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Abstract. Simple notes on special relativistic fluids in 2D

1. Introduction

We consider special relativistic hydrodynamics in 2D. We concentrate on a
perfect fluid with stress energy tensor : Tab = pηab + (e + p)uaub satisfying the
conformal fluid, thus

(1.1) T a
a = 0 → e = −2p

The hydrodynamic equations ∂aT ab = 0, determine the evolution of the system.
With a goal of studying this system numerically, we express the stress energy com-
ponents as
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where we have defined (the inverse of the Lorentz factor) W =
√

1− vivi and
introduced the fields D and Si to express the system in conservation form,

∂tD + ∂iS
i = 0(1.5)

∂tS
i + ∂j(eδij + Sivj) = 0(1.6)

Such a form is convenient for a numerical implementation. As a result one hast
two sets of variables, the conservative variables U ≡ (D, Si) and primitive variables
P ≡ (e, vi).

1.1. Conservative to primitive transformation. Going from P → U is straight-
forward, the inverse is only slightly involved. This transformation is achieved by
first noting that,

(1.7) SiSi/D2 = 9(1−W 2)/(3−W 2)2

Thus, defining Ξ ≡ SiSi/D2, and solving the quadratic equation above, one obtains:
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With this, the primitive variables are obtained trivially
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Figure 1. e at t = 8104.).

1.2. Initial data. We set up an initial configuration defined by e = 1, vy = 0 and
vx = κsin(2π/Ly) in the torus [0, L] × [0, L]. We adopt κ = 0.1 and evolve the
system with L = 10. After some transient behavior, an interesting pattern develops,
figure 1 illustrates the primitive variables e after 8 103 light crossing times.


