

ICTPInternational Centre for Theoretical PhysicsSAIFRSouth American Institute for Fundamental Research

	1st week						
	Monday, 13	Tuesday, 14	Wednesday, 15	Thursday, 16	Friday, 17	Saturday, 18	
8.30-9.00am	Degistration						
9.00-9.30am	Registration		1.02	FB2			
9:30-10am	Welcome		LD2				
10-11am	CF1	AL2 (at 10:30)	RE2	FT1	FT3	Tal Danino	
11-12am	CF2	LB1 (at 11:30)	FB1	FB3	SP3		
12-2pm	lunch	lunch (at 12:30)	lunch	lunch	lunch		
2-3pm	CF3	RE1	IFT- Colloquium	SP2	Posters		
3-4pm	AL1	SP1	LDO	FT2			
4-4:30	coffee	coffee	LD3	coffee	coffee	coffee	
				PD +	PD +	Study	
4:30-6pm	PD AL3 PD	AL3 & PD (at	PD	lab FB/SP	lab FB/SP	hours	
6-7pm	Study hours	5:30)	Study hours	Study hours	Study hours		

1) Students are expected to deliver their reports and home-works from the first week before the GP.

2) T	he lectures on	Monday (March	13) and	Tuesday	(March	14) morning	wil be	e at	the
		NCC Au	ditorium	(Ground	floor)				

	2nd week					
	Monday, 20	Tuesday, 21	Wednesday, 22	Thursday, 23	Friday, 24	
9-10am	RE3					
10-11am	RE4	JK2	FD1	FD2	AR2	
11-12am	GP-Week1	HG2	AR1	Greg1	Greg2	
12-2pm	lunch	lunch	lunch	lunch	lunch	
2-3pm	Opening & JK1	GW	IFT- Colloquium	GW	AR3- FD3	
3-4pm	HG1	GW	Discussion	GW	GP-AR	
4-4:30	coffee	coffee	coffee	coffee	coffee	
4:30-6pm	GW	GP-JK	GP-HG	GP-FD	GP- Greg	
6 - 7 pm	PD	PD	PD	Posters	Closing	

Students are expected to deliver individual reports/home-works of materials presented up to Thursday at lunch time on Friday.

PD: Project discussion (a group of students meet with one Lecturer to discuss their own projects and/or make specific questions)

GP: Groups presentations (students summarize the PD sections. One short presentation per group - 10-15 minutes)

GW: group (or individual) study of materials

First Week

LAB (with FB and SP)

Shaker Chuck Farah (CF)

CF1: Protein structure basics

CF2: Protein structure determination methods

CF3: The diverse world of proteins

Aatto Laaksonen (AL)

AL 1: Statistical Mechanics of soft and biological matter and modern computer modeling and simulation techniques

AL 2: Multi-scale computer simulations of structure and dynamics in canonical and noncanonical DNA. Modeling of DNA in chromatin.

AL 3: Coarse-grained simulations of structure and dynamics circular DNA. The effects from electrostatic interactions and importance of large cut-offs

Leandro Barbosa (LB)

LB 1: Theoretical bases of Small-Angle Scattering

LB 2: Examples of Soft Matter interaction evidenced by SAXS

LB 3: Using SAXS to probe protein-protein and protein-membrane interaction

Ralf Eichhorn (RE)

RE 1: Brownian motion and diffusion

RE 2: The electric double layer

RE 3: Motion in an electric field: Helmholtz-Smoluchowski equation

RE 4: General phoretic transport phenomena

Fernando Luís Barroso da Silva (FB)

FB 1: Basic physical chemistry: measuring electrostatic properties in biomolecular systems

FB 2: Historical models and constant-pH computational methods

FB 3: Protein complexation, application in (bio)nanotechnological system and their peculiar physics

Samuela Pasquali (SP)

SP 1: DNA and RNA presentation and coarse-grained modeling challenges

SP 2: Empirical force fields

SP 3: HiRE-RNA + electrostatics

Frederico W. Tavares (FT)

FT 1: Classical Poisson-Boltzmann equation and DLVO Theory. Thermodynamics properties related to ion specificity, Hofmeister effects, size and electrostatic correlations.

FT 2: Introduction to Classical Density Functional Theory. Modified Poisson-Boltzmann equation.

FT 3: Application to protein adsorption and micellization as a function of ion concentration, pH, ion type, and temperature.

Second Week

Fernando Duda (FD)

Stimuli-responsive hydrogels

Ana Ribeiro (AR)

A biomimetic approach: from tissue regeneration to nanotoxicological models

Hermes Gadelha (HG)

Cell biology and its mathematical tales, from the cell's movement to its physiology

Greg Huber (Greg)

Terasaki Ramps: A Glimpse into the Geometrical Architecture of the Cell

Jair Koiller (JK)

A gentle introduction to the mathematics of microswimming