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‣Can one have an SO(5) global symmetry? 

‣ Renormalizable (gauge) theories typically have larger 
(accidental)  global symmetry groups 
( breaking patterns classified in                          ) 

‣What is the UV theory (the constituents of the CH)? 

‣Can it be made out of Standard Model fermions? 

‣What is the dynamics causing the global symmetry breaking? 

‣ Is there an SO(5) “Higgs boson”?

OPEN QUESTIONS

Peskin 1980



OPEN QUESTIONS

‣ In this talk, I will present a model that  

‣ Possesses just SO(5) global symmetry 

‣ Accomplishes SO(5) as well as EW breaking dynamically 

‣ Features a CH made out of an (extended) top sector 

‣ Has SO(5) Higgs particle whose self coupling is predicted 

‣ Has few parameters and is compatible with all constraints 
 
This model is largely inspired by the seminal paper:  
“Minimal Dynamical Symmetry Breaking of the Standard 
Model”, Bardeen, Hill, Lindner ‘90



MINIMAL DYNAMICAL EWSB 
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⇠ ⌧ 1When the induced kinetic term becomes sizeable (Yukawa coupling ),

we can think of � as a proper, dynamical degree of freedom, corresponding to

a fermion bound state. This requires a gap between the bound state mass and

⇤the cutoff . The Yukawa interaction induces a dynamical mass for

� 1
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‣ Including gauge loops, nonlinear relation between mh and mt

yt

𝝁

3.0
2.0
1.0

𝚲=1.5 TeV 𝚲= 43 TeV

‣Compositeness scale  are 
Landau Poles for Yukawas 

‣ Physical Yukawa ~ 1 is too small 

‣ Top Seesaw: Enlarge top sector 
Dobrescu et al ’97/‘98
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‣ The composite scalar                                      is a 50 of SO(5)  

‣ 5 real d.o.f:   pNGB Higgs + one SM singlet, the radial mode 

� =
�
S̄RFL + F̄LSR

�



FLOWING TO THE IR
‣ Again Rewrite 4-fermion interaction 

! G

2

�
S̄RFL + F̄LSR

�2
= � 1

2G
�2 � �

�
S̄RFL + F̄LSR

�



FLOWING TO THE IR
‣ Again Rewrite 4-fermion interaction 

! G

2

�
S̄RFL + F̄LSR

�2
= � 1

2G
�2 � �

�
S̄RFL + F̄LSR

�

‣ Loops make 𝚽 dynamical and create 
a potential that breaks the global 
SO(5) symmetry 

Nambu-Jona-Lasinio: Review

+ + + · · ·

ΦΦ

FL

SR

Φ

Φ

Φ

Φ

0-0

+ + + · · ·

ΦΦ

FL

SR

Φ

Φ

Φ

Φ

0-0

Fermion loops induce:

• negative mass squared

• kinetic term for �

• quartic self-interactions

(SL, SR)

⇠ ⌧ 1When the induced kinetic term becomes sizeable (Yukawa coupling ),

we can think of � as a proper, dynamical degree of freedom, corresponding to

a fermion bound state. This requires a gap between the bound state mass and

⇤the cutoff . The Yukawa interaction induces a dynamical mass for

� 1

2GS
�2 � �(S̄RFL + h.c.)

LF = iF̄L/@FL + iS̄R/@SR

h�i = (0, 0, 0, 0, f̂)



FLOWING TO THE IR
‣ Again Rewrite 4-fermion interaction 

! G

2

�
S̄RFL + F̄LSR

�2
= � 1

2G
�2 � �

�
S̄RFL + F̄LSR

�

‣ Loops make 𝚽 dynamical and create 
a potential that breaks the global 
SO(5) symmetry 

Nambu-Jona-Lasinio: Review

+ + + · · ·

ΦΦ

FL

SR

Φ

Φ

Φ

Φ

0-0

+ + + · · ·

ΦΦ

FL

SR

Φ

Φ

Φ

Φ

0-0

Fermion loops induce:

• negative mass squared

• kinetic term for �

• quartic self-interactions

(SL, SR)

⇠ ⌧ 1When the induced kinetic term becomes sizeable (Yukawa coupling ),

we can think of � as a proper, dynamical degree of freedom, corresponding to

a fermion bound state. This requires a gap between the bound state mass and

⇤the cutoff . The Yukawa interaction induces a dynamical mass for

� 1

2GS
�2 � �(S̄RFL + h.c.)

LF = iF̄L/@FL + iS̄R/@SR

h�i = (0, 0, 0, 0, f̂)

16⇡2�⇠2 = (4Nc +N + 5)⇠4

� = a⇤⇠
2

a⇤ = 12/13

Nc

m2
H = 2a⇤m2

S

Nambu-Jona-Lasinio: Review

LF = iF̄L/@FL + iS̄R/@SR

+
1

2
(@µ�)

2 � 1

4
�
⇣
�2 � f̂2

⌘2
� ⇠� (S̄RFL + h.c.)

(Quasi) IR Fixed points:

0.5 1.0 1.5 2.0

0.6

0.8

1.0

1.2

1.4

1.6

log10 ξ
2

λ
/ξ

2

Figure 1. RG flow of the couplings � and ⇠. The dashed line is the exact IR fixed point a⇤ = 12/13
that is reached in the absence of gauge interactions. QCD corrections introduce a mild dependence
a⇤(⇠) represented by the solid blue line. The thin red lines are examples of trajectories, with the
distance between the dots corresponding to one e-fold of running. For simplicity, we neglect the
running of the strong coupling constant.

where Q1
L

and Q2
L

transform under SU(2)
L

⇥ U(1)
Y

⇢ SO(5)
L

⇥ U(1)
X

as 21
6
and 27

6

respectively, and S
L

(as well as S
R

) as 12
3
.3 Thus, the first doublet Q1

L

has the same

quantum numbers of the left-handed top-bottom doublet, while the second doublet Q2
L

has
the exotic hypercharge 7

6
. The vector-like singlet (S

L

, S
R

) has the same quantum numbers
as the right handed top. In order to obtain a chiral spectrum which at low energies contains
just a left handed 21

6
(to be identified with the SM (t

L

, b
L

) doublet) and a right-handed

12
3
(to be identified as the SM t

R

) we will have to introduce more states in incomplete G
multiplets. We will describe the top sector in detail in Section 2.2, and continue focusing in
this section on the minimal content required to achieve the dynamical breaking above. In
the new basis, the scalar sector becomes

⇣
�̃, �
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where � transforms in 21
2
and �̃ as 2�1

2
of SU(2)

L

⇥ U(1)
Y

. The reality property �⇤ = �

translates into the well-known relation �⇤ = �i�2�̃. In this basis, the Yukawa Lagrangian

3See App. B, where we summarize the conventions for the two di↵erent SO(5) bases, as well as the
embedding of SU(2)L ⇥ U(1)Y ⇢ SO(5)L ⇥ U(1)X .

– 7 –

16⇡2�� = 2(N + 8)�2 � 8Nc⇠
4 + 8Nc⇠

2�

For SO(N) symmetry and colors:

Nc = 3N = 5For and :

imply hence:

‣ Due to the presence of the IR fixed 
point, the quartic λ and hence the 
mass of the radial mode become a 
prediction of the model  
 
  m2

H =
24

13
m2

S

Quartic:  λ 
Yukawa: 𝛏
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SPIN-1 SECTOR

‣ Spin-1 states are also obtained from 4-fermion interactions:  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➜ Spectrum alone fixes the parameters of the model 
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‣ 1-loop: soft SO(5) breaking  (g , g’, 𝛍tS, …) generate a potential!
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Electroweak Symmetry Breaking

Tree-level potential for pNGB’s vanishes, but is generated at 1-loop from

• Spin-1 sector: gauging of SM subgroup proportional to

• Spin-1/2 sector: SO(5) soft breaking terms

Calculability?

• Spin-1 contributions are super-soft, cutoff at m⇢

• Spin-1/2 contributions are only soft: logarithmically divergent

However:
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Figure 3. RG flow of the ratio �m2/µ2
e↵ and ⇠. The dashed line marks the exact IR fixed point �r⇤

that is reached in the absence of gauge interactions, the solid blue line is the asymptotic trajectory
including QCD e↵ects. The dots on the trajectories represent e-folds of RG running.

and the size of this contribution to the pNGB Higgs mass parameter is controlled by µ2
e↵ .

We should find that the explicit RG scale-dependence in Eq. (3.6) precisely accounts for the
running of µ2

e↵ and the field rescaling of H. Indeed, from Eq. (3.4) and Eq. (E.1) one finds

�
µ

2
e↵

µ2
e↵

� 2�� = � 11

16⇡2
⇠2. (3.7)

M can be chosen at will as long as the running parameters are evaluated at that scale. It
is thus natural to chose M ⇠ mH, in which case the parenthesis in Eq. (3.6) is close to one.
The finite pieces of ↵ and the corresponding contribution to � are given in App. C.

We remark that the modification needed for the minimal model (in which the hyper-
charge 1/6 resonance is decoupled) is simply to replace µe↵ by

µ̃2
e↵ ⌘ 2µ2

tS

� µ02
QQ

, (3.8)

whereas Eq. (3.4) and hence the value of r⇤ remain unchanged, as the decoupled state (q
L

, Q1
R

)
does not possess any Yukawa interactions.
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Counterterm for Higgs mass

displays an IR quasi-fixed point

‣ New SO(5) Counterterm δm2 !    
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!
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SCANS

Electroweak Symmetry Breaking

T T

Figure 4. Electroweak precision tests for the minimal model with ⌧ 6= 0 (left) and the extended
model with µ

QQ

= µ0
QQ

and ⌧ < 0 (right). We scan over the ranges f 2 [500, 2000] GeV, r
v

2
[0.05, 0.95], g

⇢

2 [0, 3⇡], s
R

2 [0, 1] (and, for the right plot, s
L

2 [0, 1]). We fix ⌧ , m
S

and m
Q

from EWSB (Higgs vev and Higgs mass) plus the top mass, but requiring m
S

,m
Q

> 500 GeV.
In the left panel we also require |⌧ | 2 [0, (1000 GeV)3] while in the right panel we impose ⌧ 2
[�(3000 GeV)3, 0]. All points reproduce the correct Higgs, top and Z masses. The contours
correspond to 68%, 95% and 99% C.L. respectively [53].

the minimal scenario, for ⌧ > 0 all points that lead to successful EWSB have a negative
T and do not satisfy EWPT. There exists however a possibility in the latter scenario to
accommodate both the correct Higgs mass and EWPT with a large negative value for ⌧ . In
fact, if �⌧ is so large as to cancel a large negative µ2

e↵ , we can escape the condition (4.3) and
�1/2 is not bounded by (4.6) . This will however require a very large |⌧ |, and both ↵ and �
show substantial cancellations between tadpole and other contributions. Notice that a large
negative ⌧ is bounded by the mass for the radial mode, Eq. (2.18). We show the S and T
parameters of this model in the right panel of Fig. 4. We find that the interplay of EWSB
and EWPT require in this case a peculiar hierarchy of fermion masses, m

S

< m0
Q

< m
Q

.
The correct Higgs mass and agreement with EWPT can also be achieved in the extended

model with µ
QQ

6= µ0
QQ

(see Fig. 5). As this introduces a new source of explicit SO(4)
violation, we expect the T parameter to be a↵ected. We first consider the case ⌧ = 0. As
we already pointed out above, at µ

QQ

= µ0
QQ

, �1/2 is bounded by Eq. (4.6), resulting in a
too small Higgs mass. One can show that � can be raised if

(µ2
QQ

� µ02
QQ

)(µ2
QQ

+ µ2
qQ

� µ02
QQ

) > 0 , (4.9)

which implies that either µ
QQ

> µ0
QQ

or m
Q

< m0
Q

. It turns out that the former case further
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Look for regions of parameter space with EWSB and correct top and Higgs masses

Then test for general agreement with EW precision measurements (oblique)

‣ Perform scans over parameter space, fixing mt, mh, v 

‣ Test against EWPT (S and T parameters)



SCANS
Spectrum features

T Q

T Q

Figure 5. Electroweak precision tests (left) and fermion spectrum (right) for the extended model
with µ

QQ

6= µ0
QQ

. The plots in the upper row assume vanishing tadpole, while those in the lower
row have a positive tadpole term. For ⌧ > 0, we also impose m

Q

< m0
Q

. We scan over the ranges
f 2 [500, 2000] GeV, r

v

2 [0.05, 0.95], g
⇢

2 [0, 3⇡], s
R

2 [0, 1] and s
L

2 [0, 1]. In the plots of the
upper row, we fix m

S

, m
Q

and m0
Q

from EWSB (Higgs vev and Higgs mass) plus the top mass,
but requiring m

S

,m
Q

,m0
Q

> 500 GeV. In the lower row plots we instead fix ⌧ , m
S

and m
Q

from
EWSB plus the top mass, requiring m

S

,m
Q

> 500 GeV, while scanning over m0
Q

2 [500, 3000] GeV
and fixing f = 500 GeV. The blue points pass EWPT at 95% C.L.
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SCANS

✏ ⌘ µ2
e↵

2µ2
tS

Spectrum features

in the lower row plots of Fig. 5 a scan with fixed f = 500 GeV, with the fermion masses in
the range {500, 3000} GeV. In addition we require m

Q

< m0
Q

as otherwise T is negative.
It is also interesting to know how much explicit violation of the global symmetry is

required in the fermionic mass Lagrangian. We therefore plot in the right panel of Fig. 6 the
quantity ✏ defined in Eq. (4.3) against the asymmetry parameter

a
µ

⌘
µ0
QQ

� µ
QQ

µ0
QQ

+ µ
QQ

. (4.11)

The point ✏ = a
µ

= 0 corresponds to the SO(5) preserving choice µ
QQ

= µ0
QQ

= µ
tS

,
while the deviations from a

µ

= 0 parametrize the breaking of the custodial symmetry in the
“composite sector”, to use the language of Section 2.2. We see that a

µ

& 0.15 is required in
order to obtain points that pass EWPT, while ✏ is always very small as expected from the
general arguments above.

We summarize the various scenarios studied in this section in the following table:

Model m
h

EWPT Spectrum Remarks

Minimal
⌧ = 0 too light
⌧ 6= 0 X ⇥

Extended

µ
QQ

= µ0
QQ

⌧ = 0 too light
⌧ > 0 X ⇥ ✏ ⌧ 1
⌧ < 0 X X mH < m

S

< m0
Q

< m
Q

✏ & 1

µ
QQ

6= µ0
QQ

⌧ = 0 X X m
Q

< m0
Q

,m
S

✏ ⌧ 1
⌧ > 0 X X m

Q

< m0
Q

,m
S

✏ ⌧ 1
⌧ < 0 X X

Table 2. Summary of our various scenarios. In the last column we have defined ✏ = µ2
e↵/2µ

2
tS

. See
text for details.

5 Naturalness Considerations

Indirect constraints from electroweak precision data as well as direct bounds on vectorlike
top partners will require a su�ciently high scale for the global symmetry breaking, resulting
in a certain fine-tuning of parameters. In order to get a first idea, it is enough to notice that
the largest cancellation occurs in the quantity ↵. There will be a large positive contribution
proportional to µ2

tS

, leading to a sensitivity

�↵
µtS

↵
⇡ 4r⇤µ2

tS

r
v

m2
h

. (5.1)

For µ
tS

= 500 GeV and r
v

= 0.5 this implies a tuning of about 1%.
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The recently measured Higgs mass of ~125 GeV, as well as precision measurements,

impose significant restrictions on the parameter space.

Sometimes, certain mass hierarchies between heavy vector-like fermions and the

heavy scalar (radial mode) are singled-out.

‣Combining EWSB, top mass and EWPT constraints is very 
restrictive 

‣Certain mass hierarchies can be identified
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Figure 7. Left plot: Fine tuning against the mass m0
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In the following we will quantify these considerations more precisely by evaluating the
sensitivity parameter

�M ⌘ max
P

�M

P

, �M

P

⌘
����
@ logM

@ logP

���� , (5.2)

where M runs over the measured quantities M 2 {v2,m2
h

,m2
t

} and P over the parameters of
the model. It is important to pick a basis for P that corresponds to the parameters in the
Lagrangian. We thus chose

P 2 {f̂ , f
⇢

, ⇠, g
⇢

, µ
tS

, µ
QQ

, µ
QQ

0 , ⌧} . (5.3)

One can easily evaluate
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����@p log
↵�

�

���� ,

(5.4)
where p = logP and � = ⇠2f̂ 2µ2

tS

µ2
qQ

/m2
S

m2
Q

. All of the �M in Eq. (5.4) are dominated

by @
p

log↵, and it turns out the largest one is �v

2
. We plot the latter in the left panel of

Fig. 7, using the same parameter scan as in the lower row plots of Fig. 5. We find that
the maximal sensitivity is to the parameter µ

tS

for all points, and pretty much follows the
general considerations in Eq. (5.1), shown as the gray band in the plot. The cancellation of
the term proportional to µ2

tS

then typically requires fine tuning below 1%.
However, as we already discussed in Section 4, to some extent this cancellation must

happen against the other terms in µe↵ , as the other contributions to ↵ are loop suppressed,
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Analytic estimate:‣ Fine tuning ~1%, mainly  
due to  
 (                                      ) 

‣ Enhanced symmetry for  

�m2 = r⇤ µ
2
eff

µ2
eff = 2µ2

tS � µ2
QQ � µ02

QQ

µQQ = µ0
QQ = µtS
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����@p log
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(5.4)
where p = logP and � = ⇠2f̂ 2µ2

tS

µ2
qQ

/m2
S

m2
Q

. All of the �M in Eq. (5.4) are dominated

by @
p

log↵, and it turns out the largest one is �v

2
. We plot the latter in the left panel of

Fig. 7, using the same parameter scan as in the lower row plots of Fig. 5. We find that
the maximal sensitivity is to the parameter µ

tS

for all points, and pretty much follows the
general considerations in Eq. (5.1), shown as the gray band in the plot. The cancellation of
the term proportional to µ2

tS

then typically requires fine tuning below 1%.
However, as we already discussed in Section 4, to some extent this cancellation must

happen against the other terms in µe↵ , as the other contributions to ↵ are loop suppressed,
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Analytic estimate:‣ Fine tuning, keeping 𝛍eff 

fixed ~ 5% 

‣Can also be improved by 
going to less minimal top 
sectors



‣ Analysis for the channel:  
pp ➜ 𝜙 ➜ VV ➜ J J 

‣ Shape analysis

LOOKING FOR THE SO(5) HIGGS AT THE LHC
GG, Fichet, Ponton, 

Rosenfeld w.i.p.Figure 3. A projection of the dijet background at 13 TeV extrapolated from an ATLAS 8 TeV
analysis [2]. A signal for pp ! � ! JJ assuming f = 800 GeV, rV = 0.5 , m� = 3000 GeV is
shown in red.
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Figure 4. Discovery Bayes factor for the global Higgs in the pp ! � ! JJ channel. The red,
gray, yellow regions correspond repectively to weak moderate and strong evidence for the signal
hypothesis.

However, the total width of the excess has also been fitted from the ATLAS data [1].

This provides an independent constraint that is complementary from the total rate. Using

Fig. 6 of [1] we conclude that the SO(5) scalar cannot fit the ATLAS excess, essentially

because the ratio f�1

G /f�1

H is too small in the case of the global Higgs.

4.4 An aside comment on the discovery and characterisation of resonances

Before conclusions, we open a parenthesis to point out an intriguing fact: searching for

a resonance using the invariant mass of its decay products is not necessarily the optimal

10
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CONCLUSIONS

‣ The Dynamical Composite Higgs is (class of) models 
addressing various issues usually not considered  

‣ SO(5) global symmetry 

‣ Dynamical breaking of SO(5) (via NJL / 4-fermion) 

‣Constituents of the Higgs (Extended top sector) 

‣ An SO(5) “Higgs” boson

‣ Fully calculable pNGB  Higgs radiative potential 

‣ Allows for correct Higgs, Z and top mass 

‣ Various IR fixed points (radial mode quartic coupling, GB mass) 

‣ EWPT (oblique) can be satisfied 

‣ The radial mode could potentially be identified at the LHC13



BACKUP



‣ For                                unify  
QR1 + QR2 + tR  ➜  FR 

‣Only qL remains “incomplete”

ENHANCED SYMMETRY

Q Q S S Q Q q t

 SO(5) x U(1) 5 1 - - -

SU(2) 2 2 1 1 2 2 2 1

‣Mass Lagrangians 
 
 
 

Lmin

mix

= �µ0
QQ

Q̄2
L

Q2
R

� µ
tS

S̄
L

t
R

Lext

mix

= �µ
QQ

Q̄1
L

Q1
R

� µ
qQ

q̄
L

Q1
R

µQQ = µ0
QQ = µtS
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ΜQQ # ΜQQ', Τ % 0
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Figure 6. Left panel: mass of the radial mode (in GeV) as a function of the other masses in
the extended model with ⌧ = 0. We have fixed m

Q

= 1 TeV, m
S

= 5 TeV and m0
Q

= 6.5 TeV.
The ratio m

⇢

/m
a

=
p
r
v

is held fixed, with r
v

= 0.9, 0.75 and 0.5 (from top to bottom). Right
panel: amount of explicit violation of the global and custodial symmetries, as parametrized by the
quantities ✏ and a

µ

, for the same parameter scan as in the lower row plots of Fig. 5. All points
reproduce the correct Higgs, top and Z masses. The blue points pass EWPT at 95% C.L.

find that for f = 500 GeV we need m
S

> 2 TeV, which sets a lower bound on m
S

in this
scenario. EWPT further increase this bound. We illustrate these conclusions in the upper
row plots of Fig. 5. As we pointed out in Subsection 2.4, for ⌧ = 0 there is one relation
between the masses of the model. We show in the left panel of Fig. 6 the mass of the radial
mode as a function of the other masses of the model.

Finally, we also performed a full scan of the extended model with µ
QQ

6= µ0
QQ

with
nonzero tadpole term (see plots in the lower row of Fig. 5). We only discuss in detail the
case ⌧ > 0. The implications for the spectrum are similar as in the case with ⌧ = 0, with
the di↵erence that the states can generally be lighter while still passing EWPT. We present
in the lower row plots of Fig. 5 a scan with fixed f = 500 GeV, with the fermion masses in
the range {500, 3000} GeV. In addition we require m

Q

< m0
Q

as otherwise T is negative.
It is also interesting to know how much explicit violation of the global symmetry is

required in the fermionic mass Lagrangian. We therefore plot in the right panel of Fig. 6 the
quantity ✏ defined in Eq. (4.3) against the asymmetry parameter

a
µ

⌘
µ0
QQ

� µ
QQ

µ0
QQ

+ µ
QQ

. (4.11)

The point ✏ = a
µ

= 0 corresponds to the SO(5) preserving choice µ
QQ

= µ0
QQ

= µ
tS

,
while the deviations from a

µ

= 0 parametrize the breaking of the custodial symmetry in the
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aµ =
µ0
QQ � µQQ

µ0
QQ + µQQ

✏ =
µ2
eff

2µ2
tS



THE FULL LAGRANGIAN

At the UV matching scale, ⇤, one ends up with the Lagrangian

L
F

+ L
S

+ L
V

= i(Q̄
L

, S̄
L

) /D

✓
Q

L

S
L

◆
+ iS̄

R

/DS
R

� 1

2G
S

H2 �H S̄S

+
1

2G
⇢

⇣
AA

µ

� i[U †
5@µU5]

A

⌘2

+
1

2G
X

⇣
AX

µ

� i U †
1@µU1

⌘2

. (2.34)

The gauging of the EW subgroup of G proceeds by the substitution @
µ

U1,5 ! DSM

µ

U1,5

(no other fields transforms under G), with

DSM

µ

U5 =
⇥
@
µ

� iwi

Lµ

T i

L

� ib
µ

T 3
R

⇤
U5 ,

DSM

µ

U1 = (@
µ

� ib
µ

)U1 , (2.35)

where T i

L

(i = 1,2,3) are the SU(2)
L

generators and T 3
R

is the third isospin generator of
SU(2)

R

[see Eq. (B.3)]. One also introduces the kinetic terms

L
G

= � 1

4g20
(wa

µ⌫

)2 � 1

4g020
(b

µ⌫

)2 . (2.36)

RG running induces kinetic terms for A
µ

and H,

L
K

= � 1

4g2
⇢

(FV

µ⌫
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4g2
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2
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H)2 , (2.37)

with

r
µ

H = (@
µ

� iAâ

µ

T â)e5H , (2.38)

and where we normalized canonically the field H in full analogy to Eqs. (2.6) or (2.12), but
kept a convenient non-canonical normalization for the spin-1 fields.

Putting all the ingredients together, the Lagrangian of the model reads

L = i(Q̄
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(2.39)
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µ⌫

)2 ,

together with Eqs. (2.33), (2.35) and (2.38).11 For later convenience, we introduced the decay
constants f 2

⇢

= 2G�1
⇢

and f 2
X

= 2G�1
X

of the SO(5)
L

and U(1)
X

resonances, respectively. The

11It only remains to add terms associated with the fermionic extension as well as the soft-breaking terms
in Eqs. (2.19) or (2.21), as discussed in Section 2.2 and Footnotes 9 and 10.
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A UV COMPLETION

SU(Nc)⇥ SU(Nc)

SU(Nc)

Nc = 3

F i
L(i = 1, . . . 5) SR

⌅i(i = 1, . . . 5)

L � y2

2M2
⌅

(S̄RF
i
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8M2
G
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µ�AF i
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2
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2
M2

⌅ ⌅2 + y (S̄R ⌅iF i
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1

2
M2

GGµG
µ +

1

2
ĝ GA

µ (S̄R�
µ�ASR + F̄L,i�

µ�AF i
L) ,

A Renormalizable UV Model

Consider a gauge theory, spontaneously broken to the diagonal

(as in top-color models)

Field content: SM quarks and any new vector-like states charged under first

hence no anomalies. Diagonal unbroken subgroup identified with QCD

,

• Focus on and of the main part of the talk.

• Add a (neutral) real scalar with mass of the same order as the 

broken gauge bosons (this scalar may itself be a composite state)

In unitary gauge:

Integrating out the heavy fields:



A Renormalizable UV Model

L � y2

2M2
⌅

(S̄RF
i
L + h.c.)2� ĝ2

8M2
G

(S̄R�
µ�ASR + F̄L,i�

µ�AF i
L)

2

GS =
ĝ2

2M2
G

+
y2

M2
⌅

, G0
S =

ĝ2

2M2
G

GS > G0
S

After Fierz rearrangement, this leads to the ``scalar channel” 4-fermion int’s, with

One naturally obtains : one super-critical, the other sub-critical.

At the same time, one finds the required ``vector channel” 4-fermion interactions


