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Modelling the Atmosphere : The Equations

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂u

∂t
= −∇K − (2Ω + ζ)× u− 1

ρ
∇p+∇Φ + Fep (2)

∂(ρε)

∂t
+∇ ·

[
(ρε+ p+ FR) · u

]
= 0 (3)

p = ρRT (4)

with:

Mass Density ρ , Pressure p , Temperature T , Velocity u , Gravity
Potential Φ , Cinetic Energy K = u2/2, Relative Vorticity ζ = ∇× u

Rotation Velocity of the Earth Ω , Ideal Gas Constant for dry air R

Total energy per unit mass
ε = cpT +K, cp = Specific heat at constant pressure, Radiation Heat
Flux FR , Total external and parametrized forces Fep
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Modeling the Atmosphere : The Problem

The set of governing equations for the atmosphere are examples of
system of nonlinear partial differential equations (PDEs), to be
solved on some spatial domain D and time interval [0, tf ], given
suitable boundary (BC) and initial (IC) conditions.
Therefore the typical problem to be solved in ESM is an
intial/boundary value problem of the (general) form:

∂ψ

∂t
= L (ψ) (5)

ψ(0) = ψ0 (6)

ψ(B) = ΨB(t) (7)
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Modeling the Atmosphere : The Challenge

The Problem is typically highly nonlinear. As a consequence:

There is an interaction between different space scales.

The system is chaotic, i.e. the solution is strongly dependent
on the initial conditions. Therefore:

Ergodic hypothesis is made
Ensemble simulations are considered

Even if you can prove that it is well posed, in general it is not
possible to find a representation formula for its solution
ψ(x, t).

An approximation φ of the solution ψ has to be searched,
through the introduction of suitable:

Space discretization techniques

Parametrization of unresolved sub-grid processes

Time integration techniques
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Space Discretization

The original domain D is replaced by a spatially discretized domain
Dh and the original problem is replaced by:

∂φi
∂t

= Lh(φ)i, i = 1, 2, . . .m (8)

φi(0) = (φ0)i, i = 1, 2, . . .m (9)

φ(Bh) = ΦBh(t) (10)

where:

Lhdenotes a discrete approximation of the continuous
differential operator L

h denotes the tipical size of the discrete spatial elements and
determine the resolution of the spatial discretization.



Atmosphere Models Space Discretization Time Integration RegCM4 parallel implementation

Methods

This semi-discrete problem is a system of ( generally nonlinear )
Ordinary Differential Equations (ODEs) whose unknowns φi are
approximations of the continuous solutions ψ.
Main approaches:

1 Finite Differences

2 Finite Volumes

3 Spectral Transform

4 Galerkin Methods / Projection methods (Finite Element,
Spectral Element, Discontinuous Galerkin)
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Finite Differences

D = xi, i = 1, . . .m, called grid, is a regular array of
discrete locations, called nodes. h = ∆x is the average
spacing between nodes.

φi(t) ≈ ψ(xi, t)

Lh is obtained by replacing derivatives present in L with
finite difference quotients

Example in 1D:

If D = [0, L] and L (ψ) = ψ′, then

D = {xi = ih, i = 1, . . .m} with h = ∆x = L/m
Lh(φ)i = (φi+1 − φi−1)/2h
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Shallow Water Equations

Example problem is the so called Shallow Water Equations, small
amplitude wawes in a shallow basin of rest depth H. Given h the
free surface wave amplitude with h� H and g the gravity
acceleration:

∂h

∂t
+H

∂u

∂x
= 0 (11)

∂u

∂t
+ g

∂h

∂x
= 0 (12)
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SWE discretization

∂hi
∂t

+H
ui+1 − ui−1

2∆x
(13)

∂ui
∂t

+ g
hi+1 − hi−1

2∆x
(14)



Atmosphere Models Space Discretization Time Integration RegCM4 parallel implementation

Staggering in 1D

∂hi
∂t

+H
ui+1/2 − ui−1/2

∆x
(15)

∂ui
∂t

+ g
hi+1/2 − hi−1/2

∆x
(16)
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Staggering in 2D

Example of Arakawa B staggering with nesting:

easy to implement

you need to be careful to ensure shape conservation and avoid
spurious wave solutions

tipically not high order accurate

not easy to introduce adaptivity

heavily in Atmospheric Models
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Finite Volumes

Dh = {Ki, i = 1, . . . ,m}, called mesh, is a partition of D in
nonoverlapping control volumes Ki such that D = ∪mi=1Ki and
h = maxi

(
diam(Ki)

)
is a measure of the typical size of the

elements of Dh. The approximated solution is:

φi(t) =
1

|Ki|

∫
Ki

ψ(x, t)dx (17)

They are inherently conservative, very robust, heavily used in
industrial applications, mostly low order accurate (third order or
less), but not used in atmospheric science.
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Flux form and source terms

The original continuous problem is rewritten in divergence
(conservation) form

∂ψ

∂t
+∇ · F(ψ) = S (18)

and integrated over each control volume Ki. By application of
Gauss theorem a set of equations is obtained for the evolution of
the averages φi(t) in terms of their fluxes across the control
volume edges:

dφi
dt

+

∫
∂Ki

F · n̂dσ =

∫
Ki

S dx (19)

these fluxes are not prognostic variables but need to be recovered
by appropriate interpolation procedures from the cell averaged
values (subgrid scale reconstruction).
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Spectral Transform Methods

They are the basis of all Global Circulation Methods.

State Variables are not pointwise quantities, but the
continuous field is written as a linear combination of modes.

The Legendre function of first kind are a natural basis on the
sphere.

ψ(x, t) ≈
N∑

k=1

ak(t)φk(θ, φ) (20)

φk(θ, φ) = cos(mφ)Pm
l (cosθ) (21)

Pm
n (µ) =

√
(2n+ 1)

(n−m)!

(n+m)!

1

2nn!
(1− µ2)

m
2
dn+m

dµn+m
(µ2 − 1) (22)
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Spectral Transform Methods

Finite elements methods with the benefits of of the spectral
transform methods with the locality principal of finite volume
methods. Can be thought of as spectral transform in the element.
Basis function in this case have compact support that can also
jump at inter-element boundaries (discontinous Galerkin).
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Time discretization

The space discretized time continuous solution φi(t), t ∈ [0, tf ]
is approximated by introducing a timestep ∆t = tf/n and a set of
discrete time levels tk = k∆t, k = 0, . . . , n. The choice of ∆t
must comply with numerical CFL stability condition.
Numerical ODE’s methods give the fully discrete approximated
solution:

φki , k = 0, . . . , n; i = 1, . . . ,m (23)

Main approches include:

1 explicit schemes

2 semi-implicit schemes

3 semi-Lagrangian shemes
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Explicit Scheme

The method do not require the solution of a system at each
timestep to update the solution from one discrete time level to the
next: decoupled.
One of the most popular explicit time discretization is the leapfrog.
It is a multistep method (three time levels scheme) derived by
approximating the time derivative by a centered difference
approximation:

φk+1
i − φk−1i

2∆t
= Lh(φk)i (24)

Filters can be applied to remove computational modes from the
solution. Efficiency of simple explicit schemes can be improved
through the ”split-explicit” or ”mode splitting” technique: terms
responsible for the fastest waves motion are treated separately,
using a smaller timestep.
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Semi Implicit Scheme

They usually requires the solution of a system at each timestep to
update the solution from one discrete time level to the next. The
most used is the so called Crank-Nicolson scheme:

φk+1
i − φk−1i

2∆t
= αLh(φk+1)i + (1− α)Lh(φk)i (25)

with α ∈ [0, 1] averaging parameter: stability is guaranteed for
α ∈ [1/2, 1] and second order accuracy for α = 1/2.
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Semi Lagrangian Scheme

SL method is a discretization approach that links the spatial and
time discretization for advection equations. The governing
equations can be written in advective form:

dψ

dt
= L̂ (ψ) (26)

where d/dt = ∂/∂t + u · ∇ is the Lagrangian derivative. The above
can be discretized as:

φk+1
i − φk−1i,∗

dt
= L̂h(φk)i,∗ (27)

where φki,∗ denote an approximation of ψ(x∗, t
k) where x∗ is the

so-called departure point, solution at t = tk of

dX(t, tk+1,xi)

dt
= u∗X(t, tk+1,xi), X(tk+1, tk+1,xi) = x

(28)
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Stencil code

Atmospheric models in their dynamical core are stencil codes:

A class of iterative kernels which update array elements
according to some fixed pattern, called stencil.

Stencil codes perform a sequence of sweeps (called timesteps)
through the simulation space, a 2- or 3-dimensional regular
grid whose elements are referred to as nodes, cells or elements.

In each timestep, the stencil code updates all array elements.

Using neighboring array elements in a fixed pattern (called the
stencil), each cell’s new value is computed.

Boundary values need to be adjusted during the course of the
computation as well.

Since the stencil is the same for each element, the pattern of
data accesses is repeated.
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Ghost Points

The algorithm work on a patch library, which handles the
synchronization of the ghost zone or halo and the boundaries.

The code loops over big arrays, and for this reason usually cannot
perform efficient cache blocking or wrapping of the code for
accelerators.
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RegCM4 2D scheme

do k=1,kz
  do i=ici1,ici2
    do j=jci1,jci2

    end do
  end do
end do

     a(j,i,k)=b(j,i,k)
.....

....

....

 

Optional band case with periodic exchange
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Cartesian Grid

RegCM4 works on a Cartesian 2D Grid

Each processor has a 2D patch of the model domain

Each processor may have exchange of ghost points

Each processor may have boundary value area points
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Cartesian Grid comunication library interface

Different data types up to 4 dimensional

One to all (mpi bcast, mpi send, mpi recv)

call bcast(a)

call grid_distribute(a_glob,a_loc,j1)

call subgrid_distribute(a_glob,a_loc)

All to one (mpi send, mpi recv)

call grid_collect(a_loc,a_glob)

call subgrid_collect(a_loc,a_glob)

Ghost point exchange (mpi irecv, mpi send, mpi wait, mpi sendrecv)

call exchange(a)
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RegCM4 MPI 1D surface masked scheme

.....
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Cartesian To Linear comunication interface

Different data types up to 4 dimensional

type(masked comm), uses mpi scatterv, mpi gatherv

Each processors gives its internal 2D grid, gets 1D land point vector. We
have also the option to order up things on the global grid first.

call c2l_ss(masked_comm,local_matrix,vector)

call c2l_gs(masked_comm,local_matrix,vector)

call glb_c2l_ss(masked_comm,global_matrix,vector)

call glb_c2l_gs(masked_comm,global_matrix,vector)

Each processor gives 1D land point vector, gets its internal 2D grid

call l2c_ss(masked_comm,vector,local_matrix)

call glb_l2c_ss(masked_comm,vector,global_matrix)
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RegCM5

New Non-Hydrostatic, semi-implicit, semi-Lagrangian, p-adaptive
discontinuous Galerkin method dynamical core

Will need new parallel paradigma

Grid element with 3D internal quadrature nodes
Physical 3D Grid ( +1 for tracers, 4D) + 3D QN = 7D
p-adaptive : variable number of QN = Imbalance
All physical schemes do need mean vertical profile
New expected target grid resolution < 10km
Have an extendable Earth System Model

Challenges

Efficient data types which allow load balancing
Efficient I/O interface to accomodate Terabytes of output
Use Coupling paradigm to treat multiple model components

Usage of Cell Based Libraries
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