Localizing RegCM4

G. Giuliani International Centre for Theorethical Physics - Trieste Earth System Physics Section

ICTP - Earth System Physics Section

Advanced School on Regional Climate Modeling over South America February 15-19, 2015

RegCM Namelist File

Fortran Namelist file

NAMELIST provides an excellent way to add annotated input.

```
&nl_name
    key1 = 0,
    key2 = 0.0,
    key3 = 'a string',
    key4 = 1.0,2.0,
/
```

```
program test
implicit none
integer :: key1
real :: key2
character(len=16) :: key3
real , dimension(8) :: key4
namelist /nl_name/ key1,key2,key3,key4
open(unit=200,file='test.namelist', &
status='old',action='read')
read(unit=200,nml=nl_name)
end program test
```


RegCM Namelist File

Dimparam namelist

&dimparam

iy	= 34,	1	This is number of points in the N/S direction
jx	= 48,	1	This is number of points in the E/W direction
kz	= 18,	1	Number of vertical levels
dsmin	= 0.01,	1	Minimum sigma spacing (only used if kz is not 14, 18, or 23)
dsmax	= 0.05,	1	Maximum sigma spacing (only used if kz is not 14, 18, or 23)
nsg	= 1,	1	For subgridding, number of points to decompose. If nsg=1,
		1	no subgridding is performed. CLM does NOT work as of now with
		1	subgridding enabled.
njxcpus	s = -1,	1	Number of CPUS to be used in the jx (lon) dimension.
		1	If <=0 , the executable will try to figure out a suitable
		1	decomposition.
niycpus	s = -1,	1	Number of CPUS to be used in the iy (lat) dimension.
		1	If <=0 , the executable will try to figure out a suitable
		1	decomposition.
,			

/

Geomparam namelist

&geoparam		
<pre>iproj = 'LAMCON',</pre>	1	Domain cartographic projection. Supported values are:
	1	'LAMCON', Lambert conformal.
	!	'POLSTR', Polar stereographic.
	1	'NORMER', Normal Mercator.
	1	'ROTMER', Rotated Mercator.
ds = 60.0,	!	Grid point horizontal resolution in km
ptop = 5.0,	1	Pressure of model top in cbar
clat = 45.39,	!	Central latitude of model domain in degrees
	1	North hemisphere is positive
clon = 13.48,	!	Central longitude of model domain in degrees
	!	West is negative.
plat = 45.39,	1	Pole latitude (only for rotated Mercator Proj)
plon = 13.48,	!	Pole longitude (only for rotated Mercator Proj)
truelatl = 30.0 ,	!	Lambert true latitude (low latitude side)
truelath = 60,	1	Lambert true latitude (high latitude side)
i_band = 0,	!	Use this to enable a tropical band. In this case the ds,
	!	iproj, clat, clon parameters are not considered.
/		

Terrainparam namelist

&terrainparam								
domname = 'AQWA',	! Name of the domain/experiment.							
	! Controls naming of input files							
<pre>smthbdy = .false.,</pre>	! Smoothing Control flag							
•	! true -> Perform extra smoothing in boundaries							
lakedpth = .false.,	! If using lakemod (see below), produce from							
•	! terrain program the domain bathymetry							
ltexture = .false.,	! If using DUST tracers (see below), produce							
	! the domain soil texture dataset							
<pre>lsmoist = .false.,</pre>	! Use Satellite Soil Moisture Dataset for							
	! initialization of soil moisture.							
<pre>fudge_lnd = .false.,</pre>	! Fudging Control flag, for landuse of grid							
<pre>fudge_lnd_s = .false.,</pre>	! Fudging Control flag, for landuse of subgrid							
<pre>fudge_tex = .false.,</pre>	! Fudging Control flag, for texture of grid							
<pre>fudge_tex_s = .false.,</pre>	! Fudging Control flag, for texture of subgrid							
<pre>fudge_lak = .false.,</pre>	! Fudging Control flag, for lake of grid							
<pre>fudge_lak_s = .false.,</pre>	! Fudging Control flag, for lake of subgrid							
h2opct = 50.,	! Surface min H2O percent to be considered water							
h2ohgt = .false.,	Allow water points to have hgt greater than 0							
ismthlev = 1,	! How many times apply the 121 smoothing							
dirter = 'input/',	! Output directory for terrain files							
inpter = 'globdata/',	! Input directory for SURFACE dataset							
<pre>moist_filename = 'moist.nc',</pre>	Read initial moisture and snow from this file							
/								

Globdatparam namelist

&globdatparam	
ibdyfrq = 6, !	boundary condition interval (hours)
ssttyp = 'OI_WK', !	Type of Sea Surface Temperature used
!	One in: GISST, OISST, OI2ST, OI_WK, OI2WK,
!	FV_A2, FV_B2, EH5A2, EH5B1, EHA1B,
!	EIN75, EIN15, ERSST, ERSKT, CCSST,
!	CA_XX, HA_XX, EC_XX, IP_XX, GF_XX,
!	CN_XX, MP_XX
dattyp = 'EIN15', !	Type of global analysis datasets used
!	One in: ECMWF, ERA40, EIN75, EIN15, EIN25,
!	ERAHI, NNRP1, NNRP2, NRP2W, GFS11,
!	FVGCM, FNEST, EH5A2, EH5B1, EHA1B,
!	CCSMN, ECEXY, CA_XX, HA_XX, EC_XX,
!	IP_XX, GF_XX, CN_XX, MP_XX
!	with XX for CMIP5 datasets in 26, 45, 85
chemtyp = 'MZ6HR', !	Type of Global Chemistry boundary conditions
!	One in : MZ6HR, 6 hours MOZART output
!	: MZCLM, MOZART climatology 1999-2009
gdate1 = 1990060100, !	Start date for ICBC data generation
gdate2 = 1990070100, !	End data for ICBC data generation
calendar = 'gregorian', !	Calendar type : gregorian, noleap, 360_day
dirglob = 'input/', !	Path for ICBC produced input files
<pre>inpglob = 'globdata/', !</pre>	Path for ICBC global input datasets.
ensemble_run = .false., !	If this is a member of a perturbed ensemble
!	run. Activate random noise added to input
!	ICBC controlled by the perturbparam stanza
! Look http	://users.ictp.it/~pubregcm/RegCM4/globedat.htm
! on how to	download them.
/	

RegCM Namelist File

Timeparam namelists

&timepa	aram										
dt	=	150.,	1	time	step in sec	conds					
dtrad	=	0.,	. !	time	interval so	lar rad	diatio	n cal	cula	ted (mi	inutes)
dtabem	=	0.,	1	time	interval at	sorptio	on-emi	ssion	cal	culated	d (hours)
dtsrf	=	0.,	. !	time	interval at	which	land	model	is	called	(seconds)
dtcum	=	0.,	. !	time	interval at	which	cumul	s is	call	ed (sec	conds)
dtche	=	900.,	1	time	interval at	which	chem	model	is	called	(seconds)
/											

RegCM Namelist File

Bounsaryparam namelist

&boundaryparam
nspgx = 12, ! nspgx-1 represent the number of cross point slices on
 ! the boundary sponge or relaxation boundary conditions.
nspgd = 12, ! nspgd-1 represent the number of dot point slices on
 ! the boundary sponge or relaxation boundary conditions.
high_nudge = 3.0D0, ! Nudge value high range
now_nudge = 2.0D0, ! Nudge value medium range
low_nudge = 1.0D0 ! Nudge value low range
/// provide the state of the s

Outparam namelist

&outparam	
ifsave = .true. ,	! Create SAV files for restart
savfrq = 0.,	! Frequency in hours to create them (0 = monthly)
ifatm = .true. ,	! Output ATM ?
atmfrq = 6.,	! Frequency in hours to write to ATM
ifrad = .true. ,	! Output RAD ?
radfrq = 6.,	! Frequency in hours to write to RAD
ifsts = .true. ,	! Output STS (frequence is daily) ?
ifsrf = .true. ,	! Output SRF ?
srffrq = 3.,	! Frequency in hours to write to SRF
ifsub = .true. ,	! Output SUB ?
subfrq = 6.,	! Frequency in hours to write to SUB
iflak = .true.,	! Output LAK ?
lakfrq = 6.,	! Frequency in hours to write to LAK
ifchem = .true.,	! Output CHE ?
ifopt = .false.,	! Output OPT ?
chemfrq = 6.,	! Frequency in hours to write to CHE
<pre>enable_atm_vars = 67*.true.,</pre>	! Mask to eventually disable variables ATM
enable_srf_vars = 35*.true.,	! Mask to eventually disable variables SRF
<pre>enable_rad_vars = 25*.true.,</pre>	! Mask to eventually disable variables RAD
<pre>enable_sub_vars = 18*.true.,</pre>	! Mask to eventually disable variables SUB
<pre>enable_sts_vars = 18*.true.,</pre>	! Mask to eventually disable variables STS
<pre>enable_lak_vars = 18*.true.,</pre>	! Mask to eventually disable variables LAK
<pre>enable_opt_vars = 19*.true.,</pre>	! Mask to eventually disable variables OPT
enable_che_vars = 26*.true.,	! Mask to eventually disable variables CHE
dirout = './output',	! Path where all output will be placed
lsync = .false.,	! If sync of output files at every timestep is
	! requested. Note, it has a performance impact.
	! Enabled by default if debug_level > 2
idiag = 0,	! Enable tendency diagnostic output in the ATM
-	! file. NOTE: output file gets HUGE.
/	

Physics namelist(I)

&physicsparam			
iboudy =	5,	1	Lateral Boundary conditions scheme
		1	0 => Fixed
		1	1 => Relaxation, linear technique.
		1	2 => Time-dependent
		1	3 => Time and inflow/outflow dependent.
		1	4 => Sponge (Perkey & Kreitzberg, MWR 1976)
		1	5 => Relaxation, exponential technique.
isladvec =	0,	1	Semilagrangian advection scheme for tracers and
		1	humidity
		1	0 => Disabled
		1	1 => Enable Semi Lagrangian Scheme
ibltyp =	1,	1	Boundary layer scheme
••		1	0 => Frictionless
		1	1 => Holtslag PBL (Holtslag, 1990)
		1	2 => UW PBL (Bretherton and McCaa, 2004)
icup_lnd =	4,	1	Cumulus convection scheme Over Land
icup_ocn =	4,	1	Cumulus convection scheme Over Icean
-		1	1 => Kuo
		1	2 => Grell
		1	3 => Betts-Miller (1986) DOES NOT WORK !!!
		1	4 => Emanuel (1991)
		1	5 => Tiedtke (1996)
		1	6 => Kain-Fritsch (1990), Kain (2004)
igcc =	1,	1	Grell Scheme Cumulus closure scheme
-		1	1 => Arakawa & Schubert (1974)
		1	2 => Fritsch & Chappell (1980)
ipptls =	2,	1	Moisture scheme
		1	1 => Explicit moisture (SUBEX; Pal et al 2000)
		1	2 => Explicit moisture Nogherotto/Tompkins

Physics namelist(II)

iocnflx	=	2,	ŗ.	Ocean Flux scheme
			ŗ.	1 => Use BATS1e Monin-Obukhov
			Į.	2 => Zeng et al (1998)
			Į.	3 => Coare bulk flux algorithm (snowice),
			Į.	only activated with coupling
icumclou	.d =	2,	Į.	Use different models for cumulus clouds
iocncpl	=	0,	Į.	Activates RegCM-ROMS coupled model
			!	0 => no coupling
			!	1 => coupling activated
iwavcpl	-	0,	Į.	Activates Wave coupled model
			!	0 => no coupling
			Į.	1 => coupling activated
iocnro	ugh =	1,	Į.	Zeng Ocean model roughness formula to use.
	-		!	1 => (0.0065*ustar*ustar)/egrav
			Į.	2 => (0.013*ustar*ustar)/egrav + 0.11*visa/ustar
ipgf	=	0,	!	Pressure gradient force scheme
			!	0 => Use full fields
			Į.	1 => Hydrostatic deduction with pert. temperature
iemiss	=	0,	!	Use computed long wave emissivity
lakemod	=	0,	!	Use lake model

RegCM Namelist File

Physics namelist(III)

ichem =	0,	!	Use active aerosol chemical model
scenario =	'AID',	i	RCP Scenario in RCP3PD,RCP4.5,RCP6,RCP8.5
idcsst =	0,	ł	Use diurnal cycle sst scheme
iseaice =	0,	ł	Model seaice effects
idesseas =	0,	1	Model desert seasonal albedo variability
iconvlwp =	0,	ł	Use convective algo for 1wp in the large-scale
icldfrac =	1,	1	Cloud fraction algorithm
		ł	0 : Original SUBEX
		ł	1 : Xu-Randall empirical
irrtm =	0,	ł	Use RRTM radiation scheme instead of CCSM
iclimao3 =	0,	Į.	Use O3 climatic dataset from SPARC CMIP5
isolconst =	1,	1	Use a constant 1367 W/m^2 instead of the prescribed
		ł	TSI recommended CMIP5 solar forcing data.
islab_ocean =	0,	ł	Activate the SLAB ocean model
itweak =	0,	ł	Tweak parameter. Enables modifications in tweakparam.
/			

SUBEX namelist

&subexparam

ncld	=	1,	!	# of bottom model levels with no clouds
qck1land	=	.250E-03,	!	Autoconversion Rate for Land
qck1oce	=	.250E-03,	!	Autoconversion Rate for Ocean
gulland	=	0.4,	!	Fract of Gultepe eqn (qcth) when precip occurs
guloce	=	0.4,	!	Fract of Gultepe eqn (qcth) for ocean
rhmax	=	1.01,	!	RH at whicn FCC = 1.0
rh0oce	=	0.90,	!	Relative humidity threshold for ocean
rh0land	=	0.80,	!	Relative humidity threshold for land
tc0	=	238.0,	!	Below this temperature, rh0 begins to approach unity
cevaplnd	=	.100E-02,	!	Raindrop evap rate coef [[(kg m-2 s-1)-1/2]/s]
cevapoce	=	.100E-02,	!	Raindrop evap rate coef [[(kg m-2 s-1)-1/2]/s]
caccrlnd	=	3.000,	!	Raindrop accretion rate [m3/kg/s]
caccroce	=	3.000,	!	Raindrop accretion rate [m3/kg/s]
cllwcv	=	0.3E-3,	!	Cloud liquid water content for convective precip.
clfrcvmax	=	1.00,	!	Max cloud fractional cover for convective precip.
cftotmax	=	0.75,	!	Max total cover cloud fraction for radiation
conf	=	1.0D0,	!	Condensation threshold
/				

Micro namelist

µparam		
<pre>budget_compute = .false.,</pre>	!	Verify enthalpy and moisture conservation
nssopt = 1,	!	Supersaturation Computation
	!	0 => No scheme
	!	1 => Tompkins
	!	2 => Lohmann and Karcher
	!	3 => Gierens
kautoconv = 4,	!	Choose the autoconversion paramaterization
	!	=> 1 Klein & Pincus (2000)
	!	=> 2 Khairoutdinov and Kogan (2000)
	!	=> 3 Kessler (1969)
	!	=> 4 Sundqvist
ksemi = 1.0D0,	!	Implicit/Explicit control
	!	NOT ACTIVATED YET - IT DOES NOT WORK!
	!	ksemi == 0 => scheme is fully explicit
	!	ksemi == 1 => scheme is fully implicit
	!	O <ksemi<1 ==""> scheme is semi-implicit</ksemi<1>
vqxr = 4.0D0,	!	Rain fall speed (default is 4 m/s)
vqxi = 0.15D0,	!	Ice fall speed (default is 0.15 m/s)
vqxs = 1.0D0,	!	Snow fall speed (default is 1 m/s)
<pre>zauto_rate_khair = 0.355D0,</pre>	!	Autoconversion coefficient for kautoconv=2
<pre>zauto_rate_kessl = 1.D-3,</pre>	!	Autoconversion coefficient for kautoconv=3
<pre>zauto_rate_klepi = 0.5D-3,</pre>	!	Autoconversion coefficient for kautoconv=1
rkconv = 1.666D-4,	!	Autoconversion coefficient for kautoconv=4
<pre>rcovpmin = 0.1D0,</pre>	!	Minimum precipitation coverage
rpecons = 5.547D-5,	!	Evaporation constant Kessler
/		

Grell namelist

&grellparam		
gcr0 = 0.002,	1	Conversion rate from cloud to rain
shrmin = 0.25,	1	Minimum Shear effect on precip eff.
shrmax = 0.50,	1	Maximum Shear effect on precip eff.
edtmin = 0.25,	1	Minimum Precipitation Efficiency
edtmax = 0.50,	1	Maximum Precipitation Efficiency
edtmino = 0.25,	ļ	Minimum Precipitation Efficiency (o var)
edtmaxo = 0.50,	1	Maximum Precipitation Efficiency (o var)
edtminx = 0.25,	1	Minimum Precipitation Efficiency (x var)
edtmaxx = 0.50,	1	Maximum Precipitation Efficiency (x var)
<pre>shrmin_ocn = 0.25,</pre>	1	Minimum Shear effect on precip eff. OCEAN points
<pre>shrmax_ocn = 0.50,</pre>	1	Maximum Shear effect on precip eff.
edtmin_ocn = 0.25,	1	Minimum Precipitation Efficiency
edtmax_ocn = 0.50,	1	Maximum Precipitation Efficiency
edtmino_ocn = 0.25,	1	Minimum Precipitation Efficiency (o var)
edtmaxo_ocn = 0.50,	1	Maximum Precipitation Efficiency (o var)
edtminx_ocn = 0.25,	1	Minimum Precipitation Efficiency (x var)
edtmaxx_ocn = 0.50,	1	Maximum Precipitation Efficiency (x var)
pbcmax = 150.0,	1	Max depth (mb) of stable layer b/twn LCL & LFC
mincld = 150.0,	1	Min cloud depth (mb).
htmin = -250.0,	1	Min convective heating
htmax = 500.0,	1	Max convective heating
skbmax = 0.4,	1	Max cloud base height in sigma
dtauc = 30.0,	1	Fritsch & Chappell (1980) ABE Removal Timescale (min)
/		

MIT namelist

```
&emanparam
minsig = 0.95,
                    ! Lowest sigma level from which convection can originate
elcrit_ocn = 0.0011, ! Autoconversion threshold water content (g/g) over ocean
elcrit_lnd = 0.0011, ! Autoconversion threshold water content (g/g) over land
tlcrit = -55.0.
                    ! Below tlcrit auto-conversion threshold is zero
entp = 1.5,
                    ! Coefficient of mixing in the entrainment formulation
                    ! Fractional area covered by unsaturated dndraft
sigd = 0.05,
sigs = 0.12.
                    ! Fraction of precipitation falling outside of cloud
omtrain = 50.0.
                    ! Fall speed of rain (Pa/s)
omtsnow = 5.5,
                    ! Fall speed of snow (Pa/s)
                     ! Coefficient governing the rate of rain evaporation
coeffr = 1.0.
coeffs = 0.8.
                     ! Coefficient governing the rate of snow evaporation
cu = 0.7,
                     ! Coefficient governing convective momentum transport
                     ! Controls downdraft velocity scale
betae = 10.0,
dtmax = 0.9.
                    ! Max negative parcel temperature perturbation below LFC
                     ! Controls the approach rate to guasi-equilibrium
alphae = 0.2,
damp = 0.1,
                    ! Controls the approach rate to guasi-equilibrium
epmax_ocn = 0.999,
                    ! Maximum precipitation efficiency (ocean)
epmax_lnd = 0.999,
                    ! Maximum precipitation efficiency (land)
```


Tiedtke namelist

&tiedtkeparam

*		
iconv = 4,	1	Actual used scheme.
entrmax = 1.75D-3,	1	Max entrainment iconv=[1,2,3]
entrdd = 3.0D-4,	1	Entrainment rate for cumulus downdrafts
entrpen = 1.75D-3,	1	Entrainment rate for penetrative convection
entrscv = 3.0D-4,	1	Entrainment rate for shallow convection iconv=[1,2,3]
entrmid = 1.0D-4,	1	Entrainment rate for midlevel convection iconv=[1,2,3]
cprcon = 1.0D-4,	1	Coefficient for determining conversion iconv=[1,2,3]
detrpen = 0.75D-4,	1	Detrainment rate for penetrative convection iconv=4
entshalp = 2.0D0,	1	shallow entrainment factor for entrorg iconv=4
rcuc_1nd = 0.05D0,	1	Convective cloud cover for rain evporation iconv=4
rcuc_ocn = 0.05D0,	1	Convective cloud cover for rain evporation iconv=4
rcpec_1nd = 5.55D-5,	1	Coefficient for rain evaporation below cloud iconv=4
$rcpec_ocn = 5.55D-5$,	1	Coefficient for rain evaporation below cloud iconv=4
rhebc_lnd = 0.7D0,	1	Critical rh below cloud for evaporation iconv=4
rhebc_ocn = 0.9D0,	1	Critical rh below cloud for evaporation iconv=4
$rprc_lnd = 1.4D-3$,	1	conversion coefficient from cloud water iconv=4
rprc_ocn = 1.4D-3,	1	conversion coefficient from cloud water iconv=4
/		

RegCM Namelist File

Kain Fritsch namelist

&kfparam
kf_entrate = 0.03D0, ! Entrainment rate
kf_min_pef = 0.2D0, ! Minimum precipitation efficiency
kf_max_pef = 0.9D0, ! Maximum precipitation efficiency
kf_dpp = 150.0D0, ! Start elevation for downdraft above cloud base (mb)
kf_min_itcape = 1800.0D0 ! Consumption time of CAPE low limit
kf_max_dtcape = 3600.0D0 ! Consumption time of CAPE high limit
kf_tkemax = 5.0D0 ! Maximum turbolent kinetic energy in sub cloud layer
/

PBL namelists

```
&holtslagparam
ricr_ocn = 0.25D0, ! Critical Richardson Number over Ocean
ricr lnd = 0.25D0. ! Critical Richardson Number over Land
zhnew_fac = 0.25D0, ! Multiplicative factor for zzhnew in holtpbl
&uwparam
iuwvadv = 0.
                 ! 0=standard T/QV/QC advection, 1=GB01-stvle advection
                 ! 1 is ideal for MSc simulation, but may have stability issues
                 ! Efficiency of enhancement of entrainment by cloud evap.
atwo = 15.0D0,
                   see Grenier and Bretherton (2001) Mon. Wea. Rev.
                 ! and Bretherton and Park (2009) J. Clim.
rstbl = 1.5D0,
               ! Scaling parameter for stable boundary layer eddy length
                 ! scale. Higher values mean stronger mixing in stable
                 ! conditions
czero = 5.869D0, ! Czero constant in UW PBL (eqn 44a and pgs 856-857)
               ! Multiplication coefficient for kethl used also
nuk = 5.0D0.
                 ! in diffusion of TKE to avoid eccesive stability
/
```


RegCM Namelist File

SLAB Ocean namelist

RRTM namelist

&rrtmparam		
inflgsw = 2,	1	<pre>0 = use the optical properties calculated in prep_dat_rrtm</pre>
	1	(same as standard radiation)
	1	2 = use RRTM option to calculate cloud optical properties
	1	from water path and cloud drop radius
iceflgsw = 3,	1	Flag for ice particle specification
	1	0 => ice effective radius, r_ec, (Ebert and Curry, 1992),
	1	r_ec must be >= 10.0 microns
	-!	1 => ice effective radius, r_ec, (Ebert and Curry, 1992),
	1	r_ec range is limited to 13.0 to 130.0 microns
	1	2 => ice effective radius, r_k, (Key, Streamer Ref. Manual,
	1	1996), r_k range is limited to 5.0 to 131.0 microns
	1	3 => generalized effective size, dge, (Fu, 1996),
	- !	dge range is limited to 5.0 to 140.0 microns
	- !	[dge = 1.0315 * r_ec]
<pre>liqflgsw = 1,</pre>	!	Flag for liquid droplet specification
	-!	0 => Compute the optical depths due to water clouds in ATM
	1	(currently not supported)
	1	1 => The water droplet effective radius (microns) is input
	1	and the optical depths due to water clouds are computed
	1	as in Hu and Stamnes, J., Clim., 6, 728-742, (1993).
inflglw = 2,	1	Flag for cloud optical properties as above but for LW
<pre>iceflglw = 3,</pre>	1	Flag for ice particle specification as above but for LW
liqflglw = 1,	!	Flag for liquid droplet specification as above but for LW
icld = 1,	1	Cloud Overlap hypothesis
irng = 1, /	!	mersenne twister random generator for McICA COH

Chem namelist(I)

&chemparam	
chemsimtype = '	CBMZ ', ! Which chemical tracers to be activated.
	! One in :
	! DUST : Activate 4 dust bins scheme
	! SSLT : Activate 2 bins Sea salt scheme
	! DUSS : Activate DUST + SSLT
	! DU12 : Activate 12 dust bins scheme
	! CARB : Activate 4 species black/anthropic
	! carbon simulations
	! SULF : Activate SO2 and SO4 tracers
	! SUCA : Activate both SUKF and CARB
	! AERO : Activate all DUST, SSLT, CARB and SULF
	! CBMZ : Activate gas phase and sulfate
	! DCCB : Activate CBMZ +DUST +CARB
	! POLLEN : Activate POLLEN transport scheme
ichsolver = 1,	! Activate the chemical solver
ichsursrc = 1,	! Enable the emissions
ichdrdepo = 1,	! 1 = enable tracer surface dry deposition. For dust,
	! it is calculated by a size settling and dry
	! deposition scheme. For other aerosol, a dry
	! deposition velocity is simply prescribed further.
ichebdy = 1,	! Enable boundary conditions read
ichcumtra = 1,	! 1 = enable tracer convective transport and mixing.
ichremlsc = 1,	! 1 = wet removal of chemical species (washout and rainout
	! by total rain) is enabled
ichremcvc = 1,	! 1 = wet removal of chemical species (washout and rainout
	! by convective rain) is enabled

RegCM Namelist File

Chem namelist(II)

ichdustemd = 1,	! Choice for parametrisation of dust emission size distribution ! 1 = use the standard scheme (Alfaro et al., Zakey et al.)
	! 2 = use the the revised soil granulometry + Kok et al., 2011
ichdiag = 0,	! 1 = enable writing of additional diagnostics in the output
idirect = 1,	! Choice to enable or not aerosol feedbacks on radiation and
	! dynamics (aerosol direct and semi direct effcts):
	! 1 = no coupling to dynamic and thermodynamic. However
	! the clear sky surface and top of atmosphere
	! aerosol radiative forcings are diagnosed.
	<pre>! 2 = allows aerosol feedbacks on radiative,</pre>
	! thermodynamic and dynamic fields.
<pre>iindirect = 0,</pre>	! Enable sulfate indirect effect in radiation scheme
rdstemfac = 1.0,	! Aerosol correction factor (Laurent et al, 2008)
ichjphcld = 1,	! Impact of cloud aod on photolysis coef
ichbion = 0, /	1 ?????????????????????????????????????

CLM 3.5 namelist

&clmparam	
dirclm = 'input	/', ! CLM path to Input data produced by clm2rcm. If
	! relative, It should be how to reach the Input dir
	! from the Run dir.
clmfrq = 12.,	! Frequency for CLM own output write
imask = 1,	! For CLM, Type of land surface parameterization
	! 1 => using DOMAIN.INFO for landmask (same as BATS)
	<pre>! 2 => using mksrf_navyoro file landfraction for</pre>
	! landmask and perform a weighted average over
	<pre>! ocean/land gridcells; for example:</pre>
	<pre>! tgb = tgb_ocean*(1-landfraction)+tgb_land*landfraction</pre>
/	

RegCM Namelist File

CLM 4.5 namelist

```
&clm_inparm
fpftcon = 'pft-physiology.c130503.nc',
fsnowoptics = 'snicar_optics_5bnd_c090915.nc',
fsnowaging = 'snicar_drdt_bst_fit_60_c070416.nc',
/
&clm_soilhydrology_inparm
h2osfcflag = 1,
origflag = 0,
/
&clm_hydrology1_inparm
oldfflag = 0,
/
```


Tweaking namelist

```
&tweakparam
itweak_sst = 0,
                         ! Enable adding sst_tweak to input TS
itweak_temperature = 0, ! Enable adding temperature_tweak to input T
itweak_solar_irradiance = 0, ! Add solar_tweak to solar constant
itweak_greenhouse_gases = 0, ! Multiply gas_tweak_factors to GG concentrations
sst tweak = 0.0D0.
                         ! In K
temperature tweak = 0.0D0. ! In K
gas_tweak_factors = 1.0D0, 1.0D0 , 1.0D0 , 1.0D0 , 1.0D0,
                 C02
                       CH4
                              N20
                                     CFC11
                                            CFC12
н
1
```

