Magnetism and phase transitions in compressed Oxygen

Sandro Scandolo (ICTP, Trieste)

Pressure as a knob to tune electronic states

Molecular systems at extreme conditions

Pressure as a knob

Physics

Planetary science

Chemistry/ **Materials**

Hydrogen: a quantum solid at high pressure?

Insulator-metal transitions and magnetic fields Synthesis of new compounds (CO₂)

The Abdus Salam **International Centre** for Theoretical Physics

IAEA

P-T conditions inside planets

S. Scandolo and R. Jeanloz, American Scientist 2003

Hydrogen at extreme P-T

E. Wigner and H.B. Huntington *"On the possibility of a metallic modification of hydrogen"* J. Chem. Phys. 3, 764 (1935)

Monatomic hydrogen

Hemley and Mao, Rev Mod Phys

¹ H		-														'H	2 He
Li	• Be											^s B	°с	7 N	°	°F	IO Ne
II Na	¹² Mg											B AI	¹⁴ Si	15 P	¹⁶ S	17 CI	¹⁸ Ar
19 K	20 Ca	21 SC	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	^ຫ Co	28 Ni	29 Cu	³⁰ Zn	JI Ga	n Ge	33 As	34 Se	35 Br	[]] 6 Kr
37 Rb	38 Sr	³⁹ Y	⁴⁰ Zr	4 Nb	42 M o	⁴³ Тс	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	47 Ag	t≉ Cd	49 In	So Sn	SP SP	52 Te	⁵³ I	54 Xe
55 Cs	56 Ba	57 *La	⁷² Hf	73 Ta	74 W	75 Re	76 Os	n Ir	78 Pt	79 Au	® Hg	81 TI	⁸² Pb	83 Bi	84 Po	85 At	⁸⁶ Rn
87 Fr	≋ Ra	89 +Ac	ID4 Rf	Ha	Sg	107 Ns	Hs Hs	109 Mt	110	ш	112 112	113 113					

	58	59	∞	61	62	63	⊶	б5	⁶⁶	67	68	٥٩	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dу	Ho	Er	Tm	Yb	Lu
≎	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	% Cm	97 Bk	98 Cf	99 Es	••• Fm	Md	102 No	103 Lr

Molecular to non-molecular sharp transition

S. Scandolo, Proc. Natl. Acad. Sci. USA, 2003

Pair correlation function

Magnetism in compressed Oxygen Prediction of a new magnetic phase

The Oxygen molecule has a peculiar (S=1) magnetic state

Pressure is known to eventually lead to the **collapse** of magnetism

Interplay between pressure-induced structural and magnetic changes

The Abdus Salam International Centre for Theoretical Physics

IAEA

Molecular oxygen Electronic structure

Oxygen phase diagram Where does magnetism disappear?

600 <u>400</u> RT ζ ε (A2/m) BIRSM 200 man a (C2/m) 0 100 10 p (GPa)

Yu.A. Freiman and H.J. Jodl, Physics Reports 401, 1-228 (2004)

Magnetic collapse in Oxygen DFT molecular dynamics

The Abdus Salam International Centre for Theoretical Physics

Neutron Diffraction Exps

Goncharenko, Phys. Rev. Lett, 94 205701, (2005)

Disappearance of the antiferromagnetic long range correlations at δ - ϵ transition.

Magnetic collapse

However:

- + No local information (spin state of molecule)
- + Other types of long-range order?

+ Spin disorder?

More DFT Nonmagnetic O₂ structures

VOLUME 88, NUMBER 20 PHYSICAL REVIEW LETTERS

20 May 2002

Low-Energy Linear Structures in Dense Oxygen: Implications for the ϵ Phase

J. B. Neaton¹ and N. W. Ashcroft^{2,3}

¹Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019 ²Laboratory of Atomic and Solid State Physics and Cornell Center for Materials Research, Cornell University, Ithaca, New York 14853-2501 ³Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3-0HE, United Kingdom (Received 25 January 2002; published 3 May 2002)

The Abdus Salam International Centre for Theoretical Physics

ε - O_2 : the structure! molecular clusters 4 x O_2

Vol 443|14 September 2006|doi:10.1038/nature05174

nature

IF

L. Lundegaard et al, Nature 2006

Observation of an O_8 molecular lattice in the ϵ phase of solid oxygen

Lars F. Lundegaard¹, Gunnar Weck², Malcolm I. McMahon¹, Serge Desgreniers³ & Paul Loubeyre²

More DFT Failure to reproduce correct structure

NATURE|Vol 443|14 September 2006

Solid oxygen takes shape

Burkhard Militzer and Russell J. Hemley

Oxygen crystallizes into a sequence of structures, starting as an insulator at low pressure and becoming a superconductor at high pressure. The elusive structure of an intermediate phase has now been determined.

"...However, [DFT] calculations fail to show that the $(O_2)_4$ structure has the lowest energy, which is probably why previous theoretical attempts to predict the correct structure for epsilon-oxygen were unsuccessful."

The Abdus Salam International Centre for Theoretical Physics

More problems Vibrational frequencies

<u>iiii</u>

()

More problems (2) Infrared activity

GGA+U ε-O₂ still magnetic!

Y. Crespo, M. Fabrizio, S. Scandolo, E. Tosatti PNAS **111**, 10427 (2014)

GGA+U: finds antiferromagnetic S=1 ground state of ε-phase between 8-20 GPa, non-magnetic state above 20 GPa!

The Abdus Salam International Centre for Theoretical Physics

Magnetism in ε-O₂ Vibrational frequencies

Y. Crespo, M. Fabrizio, S. Scandolo, E. Tosatti PNAS **111**, 10427 (2014)

Magnetism in ε-O₂ Bending frequencies

Y. Crespo, M. Fabrizio, S. Scandolo, E. Tosatti PNAS **111**, 10427 (2014)

()

Magnetism in ε-O₂ Infrared activity

Y. Crespo, M. Fabrizio, S. Scandolo, E. Tosatti PNAS **111**, 10427 (2014)

Magnetism in ε-O₂ Infrared activity

Y. Crespo, M. Fabrizio, S. Scandolo, E. Tosatti PNAS **111**, 10427 (2014)

Magnetism in ε-O₂ Long range order?

Y. Crespo, M. Fabrizio, S. Scandolo, E. Tosatti PNAS **111**, 10427 (2014)

Problem:

DFT antiferromagnetic state is not consistent with absence of long-range order in neutron diffraction experiments

Magnetism in ε-O₂ A collective S=1 singlet phase?

Two competing ground states:

1. Antiferromagnetic Néel 'classical" configuration (DFT result)

 $E(AF) = -J_1 - J_2 \sim -0.2 \text{ eV}$

2. Nonmagnetic "singlet" as collection of independent $(O_2)_4$ singlet ground states

$$E(singlet) = -3/2 J_1 \sim -0.25 eV$$

+ quantum fluctuations => Spin liquid ?!

Consistent with absence of long-range order in neutron diffraction experiments

Proposed Oxygen phase diagram

Two "epsilon" phases

Proposed Oxygen phase diagram A critical point?

Conclusion

