Gero von Gersdorff

São Paulo, 27/11/2015

Based on work with E. Pontón and R. Rosenfeld (and work in progress with S.Fichet)

International Centre for Theoretical Physics South American Institute for Fundamental Research

- Higgs has been found!
- Electroweak Symmetry Breaking is far from understood! EW scale quadratically sensitive to any New Physics threshold

- Higgs has been found!
- Electroweak Symmetry Breaking is far from understood! EW scale quadratically sensitive to any New Physics threshold

- Higgs has been found!
- Electroweak Symmetry Breaking is far from understood! EW scale quadratically sensitive to any New Physics threshold

- Higgs has been found!
- Electroweak Symmetry Breaking is far from understood! EW scale quadratically sensitive to any New Physics threshold

- Higgs has been found!
- Electroweak Symmetry Breaking is far from understood! EW scale quadratically sensitive to any New Physics threshold

- If the Higgs is a "meson", why don't we see the higher excitations? (why m_{res} >> m_h? "Little Hierarchy")
- ► Higgs as the pNCB of a spontaneously broken global symmetry:
 SU(3) → SU(2)_L x U(1)
 Georgi + Kaplan '84
 SO(5) → SU(2)_L x SU(2)_R Custodial Symmetry!

- If the Higgs is a "meson", why don't we see the higher excitations? (why m_{res} >> m_h? "Little Hierarchy")
- ► Higgs as the pNGB of a spontaneously broken global symmetry: $-SU(2) \Rightarrow SU(2)_{L} \times U(1)$ Georgi + Kaplan '84 $-SO(5) \Rightarrow SU(2)_{L} \times SU(2)_{R} \quad Custodial Symmetry!$

- If the Higgs is a "meson", why don't we see the higher excitations? (why m_{res} >> m_h? "Little Hierarchy")
- Higgs as the pNCB of a spontaneously broken global symmetry: $-SU(2) → SU(2)_{L} x U(1)$ Georgi + Kaplan '84 $-SO(5) → SU(2)_{L} x SU(2)_{R} \quad Custodial Symmetry!$
- The Higgs quartic coupling is one-loop suppressed

$$m_{res} = g_* f \qquad m_f$$

$$m_h = \frac{g_*^2}{4\pi}v$$

If the Higgs is a "meson", why don't we see the higher excitations? (why m_{res} >> m_h? "Little Hierarchy")

► Higgs as the pNCB of a spontaneously broken global symmetry: $-SU(2) \Rightarrow SU(2)_{L} \times U(1)$ Georgi + Kaplan '84 $-SO(5) \Rightarrow SU(2)_{L} \times SU(2)_{R} \quad Custodial Symmetry!$

The Higgs quartic coupling is one-loop suppressed

$$m_{res} = g_* f \qquad m_h =$$

From Higgs couplings to SM: $f > 600 \,\, {\rm GeV}$

The Composite Higgs

If the Higgs is a "meson", why don't we see the higher excitations? (why m_{res} >> m_h? "Little Hierarchy")

► Higgs as the pNCB of a spontaneously broken global symmetry: $-SU(2) \Rightarrow SU(2)_{L} \times U(1)$ Georgi + Kaplan '84 $-SO(5) \Rightarrow SU(2)_{L} \times SU(2)_{R} \quad Custodial Symmetry!$

The Higgs quartic coupling is one-loop suppressed

$$m_{res} = g_* f \qquad m_h =$$

From Higgs couplings to SM: $f > 600 \,\, {\rm GeV}$

OPEN QUESTIONS

- Can one have an SO(5) global symmetry?
 - Renormalizable (gauge) theories typically have larger (accidental) global symmetry groups
 (breaking patterns classified in Peskin 1980)
- What is the UV theory (the constituents of the CH)?
 - Can it be made out of Standard Model fermions?
- What is the dynamics causing the global symmetry breaking?
 - Is there an SO(5) "Higgs boson"?

OPEN QUESTIONS

- In this talk, I will present a model that
 - Possesses just SO(5) global symmetry
 - Accomplishes SO(5) as well as EW breaking dynamically
 - Features a CH made out of an (extended) top sector
 - ▶ Has SO(5) Higgs particle whose self coupling is predicted
 - ▶ Has few parameters and is compatible with all constraints

This model is largely inspired by the seminal paper: "Minimal Dynamical Symmetry Breaking of the Standard Model", Bardeen, Hill, Lindner '90

MINIMAL DYNAMICAL EWSB (IT DOESN'T WORK)

EWSB triggered from 4-fermion (NJL) interaction:

 $\mathcal{L} = G\left(\bar{q}_L t_R\right)^2$

Bardeen et al 1990

EWSB triggered from 4-fermion (NJL) interaction:

 $\mathcal{L} = G \left(\bar{q}_L t_R \right)^2$

Bardeen et al 1990

Same interaction can be written with auxiliary "Higgs" field

$$\mathcal{L} = -\frac{1}{G}|H|^2 - H(\bar{q}_L t_R)$$

EWSB triggered from 4-fermion (NJL) interaction:

 $\mathcal{L} = \overline{G\left(\bar{q}_L t_R\right)^2}$

Bardeen et al 1990

Same interaction can be written with auxiliary "Higgs" field

$$\mathcal{L} = -\frac{1}{G}|H|^2 - H(\bar{q}_L t_R)$$

Radiative correction make Higgs dynamical:

$$\mathcal{L} = \frac{1}{G_c \Lambda^2} \log \frac{\Lambda}{\mu} |DH|^2 - \left(\frac{1}{G} - \frac{1}{G_c}\right) |H|^2 - H(\bar{q}_L t_R) - \frac{1}{G_c \Lambda^2} \log \frac{\Lambda}{\mu} |H|^4$$

EWSB triggered from 4-fermion (NJL) interaction:

 $\mathcal{L} = G \left(\bar{q}_L t_R \right)^2$ Ba

Bardeen et al 1990

Same interaction can be written with auxiliary "Higgs" field

$$\mathcal{L} = -\frac{1}{G}|H|^2 - H(\bar{q}_L t_R)$$

Radiative correction make Higgs dynamical:

$$\mathcal{L} = \frac{1}{G_c \Lambda^2} \log \frac{\Lambda}{\mu} |DH|^2 - \left(\frac{1}{G} - \frac{1}{G_c}\right) |H|^2 - H(\bar{q}_L t_R) - \frac{1}{G_c \Lambda^2} \log \frac{\Lambda}{\mu} |H|^4$$

• EWSB occurs for $G > G_c$

The ratio of top and Higgs mass is fixed: $m_h = 2 m_t$

$$G_c = \frac{8\pi^2}{N_c \Lambda^2}$$

Top Condensation: Beyond Large N_C

Equivalently, consider beta functions

 $16\pi^{2}\beta_{y_{t}^{2}} = 2N_{c} y_{t}^{4} + 3 y_{t}^{4}$ $16\pi^{2}\beta_{\lambda} = 4N_{c} y_{t}^{2}\lambda - 2N_{c} y_{t}^{4} + 24\lambda^{2}$

TOP CONDENSATION: BEYOND LARGE N_C

Equivalently, consider beta functions

$$16\pi^{2}\beta_{y_{t}^{2}} = 2N_{c} y_{t}^{4} + 3 y_{t}^{4}$$
$$16\pi^{2}\beta_{\lambda} = 4N_{c} y_{t}^{2}\lambda - 2N_{c} y_{t}^{4} + 24\lambda^{2}$$

- With just the fermion loops, IR fixed point $\rightarrow m_h = 2 m_t$
- ▶ Including scalar loops, IR fixed point → $m_h = 1.3 m_t$
- Including gauge loops, nonlinear relation between m_h and m_t

TOP CONDENSATION: BEYOND LARGE N_C

Equivalently, consider beta functions

$$16\pi^{2}\beta_{y_{t}^{2}} = 2N_{c} y_{t}^{4} + 3y_{t}^{4}$$
$$16\pi^{2}\beta_{\lambda} = 4N_{c} y_{t}^{2}\lambda - 2N_{c} y_{t}^{4} + 24\lambda^{2}$$

- With just the fermion loops, IR fixed point $\rightarrow m_h = 2 m_t$
- ▶ Including scalar loops, IR fixed point → $m_h = 1.3 m_t$
- Including gauge loops, nonlinear relation between m_h and m_t

Dynamical Composite Higgs

Generalize Top Condens. to SO(5) x U(1)_X Composite Higgs
Fermion content: (F_L = 5_{2/3}) + (S_R = 1_{2/3}) (both are 3 of SU(3)_C)

Generalize Top Condens. to SO(5) x U(1)_X Composite Higgs
 Fermion content: (F_L = 5_{2/3}) + (S_R = 1_{2/3}) (both are 3 of SU(3)_C)

 $\mathcal{L}_{kin} = i\bar{F}_L \partial F_L + i\bar{S}_R \partial S_R$

Invariant under $U(5)_L \ge U(1)_R$

Generalize Top Condens. to SO(5) x U(1)_X Composite Higgs
Fermion content: (F_L = 5_{2/3}) + (S_R = 1_{2/3}) (both are 3 of SU(3)_C)

$$\mathcal{L}_{kin} = i\bar{F}_L \partial F_L + i\bar{S}_R \partial S_R \qquad \begin{array}{c} \text{Invariant under} \\ \mathbf{U}(5)_{\mathbf{L}} \ge \mathbf{U}(1)_{\mathbf{R}} \end{array}$$

$$f_f = \frac{G}{2} \left(\bar{S}_R F_L + \bar{F}_L S_R \right)^2 - \frac{G'}{2} \left(\bar{S}_R F_L - \bar{F}_L S_R \right)^2 \qquad \begin{array}{c} \text{Invariant under} \\ \mathbf{SO}(5) \ge \mathbf{U}(1)_{\mathbf{X}} \end{array}$$

Generalize Top Condens. to SO(5) x U(1)_X Composite Higgs
Fermion content: (F_L = 5_{2/3}) + (S_R = 1_{2/3}) (both are 3 of SU(3)_C)

$$\mathcal{L}_{kin} = i\bar{F}_L \partial F_L + i\bar{S}_R \partial S_R$$

Invariant under $U(5)_L \ge U(1)_R$

$$\mathcal{L}_{4f} = \frac{G}{2} \left(\bar{S}_R F_L + \bar{F}_L S_R \right)^2 - \frac{G'}{2} \left(\bar{S}_R F_L - \bar{F}_L S_R \right)^2$$

Invariant under $SO(5) \ge U(1)_{X}$

Choice G = G', invariant under U(5)_L x U(1)_R
 → more scalar states, (2HDM) Dobresci,Cheng + Gu'14
 Take only G supercritical → minimal model GG, Ponton, Rosenfeld'15

Generalize Top Condens. to SO(5) x U(1)_X Composite Higgs
Fermion content: (F_L = 5_{2/3}) + (S_R = 1_{2/3}) (both are 3 of SU(3)_C)

$$\mathcal{L}_{kin} = i\bar{F}_L \partial \!\!\!/ F_L + i\bar{S}_R \partial S_R \qquad \begin{array}{l} \text{Invariant under} \\ \mathbf{U}(5)_{\mathrm{L}} \ge \mathbf{U}(1)_{\mathrm{R}} \end{array}$$

$$\mathcal{L}_{4f} = \frac{G}{2} \left(\bar{S}_R F_L + \bar{F}_L S_R \right)^2 - \frac{G'}{2} \left(\bar{S}_R F_L - \bar{F}_L S_R \right)^2 \qquad \begin{array}{l} \text{Invariant under} \\ \mathbf{SO}(5) \ge \mathbf{U}(1)_{\mathrm{X}} \end{array}$$

Choice G = G', invariant under U(5)_L x U(1)_R
 more scalar states, (2HDM) Dobresci,Cheng + Gu'14

► Take only G supercritical → minimal model GG, Ponton, Rosenfeld '15

Generalize Top Condens. to SO(5) x U(1)_X Composite Higgs
Fermion content: (F_L = 5_{2/3}) + (S_R = 1_{2/3}) (both are 3 of SU(3)_C)

$$\mathcal{L}_{kin} = i\bar{F}_L \partial F_L + i\bar{S}_R \partial S_R$$
Invariant under

$$U(5)_L \ge U(1)_R$$

$$u_{4f} = \frac{G}{2} \left(\bar{S}_R F_L + \bar{F}_L S_R \right)^2 - \frac{G'}{2} \left(\bar{S}_R F_L - \bar{F}_L S_R \right)^2$$
Invariant under

$$SO(5) \ge U(1)_X$$

Choice G = G', invariant under U(5)_L x U(1)_R
 more scalar states, (2HDM) Dobresci,Cheng + Gu'14

Take only G supercritical \rightarrow minimal model GG, Ponton, Rosenfeld '15

• The composite scalar $\Phi = (\bar{S}_R F_L + \bar{F}_L S_R)$ is a 5₀ of SO(5)

▶ 5 real d.o.f: pNGB Higgs + one SM singlet, the radial mode

FLOWING TO THE IR

Again Rewrite 4-fermion interaction

$$\frac{G}{2}\left(\bar{S}_R F_L + \bar{F}_L S_R\right)^2 = -\frac{1}{2G}\Phi^2 - \Phi\left(\bar{S}_R F_L + \bar{F}_L S_R\right)$$

FLOWING TO THE IR

► Again Rewrite 4-fermiofiFinteraction^{S_R} ∂S_R $\frac{G}{2} \left(\bar{S}_R F_L + \bar{F}_L S_R \right)^2 = -\frac{1}{2G} \Phi^{-\frac{1}{2}} \Phi$

• Loops make Φ dynamical and create a potential that breaks the global SO(5) symmetry $\langle \Phi \rangle = (0, 0, 0, 0, \hat{f})$

 $\xi \ll \infty$

 (S_L, S_R)

Λ

 Φ

FLOWING TO THE IR

► Again Rewrite 4-fermiofrintieractionⁱ $S_R \partial S_R$ $\frac{G}{2} \left(\bar{S}_R F_L + \bar{F}_L S_R \right)^2 = -\frac{1}{2G} \Phi^{-\frac{1}{2}} \Phi$

• Loops make Φ dynamical and create ² - \hat{f}^2 a potential that breaks the global SO(5) symmetry $\langle \Phi \rangle = (0, 0, 0, 0, \hat{f})$

 S_R)

Due to the presence of the IR fixed point, the quartic λ and hence the mass of the radial mode become a prediction of the model

$$m_{\mathcal{H}}^2 = \frac{24}{13} \, m_S^2$$

- Weakly gauge SU(2) x U(1)_Y subgroup of SO(5) x U(1)_X
- Hypercharge embedded as $Y = Q_X + T_{R3}$
- Need to have chiral field content of the SM: $(q_L = 2_{1/6}) + (t_R = 1_{2/3})$
 - Add incomplete multiplets

- Weakly gauge SU(2) x U(1)_Y subgroup of SO(5) x U(1)_X
- Hypercharge embedded as $Y = Q_X + T_{R3}$
- ▶ Need to have chiral field content of the SM: $(q_L = 2_{1/6}) + (t_R = 1_{2/3})$
 - Add incomplete multiplets

	Q	Q	S	S		
$G = SO(5) \ge U(1)$		5		1		
SU(2)	2	2	1	1		

- Weakly gauge SU(2) x U(1)_Y subgroup of SO(5) x U(1)_X
- Hypercharge embedded as $Y = Q_X + T_{R3}$
- Need to have chiral field content of the SM: $(q_L = 2_{1/6}) + (t_R = 1_{2/3})$
 - Add incomplete multiplets

	Q	Q	S	S	Q		t
$G = SO(5) \ge U(1)$		5		1	_	-	-
SU(2)	2	2	1	1	2		1

- Weakly gauge SU(2) x U(1)_Y subgroup of SO(5) x U(1)_X
- Hypercharge embedded as $Y = Q_X + T_{R3}$
- Need to have chiral field content of the SM: $(q_L = 2_{1/6}) + (t_R = 1_{2/3})$
 - Add incomplete multiplets

	Q	Q	S	S	Q		t
$G = SO(5) \ge U(1)$		5		1	_	-	-
SU(2)	2	2	1	1	2		1

 $\begin{array}{l} \mbox{Minimal Model:} \\ Q_{\rm L1} + Q_{\rm L2} + S_{\rm L} + S_{\rm R} + Q_{\rm R2} + t_{\rm R} \end{array}$

- Weakly gauge SU(2) x U(1)_Y subgroup of SO(5) x U(1)_X
- Hypercharge embedded as $Y = Q_X + T_{R3}$
- Need to have chiral field content of the SM: $(q_L = 2_{1/6}) + (t_R = 1_{2/3})$
 - Add incomplete multiplets

	Q	Q	S	S	Q	Q	q	t
$G = SO(5) \ge U(1)$	5		1	-		-	-	
SU(2)	2	2	1	1	2	2	2	1

 $\begin{array}{l} \mbox{Minimal Model:} \\ Q_{\rm L1} + Q_{\rm L2} + S_{\rm L} + S_{\rm R} + Q_{\rm R2} + t_{\rm R} \end{array}$

- Weakly gauge SU(2) x U(1)_Y subgroup of SO(5) x U(1)_X
- Hypercharge embedded as $Y = Q_X + T_{R3}$
- Need to have chiral field content of the SM: $(q_L = 2_{1/6}) + (t_R = 1_{2/3})$
 - Add incomplete multiplets

	Q	Q	S	S	Q	Q	q	t
$G = SO(5) \ge U(1)$	5			1 –			-	-
SU(2)	2	2	1	1	2	2	2	1

 $\begin{array}{l} \mbox{Minimal Model:} \\ Q_{\rm L1} + Q_{\rm L2} + S_{\rm L} + S_{\rm R} + Q_{\rm R2} + t_{\rm R} \end{array}$

 $\label{eq:constraint} \begin{array}{l} \textbf{Extended Model:} \\ \textbf{Q}_{L1} + \textbf{Q}_{L2} + \textbf{S}_{L} + \textbf{S}_{R} + \textbf{Q}_{R1} + \textbf{Q}_{R2} + \textbf{q}_{L} + \textbf{t}_{R} \end{array}$

► Complete multiplets have mass mixings with incomplete ones¹)

$$\mathcal{L}_{mix}^{min} = -\mu_{QQ}^{\prime} \bar{Q}_L^2 Q_R^2 - \mu_{tS} \bar{S}_L t_R$$

$$\mathcal{L}_{mix}^{ext} = \mathcal{L}_{mix}^{min} - \mu_{QQ} \,\bar{Q}_L^1 Q_R^1 - \mu_{qQ} \,\bar{q}_L Q_R^1$$

¹⁾ One additional parameter $\mu_{SS} \, \bar{S}_L S_R$: equivalent to a tadpole ${\cal L}= au \Phi_5$

Complete multiplets have mass mixings with incomplete ones¹

 $\mathcal{L}_{mix}^{min} = -\mu_{QQ}^{\prime} \bar{Q}_L^2 Q_R^2 - \mu_{tS} \bar{S}_L t_R$

 $\mathcal{L}_{mix}^{ext} = \mathcal{L}_{mix}^{min} - \mu_{QQ} \,\bar{Q}_L^1 Q_R^1 - \mu_{qQ} \,\bar{q}_L Q_R^1$

SPECTRUM:

¹⁾ One additional parameter $\,\mu_{SS}\,ar{S}_LS_R\,$: equivalent to a tadpole $\,{\cal L}= au\Phi_5$

Complete multiplets have mass mixings with incomplete ones¹

 $\mathcal{L}_{mix}^{min} = -\mu_{QQ}^{\prime} \bar{Q}_L^2 Q_R^2 - \mu_{tS} \bar{S}_L t_R$

 $\mathcal{L}_{mix}^{ext} = \mathcal{L}_{mix}^{min} - \mu_{QQ} \,\bar{Q}_L^1 Q_R^1 - \mu_{qQ} \,\bar{q}_L Q_R^1$

SPECTRUM:

Vector-Like Top-partners:

¹⁾ One additional parameter $\mu_{SS}\,ar{S}_LS_R\,$: equivalent to a tadpole ${\cal L}= au\Phi_5$

Complete multiplets have mass mixings with incomplete ones¹

$$\mathcal{L}_{mix}^{min} = -\mu_{QQ}^{\prime} \bar{Q}_L^2 Q_R^2 - \mu_{tS} \bar{S}_L t_R$$

 $\mathcal{L}_{mix}^{ext} = \mathcal{L}_{mix}^{min} - \mu_{QQ} \,\bar{Q}_L^1 Q_R^1 - \mu_{qQ} \,\bar{q}_L Q_R^1$

SPECTRUM:

Vector-Like Top-partners:

$$1_{\frac{2}{3}} \qquad m_S^2 = \xi^2 \hat{f}^2 + \mu_{tS}^2$$

¹⁾ One additional parameter $\,\mu_{SS}\,ar{S}_LS_R\,$: equivalent to a tadpole $\,{\cal L}= au\Phi_5$

Complete multiplets have mass mixings with incomplete ones¹

$$\mathcal{L}_{mix}^{min} = -\mu_{QQ}^{\prime} \bar{Q}_L^2 Q_R^2 - \mu_{tS} \bar{S}_L t_R$$

$$\mathcal{L}_{mix}^{ext} = \mathcal{L}_{mix}^{min} - \mu_{QQ} \,\bar{Q}_L^1 Q_R^1 - \mu_{qQ} \,\bar{q}_L Q_R^1$$

SPECTRUM:

Vector-Like Top-partners:

$$1_{\frac{2}{3}} \qquad m_S^2 = \xi^2 \hat{f}^2 + \mu_{tS}^2$$
$$2_{\frac{7}{6}} \qquad m_Q'^2 = \mu_{QQ}'^2$$

¹⁾ One additional parameter $\,\mu_{SS}\,ar{S}_LS_R\,$: equivalent to a tadpole $\,{\cal L}= au\Phi_5$

Complete multiplets have mass mixings with incomplete ones¹

$$\mathcal{L}_{mix}^{min} = -\mu_{QQ}^{\prime} \bar{Q}_L^2 Q_R^2 - \mu_{tS} \bar{S}_L t_R$$

$$\mathcal{L}_{mix}^{ext} = \mathcal{L}_{mix}^{min} - \mu_{QQ} \,\bar{Q}_L^1 Q_R^1 - \mu_{qQ} \,\bar{q}_L Q_R^1$$

SPECTRUM:

Vector-Like Top-partners:

$$\begin{split} 1_{\frac{2}{3}} & m_S^2 = \xi^2 \hat{f}^2 + \mu_{tS}^2 \\ 2_{\frac{7}{6}} & m_Q'^2 = \mu_{QQ}'^2 \\ 2_{\frac{1}{6}} & m_Q^2 = \mu_{QQ}^2 + \mu_{qQ}^2 \end{split}$$

¹⁾ One additional parameter $\mu_{SS} \, \bar{S}_L S_R$: equivalent to a tadpole ${\cal L}= au \Phi_5$

THE FULL TOP SECTOR Complete multiplets have mass mixings with incomplete ones¹ $\mathcal{L}_{mix}^{min} = -\mu_{OO}^{\prime} \bar{Q}_L^2 Q_R^2 - \mu_{tS} \bar{S}_L t_R$ $\mathcal{L}_{mix}^{ext} = \mathcal{L}_{mix}^{min} - \mu_{QQ} \bar{Q}_L^1 Q_R^1 - \mu_{qQ} \bar{q}_L Q_R^1$ SPECTRUM: Top Quark: Vector-Like Top-partners: $1_{\frac{2}{2}} \qquad m_S^2 = \xi^2 \hat{f}^2 + \mu_{tS}^2$ $2_{\frac{7}{6}} \qquad m_Q'^2 = \mu_{QQ}'^2 \qquad \qquad m_t^2 = \frac{\sin^2(\frac{v}{f})}{2} m_S^2 \times c_R^2 s_R^2 \times s_L^2$ $2_{\frac{1}{6}} \qquad m_Q^2 = \mu_{QQ}^2 + \mu_{qQ}^2$

¹⁾ One additional parameter $\,\mu_{SS}\,ar{S}_LS_R\,$: equivalent to a tadpole ${\cal L}= au\Phi_5$

SPIN-1 SECTOR

SPIN-1 SECTOR

Spin-1 states are also obtained from 4-fermion interactions:

 L'_{4f} = -¹/_{f²_ρ} (*F*_L*T^aγ^μF_L*)² = ^{*f*²_ρ}/₄ (*A^a_μ*)² + *A^a_μ F*_L*T^aγ^μF_L*
 Quantum corrections make *A_μ* dynamical

Combining with the scalar 4-fermion terms -> Lagrangian of Spin-1 resonances + pNGB Higgs + Radial mode + Fermions

Hidden Local Symmetry Bando et al '88
Equivalent to 2-site model f⁻² = f⁻² + f⁻²_ρ

SPIN-1 SECTOR

Spin-1 states are also obtained from 4-fermion interactions:

 L'_{4f} = - ¹/_{f²_ρ} (*F*_L*T^aγ^μF_L*)² = ^{*f*²_ρ}/₄ (*A^a_μ*)² + *A^a_μ F*_L*T^aγ^μF_L*
 Quantum corrections make *A_μ* dynamical

Combining with the scalar 4-fermion terms -> Lagrangian of Spin-1 resonances + pNGB Higgs + Radial mode + Fermions

SPECTRUM:

$$SO(4) \qquad m_{\rho}^2 = \frac{g_{\rho}^2 f_{\rho}^2}{2}$$
$$\frac{SO(5)}{SO(4)} \qquad m_a^2 = \frac{m_{\rho}^2}{r_v}$$

$$r_v = \frac{f^2}{\hat{f}^2} < 1$$

PARAMETER SPACE

- Free parameters of the model:
 - **Couplings:** ξ, g_{ρ}
 - SB scales: f, \hat{f}
 - Mass mixings: μ'_{QQ} , μ_{tS} , (μ_{QQ}, μ_{qQ})

PARAMETER SPACE

Free parameters of the model:

- **Couplings:** ξ, g_{ρ}
- **SB** scales: f, \hat{f}
- Mass mixings: μ'_{QQ} , μ_{tS} , (μ_{QQ}, μ_{qQ})

Physical parameters

- **Top/Top partner masses:** m_t , m_S , (m_Q) , $m_{Q'}$
- **Spin-1 masses:** m_{ρ}, m_{a}
- Mixings: $s_R = \mu_{tS}/m_S, \ s_L = \mu_{qQ}/m_Q$

PARAMETER SPACE

- Free parameters of the model:
 - **Couplings:** ξ, g_{ρ}
 - **SB** scales: f, \hat{f}
 - Mass mixings: μ'_{QQ} , μ_{tS} , (μ_{QQ}, μ_{qQ})
- Physical parameters
 - ▶ Top/Top partner masses: m_t , m_S , (m_Q) , $m_{Q'}$
 - **Spin-1** masses: m_{ρ}, m_{a}
 - ▶ Mixings: $s_R = \mu_{tS}/m_S, \ s_L = \mu_{qQ}/m_Q$

EWSB (fixing correct values for v and m_h) removes 2 parameters
 Spectrum alone fixes the parameters of the model

> Predictions: m_{ϕ} , couplings, EW mass splittings

PNGB POTENTIAL

Tree-level: contributions to the Higgs potential vanish (GB!)
1-loop: soft SO(5) breaking (g, g', µts, ...) generate a potential!

PNGB POTENTIAL

- > Tree-level: contributions to the Higgs potential vanish (GB!)
- ▶ 1-loop: soft SO(5) breaking (g, g', μ_{tS} , ...) generate a potential!
- Spin-l contributions are super-soft
 (finite, cut off at m_ρ)
- Spin-1/2 contributions are only soft (log divergence)

PNGB POTENTIAL

- Tree-level: contributions to the Higgs potential vanish (GB!)
- ▶ 1-loop: soft SO(5) breaking $(g, g', \mu_{tS}, ...)$ generate a potential!
- Spin-l contributions are super-soft (finite, cut off at m_ρ)
- Spin-1/2 contributions are only soft (log divergence)

 $\delta m^2 = r_* \, \mu_{eff}^2$ $\mu_{eff}^2 = 2\mu_{tS}^2 - \mu_{QQ}^2 - \mu_{QQ}'^2$ $\bullet \text{ pNGB Higgs potential is fully calculable!}$

PHENOMENOLOGY

SCANS

Perform scans over parameter space, fixing m_t, m_h, v
 Test against EWPT (S and T parameters)

SCANS

SCANS

Model			m_h	EWPT	Spectrum	Remarks
Minimal		$\tau = 0$	too light			
		$\tau \neq 0$	\checkmark	×		
		$\tau = 0$	too light			
Fritandad	$\mu_{QQ} = \mu'_{QQ}$	$\tau > 0$	\checkmark	×		$\epsilon \ll 1$
		$\tau < 0$	\checkmark	\checkmark	$m_{\mathcal{H}} < m_S < m'_Q < m_Q$	$\epsilon \gtrsim 1$
L'Atenueu		$\tau = 0$	\checkmark	\checkmark	$m_Q < m'_Q, m_S$	$\epsilon \ll 1$
	$\mu_{QQ} \neq \mu'_{QQ}$	$\tau > 0$	\checkmark	\checkmark	$m_Q < m'_Q, m_S$	$\epsilon \ll 1$
		$\tau < 0$	\checkmark	\checkmark		
		a starter		135333		$\epsilon = -$
						C2

Combining EWSB, top mass and EWPT constraints is very restrictive

Certain mass hierarchies can be identified

FINE TUNING?

 $\frac{\Delta \alpha_{\mu_{tS}}}{\alpha} \approx \frac{4r_*\mu_{tS}^2}{r_v m_h^2}$

FINE TUNING?

- Fine tuning m1%, mainly ∂ log M due to δm² = r_{*} μ_{eff}² ∂ log P
 due to δm² = r_{*} μ_{eff}² ∂ log P
 (Piξf { f̂= f}µkξs gp, μ_cgs μ_QµQ'_QµQ'_Q, τ)
 Enhanced symmetry for μ_{QQ} = μ'_{QQ} = μ_{tS}
- Fine tuning, keeping μ_{eff}
 fixed ~ 5%
- Can also be improved by going to less minimal top sectors

LOOKING FOR THE SO(5) HIGGS AT THE LHC

► Analysis for the channel: $pp \rightarrow \phi \rightarrow VV \rightarrow JJ$

Shape analysis

GG, Fichet, Ponton, Rosenfeld w.i.p.

CONCLUSIONS

- The Dynamical Composite Higgs is (class of) models addressing various issues usually not considered
 - SO(5) global symmetry
 - Dynamical breaking of SO(5) (via NJL / 4-fermion)
 - Constituents of the Higgs (Extended top sector)
 - An SO(5) "Higgs" boson
- Fully calculable pNGB Higgs radiative potential
 - Allows for correct Higgs, Z and top mass
- Various IR fixed points (radial mode quartic coupling, GB mass)
- EWPT (oblique) can be satisfied
- The radial mode could potentially be identified at the LHC13

ENHANCED SYMMETRY

	Q	Q	S	S	Q	Q	q	t
SO(5) x U(1)	5			1	-		-	-
SU(2)	2	2	1	1	2	2	2	1

► Mass Lagrangians $\mathcal{L}_{mix}^{min} = -\mu'_{QQ} \bar{Q}_L^2 Q_R^2 - \mu_{tS} \bar{S}_L t_R$ $\mathcal{L}_{mix}^{ext} = -\mu_{QQ} \bar{Q}_L^1 Q_R^1 - \mu_{qQ} \bar{q}_L Q_R^1$

• For
$$\mu_{QQ} = {}^{300}\mu'_{QQ} = \mu_{tS}$$
 unif
 $Q_{RI} + Q_{R2} = {}^{300}\mu'_{QQ} = \mu_{tS}$ unif
 $Q_{RI} + Q_{R2} = {}^{300}\mu'_{QQ} = F_R$
• Only q_L remains "incomplete"
 $a_{\mu} = \frac{\mu'_{QQ00} - \mu_{QQ}}{\mu'_{QQ50} + \mu_{QQ}} = \frac{\mu_{eff}^2}{2\mu_{tS}^2}$
 $T_{\mu_{QQ50}} = \frac{\mu_{QQ}}{\mu_{QQ50}} = \frac{\mu_{QQ}}{\mu_{Q}50} = \frac{$

THE FULL LAGRANGIAN

A Renormalizable UV Model

Consider a $SU(N_c) \times SU(N_c)$ gauge theory, spontaneously broken to the diagonal (as in top-color models)

<u>Field content</u>: SM quarks and any new vector-like states charged under first $SU(N_c)$, hence no anomalies. Diagonal unbroken subgroup identified with QCD $N_c = 3$

- Focus on $F_L^i (i = 1, ..., 5)$ and S_R of the main part of the talk.
- Add a (neutral) real scalar $\Xi^i (i = 1, ..., 5)$ with mass of the same order as the broken gauge bosons (this scalar may itself be a composite state)

In unitary gauge:

$$\mathcal{L}_{\rm UV} \supset -\frac{1}{2} M_{\Xi}^2 \Xi^2 + y \left(\bar{S}_R \Xi^i F_L^i + \text{h.c.} \right) + \frac{1}{2} M_G^2 G_\mu G^\mu + \frac{1}{2} \hat{g} G_\mu^A (\bar{S}_R \gamma^\mu \lambda^A S_R + \bar{F}_{L,i} \gamma^\mu \lambda^A F_L^i) ,$$

Integrating out the heavy fields:

$$\mathcal{L} \supset \frac{y^2}{2M_{\Xi}^2} \, (\bar{S}_R F_L^i + \text{h.c.})^2 - \frac{\hat{g}^2}{8M_G^2} (\bar{S}_R \gamma^\mu \lambda^A S_R + \bar{F}_{L,i} \gamma^\mu \lambda^A F_L^i)^2$$

A Renormalizable UV Model

$$\mathcal{L} \supset \frac{y^2}{2M_{\Xi}^2} \, (\bar{S}_R F_L^i + \text{h.c.})^2 - \frac{\hat{g}^2}{8M_G^2} (\bar{S}_R \gamma^\mu \lambda^A S_R + \bar{F}_{L,i} \gamma^\mu \lambda^A F_L^i)^2$$

After Fierz rearrangement, this leads to the ``scalar channel" 4-fermion int's, with

$$G_S = \frac{\hat{g}^2}{2M_G^2} + \frac{y^2}{M_{\Xi}^2} , \qquad G'_S = \frac{\hat{g}^2}{2M_G^2}$$

One naturally obtains $G_S > G'_S$: one super-critical, the other sub-critical.

At the same time, one finds the required ``vector channel" 4-fermion interactions