fixed node
diffusion quantum Monte Carlo method passed this test
with rather simple nodal surfaces, which is encouraging for
future studies on correlated systems. This method, histor-
ically relegated to studies of model systems and very simple
ab initio models, can now be applied to ab initio models of
correlated electron systems such as VO2 and other Mott-
like systems [18,19,32].
From the quantitatively accurate simulations of electron

correlations, a simple qualitative picture arises. In both
phases, there are net spins on the vanadium atoms with
moderate electron-electron interactions compared to the
hopping. In the rutile phase, the vanadium oxide chains are
intact with large hopping and small superexchange energy

and thus the material is a correlated paramagnetic metal. In
the monoclinic phase, the dimerization reduces the inter-
dimer hopping, primarily by interchain V-O coupling. The
intradimer magnetic coupling increases because of an
increase of intradimer V-O coupling. The spins then
condense into dimers and a gap forms. This can be viewed
as a spin Peierls-like transition.
The results contained in this work, alongside other recent

results show that the dream of simulating the many-body
quantum problem for real materials to high accuracy is
becoming achievable. This accomplishment is a lynchpin for
the success of the computational design of correlated
electron systems, since these calculations can achieve very
high accuracy using only the positions of the atoms as input.
We have demonstrated that clear predictions for experiment
can be made using ab initio quantum Monte Carlo tech-
niques, in particular the value of the singlet-triplet excitation
in the spin-dimers of VO2. If this prediction is verified, then
itwill be clear that these techniques can provide an important
component to correlated electron systems design.

The authorswould like to thankDavidCeperley for helpful
discussions. This work was supported by NSF DMRNo. 12-
06242 (L. K.W.) and the Strategic Research Initiative at the
University of Illinois (H. Z.). The computation resources
were from Blue Waters (PRAC-jmp), Taub (UIUC NCSA),
and Kraken (XSEDE Grant No. DMR 120042).

FIG. 4 (color online). Change of V-O hybridizations manifested through: (a) Intersite charge (ni), and unlike-spin (ni↑ or ni↓)
covariance quantified as hOiOji − hOiihOji, where Oi is the onsite value of specific physical quantities. The intersite covariance
between a chosen vanadium center and the surrounding atoms is plotted as a function of the interatomic distance. (b) Onsite spin-
resolved probability distribution on vanadium atoms—ρðn↑i ; n

↓
i Þ. (c) Spin and charge density of the rutile and monoclinic

VO2. Figures on the left panel are 3D isosurface plots of spin density, and on the right panel are contour plots of spin and charge
density on the [110] plane.
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much between the two structures. A one-dimensional
Hubbard model would have U=t̄≃ 2.0 to obtain the unlike
spin covariance that we observe, which puts VO2 in the
moderately correlated regime.
By performing detailed calculations of electron correla-

tions within VO2, we have shown that it is possible to
describe the metal-insulator transition by simply changing
the structure. To obtain the essential physics, it appears that
the change in structure is enough to cause the metal-
insulator transition. As has been noted before [15], the
calculated properties of VO2 are exceptionally sensitive to
the way in which correlation is treated. It is thus a detailed
test of a method to describe this transition. Fixed node
diffusion quantum Monte Carlo method passed this test
with rather simple nodal surfaces, which is encouraging for
future studies on correlated systems. This method, histor-
ically relegated to studies of model systems and very simple
ab initio models, can now be applied to ab initio models of
correlated electron systems such as VO2 and other Mott-
like systems [18,19,32].
From the quantitatively accurate simulations of electron

correlations, a simple qualitative picture arises. In both
phases, there are net spins on the vanadium atoms with
moderate electron-electron interactions compared to the
hopping. In the rutile phase, the vanadium oxide chains are
intact with large hopping and small superexchange energy

and thus the material is a correlated paramagnetic metal. In
the monoclinic phase, the dimerization reduces the inter-
dimer hopping, primarily by interchain V-O coupling. The
intradimer magnetic coupling increases because of an
increase of intradimer V-O coupling. The spins then
condense into dimers and a gap forms. This can be viewed
as a spin Peierls-like transition.
The results contained in this work, alongside other recent

results show that the dream of simulating the many-body
quantum problem for real materials to high accuracy is
becoming achievable. This accomplishment is a lynchpin for
the success of the computational design of correlated
electron systems, since these calculations can achieve very
high accuracy using only the positions of the atoms as input.
We have demonstrated that clear predictions for experiment
can be made using ab initio quantum Monte Carlo tech-
niques, in particular the value of the singlet-triplet excitation
in the spin-dimers of VO2. If this prediction is verified, then
itwill be clear that these techniques can provide an important
component to correlated electron systems design.
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FIG. 4 (color online). Change of V-O hybridizations manifested through: (a) Intersite charge (ni), and unlike-spin (ni↑ or ni↓)
covariance quantified as hOiOji − hOiihOji, where Oi is the onsite value of specific physical quantities. The intersite covariance
between a chosen vanadium center and the surrounding atoms is plotted as a function of the interatomic distance. (b) Onsite spin-
resolved probability distribution on vanadium atoms—ρðn↑i ; n

↓
i Þ. (c) Spin and charge density of the rutile and monoclinic

VO2. Figures on the left panel are 3D isosurface plots of spin density, and on the right panel are contour plots of spin and charge
density on the [110] plane.
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Some other applications

Holes in high-Tc cuprates 
Wagner  
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Pressure dependence of magnetic 
energies in FeSe 
Busemeyer, Dagrada, Sorella, Casula, Wagner 
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Magneto-phonon coupling 
Wagner, Abbamonte 
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FIG. 5: For each calculation (QMC, PBE, and PBE0): (Right) Total energies for 8 f.u. cell for various magnetic orderings,
as a function of volume, choosing experimental [10] values of zSe. (Left) Same as right, but choosing optimized values of zSe.
For the top QMC plots, energies are referenced to the collinear energy at around 77 Å3. The DFT calculations are referenced
to the zSe minimum energy for that type of calculation. The DMC paramagnetic energies are ⇠ 0.85 eV/f.u. higher than the
reference collinear energy.

as a function z

Se

and pressure. In FN-DMC and PBE0,
which would a priori be expected to be more accurate,
the collinear and bicollinear orders become degenerate
as a function of pressure for reasonable values of z

Se

.
According to FN-DMC, this e↵ect is robust against z

Se

variations, depending mainly on the change in the rela-
tive magnetic energies as a function of pressure.

The energetic cost of reversing a single spin in the
collinear ordered state, labeled “collinear, flip 1” in
Fig 5a, follows the bicollinear energy quite closely. Be-
cause this cost decreases with pressure, we can surmise
that magnetic fluctuations become more energetically
available as pressure is increased.

Optical excitations and magnetism

The direct optical gap was calculated by promoting the
highest energy orbital in the Slater determinant part of
the trial wavefunction to the next excited state orbital.
This constructs a wave function ansatz for an electron-
hole excitation. The results are shown in Fig 6. The re-
sulting DMC(PBE0) energy relative to the DMC(PBE0)
ground state is our estimation of the gap. Interest-
ingly, the DMC(PBE0) gap is within statistical uncer-
tainties of 0 despite the fact PBE0 estimates a rather
large gap, regardless of magnetic ordering. Experimen-
tally [55], the gap is no more than 80 meV at any k-point,
which is consistent with our results for the bicollinear and
collinear magnetic ordering. Only the checkerboard state
is gapped according to DMC(PBE0).

The charge degrees of freedom are therefore coupled to
the spin degrees of freedom. According to these calcula-

Water on boron nitride 
Wu, Aluru, Wagner 
J. Chem. Phys. 142, 234702 (2015) & under review 
Al-Hamdani, Ma, Alfè, Lilienfeld & Michaelides 
J. Chem. Phys. 142, 181101 (2015).
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of the potential wells for different water orientations are
similar, while the depths of the potential well vary by less
than 10 meV. So putting the vdW center at point M is
appropriate, compared to putting the center at oxygen.
Shifting the center from oxygen is physical, given that the
ratio between the valence electrons of the two hydrogen
and those of the one oxygen is not close to zero. Shift-
ing the vdW center by 0.15 Å reduces implementation
difficulty, given that the virtual site of the TIP4P water
model is located at the same position. Any simulation
package that supports TIP4P water model supports the
parameters proposed here with no extra implementation
effort (as an example, the force field parameter file for
the GROMACS package is provided in the supplemen-
tary info). With the deviation minimized, it is appropri-
ate to consider one vdW site for water and simplify the
∆EvdW as

∆EvdW =
∑

i∈B

4ϵBM

[

(

σBM

riM

)12

−

(

σBM

riM

)6
]

+
∑

i∈N

4ϵNM

[

(

σNM

riM

)12

−

(

σNM

riM

)6
] (3)

where ϵBM, σBM, ϵNM, and σNM are the four parameters
to fit to the RPA data.
The parameters are obtained by fitting to the Boltz-

mann averaged vdW interaction energies among differ-
ent water orientations. The least squares fit was used.
The parameters are summarized in Table I. Also in-
cluded in the table are force field parameters from the
literature12,17,18 and the water models used in their work.
The quality of different parameters can be evaluated by
predicting properties using MD simulations and compar-
ing to experimental measurements.
Water contact angle on bulk hBN has been reported by

multiple experimental groups40–42 and rigorously studied
with minimal surface contamination40,43. The contact
angle values reported in experiments are in the range
of 40◦ to 55◦. The contact angle is then simulated using
MD following the procedure by Werder et al.44,45 (see the
Appendix “Simulating contact angle in MD” for details
on the simulation setup). The contact angle values for
nano-droplets obtained from MD, θ, are extrapolated to
that of macroscopic droplet, θ∞, as shown in Fig. 4(a),
following the modified Young’s equation, so that a direct
comparison between MD and experiments is possible:

cosθ = cosθ∞ −
τ

γLV
r−1
B (4)

where γLV is the water liquid-vapor surface tension, rB
is the droplet base radius, and τ is the line tension. The
comparison of contact angle values between MD and ex-
periments is shown in Fig. 4(b). The parameters ob-
tained using combinational rule by Won and Aluru12

slightly underestimate the contact angle, while the pa-
rameters obtained using combinational rule by Gordillo
and Mart́ı18 strongly underestimate the contact angle.

FIG. 4. (a) The contact angle, θ, of nano water droplets
on bulk hBN predicted by molecular dynamics (MD) simula-
tions. Three nano droplets composed of nw=2000, 4000, or
8000 water molecules are considered. An extrapolation of θ
to the contact angle of the macroscopic droplet (nw = ∞),
θ∞, is performed. (b) The binding energy between water and
hBN monolayer, Eb, and contact angle values predicted us-
ing water-hBN force field parameters developed by Won and
Aluru12, Gordillo and Mart́ı18 , Hilder et al.17 and from this
work. The side and top view of the configuration used in
simulations are shown in the inset figure.

The parameters developed by fitting to the DFT-D data
by Hilder et al.17 strongly underestimate the contact an-
gle since the DFT-D method overestimates the hBN-
water binding energy24. The parameters obtained by fit-
ting to the RPA data in this work, with no adjustable
parameter or no fit from experimental data, are able to
predict the water contact angle in excellent agreement
with experimental measurements. The agreement shows
that the multiscale approach in describing weak interac-
tions between molecules and solid, all the way from DMC
and coupled cluster, with approximations well controlled
in each level up, to accurately predicting macroscopic
properties, is a feasible path.

In summary, a combination of high-level theoretical
electronic structure approaches was used to study the in-
teraction between hBN and water. DMC was used to val-
idate RPA calculations. Then we used the RPA method
to compute the potential energy surface between hBN
and water. We developed force field parameters based
on the RPA data with no fitting to experiments. The pa-
rameters are able to predict water contact angle on hBN
in excellent agreement with experimental measurements.
The agreement shows that it is feasible to develop accu-
rate force field parameters from the hBN-water interac-
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Tetragonal A1g B1g

La2CuO4

CaCuO2

CuO2−
2

FIG. 4. (Color online) A slice through the ac plane of the three cuprates considered in this study. The column marked “tetragonal” denotes
the undistorted p4/mmm structure, while the A1g and B1g columns denote frozen phonon vibrations with each of these symmetries. Contour
lines are logarithmically spaced, with red denoting down-spin and blue up-spin. The projected positions of the atoms are denoted by filled
circles: Cu (yellow), O (red), Ca (magenta), and La (green).

experiments [12]. By calculating the expectation value of J (u)
on the phonon wave function for different atomic masses,
we find that the calculated isotope effect on J is negligibly
small, which is also observed in experiments [37]. Finally,
the magnetostructural coupling allows for the existence of
phonon side bands in the magnetic spectrum, which have been
observed [38,39].

In summary, the results presented here are twofold. The first
is that we have demonstrated that the base state of the cuprates
can be described accurately with a fully first-principles im-
plementation of quantum Monte Carlo techniques. Since this
method has no adjustable parameters, it is predictive and can
be used in searches for new exotic materials. In addition, since
we calculate rather than presuppose the electronic correlations,
the method can be used to study electron correlation on an even
footing with one-body effects. The second main result is that
the coupling between magnetism and the lattice is quite large.
For the B1g mode in La2CuO4, this is close to what one would
expect from a simple hopping theory. However, in the A1g

mode, the interlayer prevents the magnetostructural coupling
from occurring, mainly by shifting the phonon frequency up,
but also partially by disrupting the AFM exchange pathways.
This mechanism may explain why experiments show a shift
in the B1g mode but not the A1g mode upon entrance into the
superconducting state.

The results contained herein emphasize the importance of
treating the electron correlations explicitly and on an equal
footing with the one-body effects in a simulation of strongly
interacting systems like the cuprates. Even one-body proper-
ties such as delocalization are affected by electron correlation
and cannot be taken at face value from a DFT calculation.
The FN-DMC method, with modern techniques, is so far able
to cleanly connect the first-principles Hamiltonian to observed
phenomena in these materials, without artificially adding terms
to account for their strongly correlated nature. This new
capability in electronic structure calculations has tremendous
potential to provide a detailed microscopic description of the
physics of these challenging many-body systems.
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Deriving effective models:  
description of low-energy physics



Downfolding

Big Hilbert space

Small Hilbert 
space

Objective:  
Hamiltonian in small 
Hilbert space

| fpi ⇠ | mi =)

h fp|c†i c
†
jckcl| fpi = h m|c†i c

†
jckcl| mi,

8i, j, k, l

•Genomic fingerprint 
•Larger scale simulations 
•First step of renormalization 
analysis

Hitesh Changlani



Energy fitting algorithm
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The algorithm

h fp|Hfp| fpi =
X

ij

tijh fp|c†i cj | fpi+
X

ijkl

Vijklh fp|c†i c
†
jckcl| fpi

Compute using QMC techniques

Fit to QMC data

First principles wave functions must be in the low energy 
subspace 

Does not matter if they are eigenfunctions



Similarity to fitting classical model
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Benzene ring: PPP model
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Figure 6. Comparison of input and fitted energies using the N-AIDMD procedure. The top panels (a)-(c) show the VMC results and the
bottom ones (d)-(f) show the DMC ones. (a)-(d) correspond to the on-site Hubbard model, (b)-(e) the long range Hubbard model and (c)-(f)
with additional third-nearest neighbor hopping.

(a) (b)

Figure 7. (a) Comparison of experimental energy gaps and reconstructed energy gaps of eigenstates, by solving the extended Hubbard model
or Parisier-Pople-Parr (PPP) model obtained using VMC, DMC and extrapolated parameters. (b) Comparison of experimental energy gaps for
different model Hamiltonians. All experimental values and associated errorbars are taken from Bursill et al. 60, who used these values to fit to
a PPP model with density-density interactions of the Ohno form (28).
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a PPP model with density-density interactions of the Ohno form (28).
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More matrix elements
N2 linear equations per 
wave function 

O(1) cost over regular QMC 

All gets renormalized and 
screened by QMC process
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Simple example: H2 molecule

Questions: what are t and U as a function of r?

✏ On-site (-13.6 eV)
t Hopping
U interaction
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RMS deviations

✏ = �13.6 eV

distance in Bohr (0.5 angstroms)  
U/t in Hartree

Better fits for larger r
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Proof of concept: 3-band model of Ca2CuO2Cl2

Cu OO

O

O

Cu OO

O

Ud eped Up

tpp

t0pptpd

56 atom unit cell 
Optimized minimal basis 
Slater-Jastrow wave function 

1 QMC calculation: 2304 data points 

Minimal preliminary model: 

ed -15.2(3)
ep -6.25(7)
Ud 7.6(1)
Up 1.71(3)
tpd -2.64(5)
tpp -1.79(3)

RMS errors ~0.7 eV
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Energetics of different magnetic orderings
3
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FIG. 2: (a) FN-DMC energies of di↵erent magnetic orderings considered for a 2
p
2 ⇥ 2

p
2 ⇥ 1 unit cell of CaCuO2. (b)

Hole charge density obtained by subtracting the charge density of the x = 0.125 system from the x = 0.00 antiferromagnetic
ordering. (c) Spin density of the corresponding orderings for x = 0.125. Both are calculated from the optimal single Slater
determinant for that spin configuration for CaCuO2 and projected onto the ab crystallagraphic plane. Correlations do not
a↵ect these pictures within statistical noise. In the density maps, blue is positive and red is negative. The density maps are
normalized to the same value.

flipped configuration, which has a single copper atom
with spin reversed from the checkerboard AFM pattern,
is lowest in energy. The flipped spin creates a region
of five copper atoms with aligned spins, and a hole is
attracted mostly to the oxygen atoms between the spin-
aligned atoms. The ‘flip’ configuration is a spin polaron.
The closely related compound, Ca2NiO2Cl2 does not ex-
hibit this e↵ect (Figure 1), so it appears to be a special
feature of the cuprates.

B. Excitation properties

The gap was computed in FN-DMC by promoting an
electron in the trial Slater determinant from the high-
est occupied state to the lowest unoccupied state. In the
case of Ca2CuO2Cl2, the PBE0 ordering is incorrect, and
the promotion was performed from the second-highest
one-particle state. For the doped configurations, both

spin channels were attempted and the lower energy ex-
citation was chosen. In Figure 3, the gap as a function
of the twisted boundary condition in the supercell are
presented for the lowest energy magnetic configuration
at each doping level. Because of Brillouin zone folding,
the twists available are limited to the ones shown. At
x = 0.00, the minimal gap is 2.6(1) eV, a little above
the experimental gap of about 2.0 eV for the undoped
cuprates. The correction for calculating the gap at the
� point is around 0.5 eV26, and so it is in good agree-
ment with the experiment. Meanwhile, at x = 0.25, the
gap clearly closes at

�
1
2 ,

1
2 , 0

�
, which is in agreement with

ARPES.

At x = 0.125, it is possible that the gap closes near the
� point (0, 0, 0), which, accounting for band folding for
the 2

p
2⇥ 2

p
2⇥ 1 unit cell, is where the ARPES Fermi

surface is be located. Because of the larger supercell, the
stochastic errors could not be reduced below around 0.1
eV. For CaCuO2, it appears that the gap is not quite

Spin polaron! 
(or ferron)

Emery and Reiter. PRB 4547 (1988) 
Nagaev. J. Exp. Theor. Phys. Lett. 74 431 (2001)

PRB 92 161116(R) (2015)



Reference state for 3-band downfolding

No doping, 
AFM order

ChargeSpin

1/8 doping, 
spin polaron 
(ground state in QMC)



3-band basis

Basis: 
•Lowdin orthogonalize AO basis 
•Compute 1-RDM in e.g. O px basis 
•Diagonalize 1-RDM in subspace 



FeSe Selenium height
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FIG. 2: Selection of experimental measurements from Margadonna et al. [10], Kumar et al. [41], and Millican et al. [42] of the
selenium height, zSe, as a function of pressure, along with corresponding QMC (left) and DFT (right) predictions. QMC(opt)
refers to calculations done with a fully optimized Slater determinant, which was VMC for the paramagnetic state (open circles),
and DMC for the collinear state (green diamonds). The fully-optimized QMC calculation is done at �-point only, but at a
16-f.u. supercell. The DMC(PBE0) points are at 8 f.u., but are twist averaged over 8 twist values, therefore should have
compareable finite-size errors. Accordingly, the ambient pressure DMC(PBE0) calculation agrees nearly within error bars with
the fully optimized DMC(opt) calculation.

TABLE I: FeSe optimal structural parameters with di↵erent computational methods. DFT calculations have been performed
with the software package QuantumESPRESSO [48] using a 10x10x10 k-points mesh, an energy cuto↵ of 75 Ry and norm
conserving pseudopotentials for both Fe and Se. The variational Monte Carlo VMC(opt) results are obtained at Gamma point
only with the 16 f.u. FeSe supercell containing 32 atoms.

Source Magnetic Ord. a c FeFe zSe

DFT-PBE paramagnetic 3.6802 6.1663 2.6023 1.3862

DFT-PBE collinear 3.8007 6.2363 2.6966 1.4568

VMC paramagnetic 3.71(1) 5.49(1) 2.62(1) 1.437(5)

VMC collinear 3.72(1) 5.68(1) 2.63(1) 1.56(1)

experimental [49] - T 7 K 3.7646(1) 5.47920(9) 1.4622

experimental [41] - T 8 K 3.7685(1) 5.5194(9) 2.6647(3) 1.5879

experimental [10] - T 300 K 3.7724(1) 5.5217(1) 1.4759

first-principles prediction of the lattice parameters is thus
an important test of the description of this physics. Since
the DMC calculations are computationally costly, we lim-
ited our study to the tetragonal phase of FeSe. Because
the low temperature orthorhombic distortion is small[10],
one might expect that its e↵ect on the overall electronic
structure is also small. We leave such considerations to

another paper.

The equilibrium lattice parameters of FeSe are pre-
sented in Table I. As mentioned in the previous sections,
these results are obtained with a direct optimization of
FeSe cell parameters with the VMC(opt) method. The
in-plane FeSe properties should be well captured by QMC
since the a lattice parameter is in close agreement with
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ited our study to the tetragonal phase of FeSe. Because
the low temperature orthorhombic distortion is small[10],
one might expect that its e↵ect on the overall electronic
structure is also small. We leave such considerations to

another paper.

The equilibrium lattice parameters of FeSe are pre-
sented in Table I. As mentioned in the previous sections,
these results are obtained with a direct optimization of
FeSe cell parameters with the VMC(opt) method. The
in-plane FeSe properties should be well captured by QMC
since the a lattice parameter is in close agreement with
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FIG. 3: Pressure as a function of volume, computed through
an equation-of-state fit to DMC(PBE0) data and from exper-
iments by Margadonna et al. [10], Kumar et al. [41], and
Millican et al. [42]. All points along the solid line come from
the equation-of-state, and markers are added purely to distin-
guish the magnetic state. For the volumes considered here,
regardless of spin ordering, P (V ) falls within the experimental
spread. Inset displays corresponding bulk modulus in units
of GPa for PBE0, DMC(PBE0), and the experiments consid-
ered. The bulk modulus is strongly coupled to the magnetic
state, and for the collinear state, DMC(PBE0) demonstrates
excellent agreement with all the experiments considered. Bulk
moduli computed from PBE are between 7 and 9 GPa, and
are much more insensitive to the magnetic ordering (see Sup-
plimental Materials for tabulated values). Lattice constants
used were those of Kumar[41].

experimental results (within ⇠ 4 �) independently of the
chosen magnetic configuration. Both collinear and para-
magnetic wavefunctions shows also a general improve-
ment with respect to DFT concerning the c lattice param-
eter. This provides evidence of the accuracy in treating
Van der Waals interactions with the QMC wavefunction,
mainly achieved with the Jastrow factor[50, 51]. The
evaluation of the inter-plane c distance might be a↵ected
by the dispersion along the z-axis, which we did not take
into account in our supercell which always contains only
one Fe plane. We check this dependency by performing a
test structural relaxation on a FeSe supercell with 16 Fe
atoms in two planes and 8 Fe atoms with only one plane
considered in the supercell. We find that the di↵erence
between the c parameter obtained in the two configura-

tions is negligible.

The final internal parameter z

Se

represents the height
of the selenium anion above the plane, and it has been ex-
perimentally demonstrated [52] to be of key importance
in determining superconducting properties of iron-based
superconductors in general. We collect all our calcula-
tions of z

Se

, as well as some experimental results, in Fig.
2. We find that both the magnetic state and the accu-
racy of the calculation have an important e↵ect on the
prediction of this parameter. At approximately the same
level of finite size error, our two DMC calculations agree
very closely, determining that fixed node and basis set er-
ror is likely to be unimportant. However, we found that
z

Se

is surprisingly sensitive to finite size e↵ects, both in
the in-plane and out of plane directions. Given the su-
percells that we studied, we found a variation in z

Se

of
approximately 0.05 Å, depending on the twisted bound-
ary conditions and supercell. With experimental lattice
parameters, our best estimate for z

Se

is thus 1.54(5)Å,
which is quite close to the experimental range. As we
shall see later, the properties of FeSe depend sensitively
on z

Se

, so to account for this uncertainty, we will con-
sider properties as a function of selenium height as well
as pressure.

By fitting an equation of state previously used by An-
ton et al. [53] to our DMC(PBE0) energies as a function
of volume, we extract the bulk modulus and the pressure
dependence on volume P (V ), shown in Fig 3. The collec-
tion of ambient-pressure bulk-moduli results is reported
in the inset of Fig. 3, in units of GPa. For all these cal-
culations, experimental lattice constants [41] have been
used. P (V ) and the bulk modulus show a strong depen-
dence on the magnetic order.

While P (V ) has scatter between experiments, they are
more consistent in the bulk modulus, so we base our com-
parisons of the theoretical calculations on the latter quan-
tity. The DMC(PBE0) calculation demonstrates excel-
lent agreement with all three experiments if the collinear
magnetic ordering is imposed, but it is less close to ex-
periment for the other magnetic orderings. Our PBE0
calculations are also in somewhat good agreement with
DMC(PBE0), except a notable disagreement for the fer-
romagnetic ordering. On the other hand, PBE bulk mod-
uli are significantly lower than both experiment and the
other calculations, generally predicting bulk moduli be-
tween 7 and 10 GPa, depending only slightly on the mag-
netic ordering. Since the collinear ordering is also the
lowest energy for DMC(PBE0), for the remainder of this
article, we use the collinear equation of state to estimate
the pressures that correspond to the volumes used in the
calculations.
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crossing of the bicollinear and collinear energies. These two points converge as the pressure is increased, as shown on the far
right.

Interaction of structure and magnetism

Fig 4 shows the interaction between pressure, mag-
netic ordering, and selenium height. As has been found
before [54], the magnetic energies depend strongly on
the selenium height, and this dependence changes with
pressure. For a given pressure, there are two points on
the selenium height curves that are of substantial inter-
est. The first is the minimum energy (solid vertical line),
which as can be seen in Fig 2, does not change very much
with pressure(or volume) in our calculations. The sec-
ond is the crossing point (dashed vertical line) between
the collinear and bicollinear magnetic orderings, which
are competing low-energy states. This crossing point de-
pends on the pressure, and approaches the minimum en-
ergy point at higher pressures(lower volumes), as shown
on the rightmost plot in the figure.

Another interesting feature visible in Fig 4 is that the
checkerboard magnetic ordering intersects the bicollinear
and collinear magnetic orders at zero pressure (78.4 Å3)
and large z

Se

, but there is a shift of the checkerboard
curve to higher energies once pressure is applied. The
underlying physics of this e↵ect will be discussed in Sec-
tion .

Fig 5 shows a cut through the data in Fig 4 along

the minimum energy z

Se

(subfigure a), and the experi-
mentally determined z

Se

(subfigure b). Along this cut
we evaluated many magnetic orderings to establish a set
of trends, and checked finite size errors by considering
an 8 f.u. cell and 16 f.u. cell with twist averaging.
Further information on finite size corrections are avail-
able in the Supplemental Material. Under pressure, the
checkerboard, ferromagnetic, and staggered dimer mag-
netic orderings rise in energy compared to the lowest en-
ergy collinear ordering. On the other hand, the stripe-like
orderings, including the bicollinear and collinear order-
ings with defects converge with applied pressure.

From Fig 5 (bottom panels) is apparent the failure of
PBE in capture this trend in FeSe energetics under pres-
sure. Even with lattice constants fixed to experimental
ones, the PBE energies of magnetically ordered states are
quite di↵erent from the FN-DMC energies. In agreement
with recent work, PBE does predict the staggered dimer
as ground state. Despite the failure of PBE0 in describing
the conducting behavior of FeSe, the magnetic energies
are reasonably close to the DMC results.

Given the data available to us, we can determine some
properties that are robust to the finite size errors and un-
certainty in z

Se

in our calculations. The first is that the
relative energetics of magnetic orders changes strongly

Minimum
Crossover point
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as a function z

Se

and pressure. In FN-DMC and PBE0,
which would a priori be expected to be more accurate,
the collinear and bicollinear orders become degenerate
as a function of pressure for reasonable values of z

Se

.
According to FN-DMC, this e↵ect is robust against z

Se

variations, depending mainly on the change in the rela-
tive magnetic energies as a function of pressure.

The energetic cost of reversing a single spin in the
collinear ordered state, labeled “collinear, flip 1” in
Fig 5a, follows the bicollinear energy quite closely. Be-
cause this cost decreases with pressure, we can surmise
that magnetic fluctuations become more energetically
available as pressure is increased.

Optical excitations and magnetism

The direct optical gap was calculated by promoting the
highest energy orbital in the Slater determinant part of
the trial wavefunction to the next excited state orbital.
This constructs a wave function ansatz for an electron-
hole excitation. The results are shown in Fig 6. The re-
sulting DMC(PBE0) energy relative to the DMC(PBE0)
ground state is our estimation of the gap. Interest-
ingly, the DMC(PBE0) gap is within statistical uncer-
tainties of 0 despite the fact PBE0 estimates a rather
large gap, regardless of magnetic ordering. Experimen-
tally [55], the gap is no more than 80 meV at any k-point,
which is consistent with our results for the bicollinear and
collinear magnetic ordering. Only the checkerboard state
is gapped according to DMC(PBE0).

The charge degrees of freedom are therefore coupled to
the spin degrees of freedom. According to these calcula-
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tions, in FeSe there is a coupling between the mobility
of charge and the spin ordering. In the remainder of the
paper, we will correlate these properties with those of the
ground state for di↵erent spin orderings.

Interaction of charge and orbitals with magnetism

From the energetic properties, we note two classes of
magnetic order in FeSe: ones which are stripe-like, and
ones which are not stripe-like. The stripe-like orderings
converge in energy with pressure, while the checkerboard
and staggered dimer pattern increases in energy rela-
tive to those orderings. Similarly, the gap calculated in
DMC(PBE0) distinguishes between di↵erent orderings,
with metallic character in the stripe-like ordering. In
this section, we will make the following observations:

• Delocalized minority spin electrons are most af-
fected by the spin ordering.

• The one-particle orbitals are occupied di↵erently
depending on the spin ordering.

• The above two e↵ects change the e↵ect of correla-
tion in FeSe.

These e↵ects combine to give a cartoon picture of the
physics that explains the di↵erence in pressure behavior
between the magnetic orders.

Delocalization. To address delocalization, we evalu-
ate the charge compressibility of the Fe sites: h(ni,� �
hni,�i)2i, where ni� is the number of electrons within
a Voronoi polehedron around the ith Fe site of spin �.
Larger values of the compressibility indicate more delo-
calized electrons. For a Fe atom with net " spin, the "
electrons are labeled majority electrons and the # minor-
ity, and vice versa for Fe atoms with net # spin. In Fig 7a,
these results are presented. For all magnetic orders, the
majority spin is very similar and shows a low charge com-
pressibility, while the minority spin is di↵erent between
di↵erent magnetic orders, and its charge compressibility
is larger. From this, the minority electrons are more delo-
calized and their localization is a↵ected by the magnetic
order. For the stripe-like orders, the minority electrons
are the most delocalized.
One particle orbitals. In Fig 7d, we present the or-

bital occupation of the d orbitals in di↵erent spin order-
ings. For stripe-like orderings, the xy, xz, and yz orbitals
are occupied, in agreement with ARPES results [56]. On
the other hand, the 3z

2 � r

2 orbital is occupied for the
checkerboard ordering. This gives a simple explanation
for the delocalization patterns: The checkerboard pat-
tern causes the minority spin to occupy the out of plane
orbital, which would rise to an insulating state if it were
the ground state. This idea can be confirmed by checking
the o↵-diagonal one-particle density matrix elements be-
tween Fe atoms with parallel and antiparallel net spins, in
Fig 7e. The atomic orbitals are more hybridized between
parallel spin Fe atoms for the stripe-like orders. The
charge degrees of freedom, which are mainly the minor-
ity spins from the Fe, interact strongly with the magnetic
ordering. This e↵ect also interacts with the net magnetic
moment and on-site correlations (Fig 7b and Fig 7c).

A cartoon picture of FeSe

A simple picture based on Hund’s coupling can explain
the energetics and other properties presented in the re-
sults section. Hund’s rules dictate that for an atom with
a partially filled shell, we expect the electrons to have to-
tal spin S that maximizes the multiplicity 2S+1. This is
consistent with our computed magnetic moment, which
find that the majority channel is mostly filled, bringing
the moment to around 3.1-3.4 µB . The spin occupation
of the d-states in a reference iron is diagrammatically
shown in the top row of Fig. 8. Also due to Hund’s cou-
pling, the electron that is most likely to hop to nearby
iron atoms would be the electron in the minority channel,
to keep a large S. As illustrated in Fig. 8, this minor-
ity channel is already filled for neighboring irons that are
antiparallel, so only majority spin electrons can hop to
those atoms. Conversely, minority electrons can hop to
neighboring parallel irons, since that spin channel is not
filled. Thus, irons with parallel spins allow the minority

Checkerboard would 
be insulating



Comparison of S(q) for different methods

2

where N is the number of electrons in the system, and
⇢q = eiq·r̂ is the density operator in reciprocal space.
S(q) is directly related to the Coulomb interactions of
the system [32],

V =
1

(2⇡)D

Z
dq[S(q)� 1]v(q), (2)

where V is the Coulomb energy per particle, D is the di-
mension of the system, and v(q) is the Coulomb interac-

tion in reciprocal space. In two dimensions, v(q) = 2⇡e2

q .

S(q) is the integral of the dynamic structure factor over
frequency space S(q,!):

S(q) =

Z 1

0

d!

2⇡
S(q,!) =

h̄q2

2m

R1
0 d!S(q,!)

R1
0 d!!S(q,!)

. (3)

Here we have applied the f-sum rule for S(q,!). The
dynamic structure factor describes the dielectric response
of the system [19]. It can be directly measured through
inelastic X-ray scattering [20], and can also be computed
using RPA [19, 33].

The first-principles calculations were performed as fol-
lows. DFT calculations were first performed using the
CRYSTAL package [34] with Perdew-Burke-Ernzerhof
(PBE) exchange and correlation functional [35]. The sim-
ulations were performed on a 16⇥ 16 supercell including
512 atoms. Burkatzki-Filippi-Dolg (BFD) pseudopoten-
tials [36, 37] were used to remove the core electrons. The
result of the DFT calculations is a set of Slater determi-
nants made of Kohn-Sham orbitals. A Jastrow correla-
tion factor was then added to these Slater determinants
as the trial wave functions for DMC calculations. DMC
calculations were performed using the QWalk package
[26] to obtain S(q). RPA calculations were performed
using the GPAW package [38, 39] to obtain S(q,!). The
Hubbard model was solved by auxiliary-field quantum
Monte Carlo method (AFQMC) using the QUEST pack-
age [40].

FIG. 1. Band structure of graphene, hydrogen and tight-
binding model (with hopping constant t = 2.7eV).

TABLE I. Systems/models investigated

system/model electrons method

Graphene (G): a=2.46 Å�1 � & ⇡ DMC, S-Ja, RPA
⇡-only graphene (G⇡)b ⇡ S-J

Hydrogen (H): a=2.46 Å�1 s DMC, RPA
Tight-binding (TB): t = 2.7 eVc ⇡ RPA

Hubbard: U/t = 1.6 ⇡ AFQMC
a
S-J: Variational Monte Carlo simulation using Slater-Jastrow

wavefunction.

b
The wave function is a Slater determinant of occupied ⇡
orbitals multiplied by an optimized Jastrow factor.

c
The value has been choosing to match the DFT band structure

at low energy.

In order to disentangle di↵erent contributions to S(!)
from ⇡ and � electrons in graphene, we compared S(q)
among the five systems listed in Tab. I. All systems have
similar low energy band structure but di↵er in the pres-
ence or absence of � electrons, and in the interaction
between electrons (Fig. 1). The s orbital of the hydrogen
lattice has almost the same dispersion as the ⇡ orbitals
in graphene [see Fig. 1], which provides a way to under-
stand the behavior of ⇡ electrons in graphene in the ab-
sence of � electrons while still retaining a 1/r interaction.
Graphene and hydrogen system are studied using DMC.
The tight-binding model is studied using RPA with 1/r
interactions. What is the tight-binding parameter? S(q)
is obtained by integration of S(q,!) according to Eq. (3).
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FIG. 2. S(q) of di↵erent systems obtained through di↵erent
methods. G: graphene; G⇡: ⇡ electrons only graphene; H:
hydrogen; TB: ⇡-band tight-binding model with 1/r interac-
tions; Hubbard: the Hubbard model with U/t = 1.6. Caption
should be |q|

Let us first consider the S(q) results for ab-initio

graphene, denoted by G in Fig 2. For comparison, we
have plotted S(q) of a non-interacting Slater determi-
nant of Kohn-Sham orbitals [G(Slater)] in that plot,
and that of a Slater-Jastrow wavefunction [G(S-J)]. Both
RPA and DMC results are very close to the experimental

(graphene)


