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Work in progress 

Fine-tuning is a 
slippery subject 



... but physically relevant 

Some of the most intriguing 
questions of theor. physics are 
naturalness problems 

Why    so small ??  (hierarchy problem) v2

Why    so small ??  (D.E. problem) ⇢⇤



Beautiful symmetry, strongly suggested by 
string theories 

Elegant solution to the 
Hierarchy Problem 

Motivations: 

SUSY is still one of the preferred 
candidated for BSM physics:



Bonus: 

Gauge Unification 

Radiative EW breaking 

Good DM (WIMPs) candidates 

Higgs looks fundamental, and   mh < 135 GeV



a bit too heavy for naive 
SUSY expectations 

No signal of SUSY from LHC-8 TeV 

These two facts imply >⇠ 1 TeVmSUSY particles 

mh ' 125 GeV

fine-tuning to get the 
correct EW scale 

(as all BSM scenarios) 

BUT 



There are possible exceptions, if SUSY leaves in 
special corners of the parameter space,

e.g. if the SUSY spectrum is “compressed”, so that 
visible particles in the events have small pT.

There are further possiblities going beyond 
the MSSM:     NMSSM, BMSSM, etc. 

Such situation would fool the LHC to some 
extent. It is certainly possible, but it sounds 
artificial (a “trick” to save low-energy SUSY)



In any case, we cannot just “forget” about 
the fine-tuning problem, since the main 
reason to consider Weak-Scale SUSY was 
to avoid the Hierarchy Problem (fine-
tuning of EW breaking in the SM)



In addition, if we wish to fulfill the expectation of 
SUSY dark matter, usually some kind of           
fine-tuning is necessary 

Typically SUSY leads to too much DM. In order 
to reduce         a mechanism to increase           is 
needed. 
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Bonus: 

Gauge Unification 

Radiative EW breaking 

Good DM (WIMPs) candidates 

Higgs looks fundamental, and   mh < 135 GeV

naturalness 
problems



At tree-level and large  tan�

The EW fine-tuning
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How to measure of the EW fine-tuning

Most used and popular ( = standard) criterion: 

Ellis, Enqvist, Nanopoulos & Zwirner’ 86 

Barbieri & Giudice’ 88 

✓i ⌘ independent parameters of the model

� = 100 means                 fine-tuning, etc.⇠ 1%

�i =
d log v2

d log ✓i
, � ⌘ max {|�i|}



�✓i

v2

(vexp)2

✓✓0

only in this            range,  �✓0 v2  (vexp)2

admits an statistical interpretation
Ciafaloni & Strumia’ 97 



�✓i admits an statistical interpretation
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There are tree implicit assumptions behind this 
statistical interpretation 

Range of   

Prior  

✓ ⇠ [0, ✓0]

p(✓) = flat

Reasonable, but can be inappropriate 
in particular theoretical scenarios 

The expansion of              at first order captures 
its behavior in the neighborhood of interest.  

  

v2(✓)



Comment 1

Changing the      - range,     

v2

(vexp)2

✓✓0

[0, ✓0] ! [
1

2
✓0,

3

2
✓0]✓

would apparently change the p-value.     

But using            instead of         remains stable:  m2 v2

P(|m2|  |mexp|2)



Doubling the     - range,     

v2

(vexp)2

✓✓0

✓

makes 

          factor of arbitrariness in    
the fine-tuning measure   

[0, ✓0] ! [0, 2✓0]

� ! 2�

O(1)

Comment 2



The standard criterion does also work with other 
choices for the      prior. 

v2

(vexp)2

✓✓0

E.g for a logarithmic prior: 
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Comment 3



There are tree implicit assumptions behind this 
statistical interpretation 

Range of   

Prior  

✓ ⇠ [0, ✓0]

p(✓) = flat

Reasonable, but can be inappropriate 
in particular theoretical scenarios 

The expansion of              at first order captures 
its behavior in the neighborhood of interest.  

  

v2(✓)
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Supersymmetric Dark Matter

An excellent candidate for DM particle is 
the MSSM-LSP, typically the lightest 
neutralino, 

�0
1



The mass and character of      arises from the 
diagonalization of the neutralino mass matrix 

�0
1
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1 Introduction

In the minimal supersymmetric Standard Model (MSSM) there are several potential sources of fine-
tuning. The most notorious one is the electroweak (EW) fine-tuning, which generically requires light
gluino, light Higgsinos, (not so) light winos and, in many cases, light stops. This fine-tuning can
be reasonably quantified by the “standard” measure []:

�(EW )

i =
d log v2

d log ✓i
; �(EW ) ⌘ max

n

�(EW )

i

o

(1.1)

where v2 is the Higgs vacuum expectation value (VEV) and ✓i are the independent (initial) parame-
ters of the model under consideration. Typically �(EW ) is dominated by the gluino-mass parameter
and its value is >⇠ O(100) [], corresponding to a fine-tuning at the level of <⇠ 1%. There is a vast
literature concerning this EW fine-tuning of the MSSM. An important fact is that tan � should be
moderately large (say tan � >⇠ 6) in order to reproduce the experimental Higgs mass without the
need of gigantic stop masses, which would imply a very severe fine-tuning.

Besides the EW fine-tuning there is a potential fine-tuning related to the generation of the
right amount of dark matter (DM). In some scenarios of supersymmetric dark matter, a delicate
balance between a-priori-independent quantities is required, denoting a fine-tuned situation. Here
the literature is much less extensive [] and, besides, many important mechanisms of supersymmetric
dark matter have never been considered from this point of view. The main goal of this paper is
precisely to perform a rigorous study of the fine-tuning associated to the production of MSSM dark
matter in all the interesting situations. Besides, we will combine this fine-tuning with the EW one,
to select the MSSM regions that are globally less fine-tuned.

We will focus on the case where the DM particle is a supersymmetric WIMP, namely the
lightest state of the neutralino mass matrix,
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DM relic density
⟨σeffv⟩ =

∑N
i,j=1 wiwjσijx−n

(

∑N
i=1 wi

)2 , wi =
(

mi

m1

)3/2

e
−x
(

mi
m1

−1
)

. (40)

The relic abundance is now given by

Ωh2 =
8.7 × 10−11 GeV−2

√
g∗
∫∞
xf

dx ⟨σeffv⟩x−2
. (41)

If all N states are mass-degenerate, eq. (41) takes the same form as eq. (36) with the

replacement σ → ∑

i,j σij/N2

Bino

The annihilation cross section of a pure B̃ into massless fermions is

σB̃B̃ =
∑

f

g4t4W (Tf − Qf )4r(1 + r2)

2πm2
f̃
x(1 + r)4

, x ≡
M1

T
, r ≡

M2
1

m2
f̃

, (42)

where Tf and Qf are third component of isospin and electric charge of the fermion f . The

value of Ω is obtained from eq. (36).

Higgsino

For the Higgsino we consider 4 coannihilating states with equal mass µ: (H̃1, H̃2, H̃+, H̃−).

The neutral states H̃1,2 are defined as in sect. 2, and we treat H̃+ and H̃− as independent

to have the same number of degrees of freedom for each state. The thermal-averaged cross

sections for the individual annihilation processes (assuming µ ≫ MW and heavy supersym-

metric scalars) is described by the symmetric matrix σij with

σ11 = σ22 =
g4

128πµ2
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σ++ = σ−− =
g4

64πµ2
(47)

The effective cross section ⟨σeffv⟩ =
∑4

1,j=1 σij/16 and the Higgsino relic abundance are

given in eqs. (4)–(5).

Wino

21

h�viTypically             is too small (but not always)

We need  ⌦obsh2 = 0.119± 0.012



      pure-state case�0
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  (Higgsino)
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M�0
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' µ ' 1 TeV

heavy SUSY 
spectrum 



On the other hand the pure-Higgsino and 
pure-wino cases are not fine-tuned 
(regarding DM):

h�vi ⇠ µ�2

h�vi ⇠ M�2
2



       can be lighter than 1 TeV or 3 TeV if �0
1

         has a significant component of 

There is an additional mechanism 
to increase 

B̃�0
1

h�annvi



Well-tempered      :                        or�0
1 �0

1 = B̃/H̃0 B̃/W̃0/H̃
0

M1 ' µ or M1 ' M2

Co-annihilation with another fast-annihilating 
particle, e.g. a stop 

M1 ' mt̃
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However, not many studies of DM fine-tuning 
in the literature

Cheung, Hall, Pinner and Ruderman  2012

Cohen and Wacker 2013

Fichet 2012

Grothaus, Lndner and Takanish 2012 

....



Well-tempered Bino-Higgsino
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1 Introduction

In the minimal supersymmetric Standard Model (MSSM) there are several potential sources of fine-
tuning. The most notorious one is the electroweak (EW) fine-tuning, which generically requires light
gluino, light Higgsinos, (not so) light winos and, in many cases, light stops. This fine-tuning can
be reasonably quantified by the “standard” measure []:

�(EW )

i =
d log v2

d log ✓i
; �(EW ) ⌘ max

n

�(EW )

i

o

(1.1)

where v2 is the Higgs vacuum expectation value (VEV) and ✓i are the independent (initial) parame-
ters of the model under consideration. Typically �(EW ) is dominated by the gluino-mass parameter
and its value is >⇠ O(100) [], corresponding to a fine-tuning at the level of <⇠ 1%. There is a vast
literature concerning this EW fine-tuning of the MSSM. An important fact is that tan � should be
moderately large (say tan � >⇠ 6) in order to reproduce the experimental Higgs mass without the
need of gigantic stop masses, which would imply a very severe fine-tuning.

Besides the EW fine-tuning there is a potential fine-tuning related to the generation of the
right amount of dark matter (DM). In some scenarios of supersymmetric dark matter, a delicate
balance between a-priori-independent quantities is required, denoting a fine-tuned situation. Here
the literature is much less extensive [] and, besides, many important mechanisms of supersymmetric
dark matter have never been considered from this point of view. The main goal of this paper is
precisely to perform a rigorous study of the fine-tuning associated to the production of MSSM dark
matter in all the interesting situations. Besides, we will combine this fine-tuning with the EW one,
to select the MSSM regions that are globally less fine-tuned.

We will focus on the case where the DM particle is a supersymmetric WIMP, namely the
lightest state of the neutralino mass matrix,
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Relevant parameters: M1, µ



Remark: 

The degree of naturalness must be evaluated 
by examining the behavior of the fine-tuned 
quantities with respect of the independent 
parameters of the theory, e.g. 

�i =
d log⌦DM

d log ✓i
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Besides the EW fine-tuning there is a potential fine-tuning related to the generation of the
right amount of dark matter (DM). In some scenarios of supersymmetric dark matter, a delicate
balance between a-priori-independent quantities is required, denoting a fine-tuned situation. Here
the literature is much less extensive [] and, besides, many important mechanisms of supersymmetric
dark matter have never been considered from this point of view. The main goal of this paper is
precisely to perform a rigorous study of the fine-tuning associated to the production of MSSM dark
matter in all the interesting situations. Besides, we will combine this fine-tuning with the EW one,
to select the MSSM regions that are globally less fine-tuned.

We will focus on the case where the DM particle is a supersymmetric WIMP, namely the
lightest state of the neutralino mass matrix,
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From the 4 parameters involved in the game, 

tan� is a derived parameter but it is (almost always) 
irrelevant for fine-tuning issues

M1,M2, µ are essentially in one-to-one multiplicative 
correspondence with the three initial (high-
energy) parameters 

fortunate fact: 
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Figure 5: Same as Fig. (4) except for future reach rather than current limits. The dashed green
lines show the projected SI reach of LUX, while the shaded regions give the projected reach
for XENON1T, both SI and SD. The shaded cyan region is the current Fermi exclusion, as in
Fig. (4).
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Figure 4. Esta figura esta sacada de Hall, pero ME y Sandra han hecho figuras similares. ME
acaba de producir una semejante, pero de momento he dejado esta para que se vea bien como se
ensancha la banda segun lo separada que este de la diagonal.cuando. Falta tambien incluir las cotas
de LUX. Tambien habria que hacer algun comentario sobre las inertidumbres relacionadas con los
factores nucleares

ones in a complicated way. Neverthesless, as mentioned above, the dependence of M�0 on tan �

is very small, so we can ignore its impact on the fine-tuning. Now, the fortunate fact is that the
remaining three relevant (low-energy) parameters, involved in M�0 , i.e. M

1

, M
2

, µ, are essentially
in one-to-one multiplicative correspondence with the three initial (high-energy) parameters,

Mi|LE = cMi Mi|HE , µ|LE = cµ µ|HE , (3.1)

where the HE (LE) subscript denotes high- (low-) energy and the values of the c�coe�cients depend
on the value of the HE scale, see ref.[] for a recent computation. However, for fine-tuning purposes
the particular values of the c’s, and thus the choice of the HE scale, are irrelevant. Notice, in
particular, that for the standard fine-tuning measure, eq. (2.1), the logarithmic derivatives are the
same evaluated with respect to the HE or the LE parameters. This holds for alternative ways of
evaluating the fine-tuning, as will be obvious later. This fact simplifies life considerably and allows
to produce results on �(DM) which are pretty general, in particular �(DM) does not depend on the
HE scale or on the values of the remaining MSSM parameters, which is notable.

Let us now compute the fine-tuning. Before relying on the standard measure (2.1), it is
convenient to test if the conditions 1 and 2 listed in subsect 2.1 are fulfilled. In other words, we
chould check the dependence of ⌦�0

1
on the µ and M

1

parameters (the only relevant ones for thos
scenario). SInce the tuning is precisely between these two parameters, it is enough to consider one
of them, say M

1

1. Fig. 5 shows such dependence for a fixed value of µ.

As expected, only for a small interval of M
1

, ⌦�0
1

is consistent with observation. But, concerning
the fine-tuning, the important thing is that typically ⌦�0

1
is much larger or much smaller than ⌦obs

DM .
It requires a tuning between M

1

and µ for ⌦�0
1

to be close to the observed value. Now, if we consider

that the range of M
1

is [0, M
(0)

1

], where M
(0)

1

is the value that reproduces ⌦obs

DM , then the standard
measure of eq. (2.1) and its interpretation in terms of p�value, i.e. the probability of getting

1
This has the advantage of avoiding interference with the EW fine-tuning, for which µ is a very relevant

parameter, in contrast to M1

– 7 –

depend on the HE scale

But, for the fine-tuning                  are irrelevant.  E.g. cMi , cµ

The results for          do not depend on the HE scale 
or on the values of the remaining MSSM parameters, 
which is notable.

�DM

�

DM
M1

=

d log⌦DM

d log M1|HE

=

d log⌦DM

d log M1|LE

(End of remark) 
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Evaluation of the fine-tuning

Does                    satisfy the conditions for 
the standard criterion to be valid?

⌦DM(M1)

0.01

0.1

1

10

200 300 500 700 1000

⌦
h
2

M1 (GeV)

tan� = 20, µ = 500 GeV

⌦h2 = 0.119± 0.012



0.01

0.1

1

10

200 300 500 700 1000

⌦
h
2

M1 (GeV)

tan� = 20, µ = 500 GeV

⌦h2 = 0.119± 0.012

If the p-value is defined as  P(⌦  ⌦obs

DM

)

then, apparently,  p-value                       
(and the standard criterion fails)
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But this result depends drastically upon 
the limits shosen for the         range
   

M1
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⌦�0
1

 ⌦obs

DM , is justified. However, changing the limits of the range to e.g. [M (0)

1

/2, 3M
(0)

1

/2]
jeopardizes the p�value interpretation, since there is a large interval of M

1

for which ⌦�0
1

 ⌦obs

DM .
A way out to this di�culty for the attractive p�value interpretation is to change the definition of
the fine-tuned quantity. Instead of ⌦�0

1
we can use the mixing angle, ✓, between the bino and the

Higgsino. More precisely, upon diagonalization of Mchi0 , given by eq.(1.2), one gets

| tan 2✓| '
p

2sW MZ

|µ � M
1

| . (3.2)

Incidentally, ✓ is a physical quantity, in direct correspondence with ⌦�0
1
, which could have been

measured before ⌦obs

DM . If tan 2✓ is large, this clearly denotes a fine-tuning between M
1

and µ in
eq.(3.2). In terms of tan 2✓ the p�value interpretation of the fine-tuning is much more transparent
and robust than before: it is the probability of getting | tan 2✓| � | tan 2✓(obs)| . Assuming, as usual,
a flat prior for M

1

in the region of interest, such p�value is simply

p � value =
2|µ � M

1

|
M

1

. (3.3)

Incidentally, if we applied the standard criterion to tan 2✓ instead of ⌦�0
1
, we would obtain a

��parameter that coincides with the inverse of eq. (3.3). This shows that the standard criterion is
not always robust under changes in the definitions of the fine-tuned quanties. However, the p�value
interpretation is much more reliable.

Fig.6 shows the fine-tuning calculated with the standard criterion (2.1) and the one estimated
as the inverse of the p�value (3.3). Needless to say, a (p � value)�1 = O(1) is completely normal
for a non-fine-tuned quantity, so fine-tunings below 5 or even 10 are not significant.

Both criteria give qualitatively similar results. In particular, the region around M
1

= 600
GeV is the most fine-tuned one, since it is the one that requires µ = M

1

with more precision.
This can also be seen at naked eye in Fig.4, by examining the width of the ⌦�0

1
h2 = 0.119 ± 0.12
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with

p� value = P(| tan 2✓| > | tan 2✓obs|) = 2|µ�M
1

|
M

1
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   Funnels

⟨σeffv⟩ =

∑N
i,j=1 wiwjσijx−n

(

∑N
i=1 wi

)2 , wi =
(

mi

m1

)3/2

e
−x
(

mi
m1

−1
)

. (40)

The relic abundance is now given by

Ωh2 =
8.7 × 10−11 GeV−2

√
g∗
∫∞
xf

dx ⟨σeffv⟩x−2
. (41)

If all N states are mass-degenerate, eq. (41) takes the same form as eq. (36) with the

replacement σ → ∑

i,j σij/N2

Bino

The annihilation cross section of a pure B̃ into massless fermions is

σB̃B̃ =
∑

f

g4t4W (Tf − Qf )4r(1 + r2)

2πm2
f̃
x(1 + r)4

, x ≡
M1

T
, r ≡

M2
1

m2
f̃

, (42)

where Tf and Qf are third component of isospin and electric charge of the fermion f . The

value of Ω is obtained from eq. (36).

Higgsino

For the Higgsino we consider 4 coannihilating states with equal mass µ: (H̃1, H̃2, H̃+, H̃−).

The neutral states H̃1,2 are defined as in sect. 2, and we treat H̃+ and H̃− as independent

to have the same number of degrees of freedom for each state. The thermal-averaged cross

sections for the individual annihilation processes (assuming µ ≫ MW and heavy supersym-

metric scalars) is described by the symmetric matrix σij with

σ11 = σ22 =
g4

128πµ2

(

3

2
+ t2W +

t4W
2

)

(43)

σ12 =
g4

128πµ2

(

29

4
+

21

2
t4W

)

(44)

σ1+ = σ1− = σ2+ = σ2− =
g4

128πµ2

(

6 + t2W
)

(45)

σ+− =
g4

128πµ2

(

29

4
+ t2W + 11t4W

)

(46)

σ++ = σ−− =
g4

64πµ2
(47)

The effective cross section ⟨σeffv⟩ =
∑4

1,j=1 σij/16 and the Higgsino relic abundance are

given in eqs. (4)–(5).

Wino
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   Co-annihilation

⟨σeffv⟩ =

∑N
i,j=1 wiwjσijx−n

(

∑N
i=1 wi

)2 , wi =
(

mi

m1

)3/2

e
−x
(

mi
m1

−1
)

. (40)

The relic abundance is now given by

Ωh2 =
8.7 × 10−11 GeV−2

√
g∗
∫∞
xf

dx ⟨σeffv⟩x−2
. (41)

If all N states are mass-degenerate, eq. (41) takes the same form as eq. (36) with the

replacement σ → ∑

i,j σij/N2

Bino

The annihilation cross section of a pure B̃ into massless fermions is

σB̃B̃ =
∑

f

g4t4W (Tf − Qf )4r(1 + r2)

2πm2
f̃
x(1 + r)4

, x ≡
M1

T
, r ≡

M2
1

m2
f̃

, (42)

where Tf and Qf are third component of isospin and electric charge of the fermion f . The

value of Ω is obtained from eq. (36).

Higgsino

For the Higgsino we consider 4 coannihilating states with equal mass µ: (H̃1, H̃2, H̃+, H̃−).

The neutral states H̃1,2 are defined as in sect. 2, and we treat H̃+ and H̃− as independent

to have the same number of degrees of freedom for each state. The thermal-averaged cross

sections for the individual annihilation processes (assuming µ ≫ MW and heavy supersym-

metric scalars) is described by the symmetric matrix σij with

σ11 = σ22 =
g4

128πµ2

(

3

2
+ t2W +

t4W
2

)

(43)

σ12 =
g4

128πµ2

(

29

4
+

21

2
t4W

)

(44)

σ1+ = σ1− = σ2+ = σ2− =
g4

128πµ2

(

6 + t2W
)

(45)

σ+− =
g4

128πµ2

(

29

4
+ t2W + 11t4W

)

(46)

σ++ = σ−− =
g4

64πµ2
(47)

The effective cross section ⟨σeffv⟩ =
∑4

1,j=1 σij/16 and the Higgsino relic abundance are

given in eqs. (4)–(5).

Wino

21

Co-annihilation occurs whe one or several species 
with masses close to the LSP annihilate efficiently

Co-annihilation is exponentially sensitive to the 
mass difference between the DM and its 
neighboring states.
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Conclusions 

Some exceptions: pure Higgsino, pure Wino; but they lead 
(especially the pure Wino) to heavy SUSY spectrum 

Typically the mechanisms for (thermal) DM production in 
the MSSM are fine-tuned. 

Co-annihilation cases are (much) less fine-tuned than 
indicated by the standard criterion for fine-tuning 

EW fine-tuning   &  problems to see SUSY at the LHC 



Conclusions II 

This is also true for funnels when the mass of the 
neutralino is not too close to (twice) the resonance 

In several cases the fine-tuning is mild (          ) 

Well-tempered bino-Higgsino 

Higgs-funnel 

<⇠ 10

Some regions of co-annihilation  

It is important to mantain the DM fine-tuning in mild 
levels, since it must be combined with the EW one 



Conclusions III 

SUSY is in good shape, though somewhat fine-tuned 

“Natural” SUSY (the less fine-tuned version of the MSSM 
without “fooling” the LHC) is 1%-10% fine-tuned 

If naturalness arguments are sound and SUSY is true, 
we could be about seeing SUSY (or perhaps other BSM) 
in LHC-14 

The most robust prediction from Natural SUSY is, by far,  

mH̃
<⇠ 0.7 GeV

Going beyond the MSSM, i.e. NMSSM, BMSSM, RPV,... 
could reduce the fine-tuning as well 


