

# ICTPInternational Centre for Theoretical PhysicsSAIFRSouth American Institute for Fundamental Research

|             | 1st week           |                                                  |                    |                                |                |                 |  |
|-------------|--------------------|--------------------------------------------------|--------------------|--------------------------------|----------------|-----------------|--|
|             | Monday, 13         | Tuesday,<br>14                                   | Wednesday,<br>15   | Thursday,<br>16                | Friday,<br>17  | Saturday,<br>18 |  |
| 8.30-9.00am | Devietnetien       |                                                  |                    |                                |                |                 |  |
| 9.00-9.30am | Registration       |                                                  | Study hours        | nours SP2                      |                |                 |  |
| 9:30-10am   | Welcome            |                                                  | Study Hours        |                                |                |                 |  |
| 10-11am     | CF1                | AL2 (at<br>10:30)                                | Study hours        | FT1                            | FT3            | Tal<br>Danino   |  |
| 11-12am     | CF2                | LB1 (at<br>11:30)                                | Study nours        | FB3                            | SP3            |                 |  |
| 12-2pm      | lunch              | lunch (at<br>12:30)                              | lunch              | lunch                          | lunch          |                 |  |
| 2-3pm       | <u>CF3 (video)</u> | <u>RE1 (at</u><br><u>2:30)</u><br><u>(video)</u> | IFT-<br>Colloquium | LB2                            | Posters        |                 |  |
| 3-4pm       | AL1                | SP1 (at<br>3:30)                                 | RE2 (at            | LB3                            |                |                 |  |
| 4-4:30      | coffee             | coffee (at<br>5:00)                              | 3:30)              | coffee                         | coffee         | coffee          |  |
| 4:30-6pm    | PD                 | AL3 (at<br>5:30) & PD<br>(at 6:30)               | FB1 (at<br>4:30)   | FT2                            |                | Study<br>hours  |  |
| 6-7pm       | Study hours        |                                                  | FB2 (at<br>5:30)   | PD +<br>lab FB/SP<br>(at 5:30) | Study<br>hours |                 |  |

## 1) Students are expected to deliver their reports and home-works from the first week before the GP.

|          | 2nd week         |                |                    |                 |               |  |  |  |
|----------|------------------|----------------|--------------------|-----------------|---------------|--|--|--|
|          | Monday, 20       | Tuesday,<br>21 | Wednesday,<br>22   | Thursday,<br>23 | Friday,<br>24 |  |  |  |
| 9-10am   | RE3              |                |                    |                 |               |  |  |  |
| 10-11am  | RE4              | JK1            | FD1                | FD2             | AR2           |  |  |  |
| 11-12am  | GP-Week1         | JK2            | AR1                | Greg1           | Greg2         |  |  |  |
| 12-2pm   | lunch            | lunch          | lunch              | lunch           | lunch         |  |  |  |
| 2-3pm    | Opening &<br>HG1 | GW             | IFT-<br>Colloquium | GW              | AR3-<br>FD3   |  |  |  |
| 3-4pm    | HG2              | GW             | Discussion         | GW              | GP-AR         |  |  |  |
| 4-4:30   | coffee           | coffee         | coffee             | coffee          | coffee        |  |  |  |
| 4:30-6pm | GW               | GP-HG          | GP-JK              | GP-FD           | GP-<br>Greg   |  |  |  |
| 6 - 7 pm | PD               | PD             | PD                 | Posters         | Closing       |  |  |  |



Students are expected to deliver individual reports/home-works of materials presented up to Thursday at lunch time on Friday.

PD: Project discussion (a group of students meet with one Lecturer to discuss their own projects and/or make specific questions)

GP: Groups presentations (students summarize the PD sections. One short presentation per group - 10-15 minutes)

GW: group (or individual) study of materials

## First Week

LAB (with FB and SP)

Shaker Chuck Farah (CF)

CF1: Protein structure basics

CF2: Protein structure determination methods

CF3: The diverse world of proteins

## Aatto Laaksonen (AL)

AL 1: Statistical Mechanics of soft and biological matter and modern computer modeling and simulation techniques

AL 2: Multi-scale computer simulations of structure and dynamics in canonical and non-canonical DNA. Modeling of DNA in chromatin.

AL 3: Coarse-grained simulations of structure and dynamics circular DNA. The effects from electrostatic interactions and importance of large cut-offs

## Leandro Barbosa (LB)

LB 1: Theoretical bases of Small-Angle Scattering

LB 2: Examples of Soft Matter interaction evidenced by SAXS

LB 3: Using SAXS to probe protein-protein and protein-membrane interaction

## Ralf Eichhorn (RE)

RE 1: Brownian motion and diffusion

RE 2: The electric double layer

RE 3: Motion in an electric field: Helmholtz-Smoluchowski equation

RE 4: General phoretic transport phenomena

## Fernando Luís Barroso da Silva (FB)

FB 1: Basic physical chemistry: measuring electrostatic properties in biomolecular systems

FB 2: Historical models and constant-pH computational methods

FB 3: Protein complexation, application in (bio)nanotechnological system and their peculiar physics

## Samuela Pasquali (SP)

SP 1: DNA and RNA presentation and coarse-grained modeling challenges

SP 2: Empirical force fields

SP 3: HiRE-RNA + electrostatics



#### Frederico W. Tavares (FT)

FT 1: Classical Poisson-Boltzmann equation and DLVO Theory. Thermodynamics properties related to ion specificity, Hofmeister effects, size and electrostatic correlations.

FT 2: Introduction to Classical Density Functional Theory. Modified Poisson-Boltzmann equation.

FT 3: Application to protein adsorption and micellization as a function of ion concentration, pH, ion type, and temperature.

#### Second Week

Fernando Duda (FD)

Stimuli-responsive hydrogels

#### Ana Ribeiro (AR)

A biomimetic approach: from tissue regeneration to nanotoxicological models

#### Hermes Gadelha (HG)

Cell biology and its mathematical tales, from the cell's movement to its physiology

#### Greg Huber (Greg)

Terasaki Ramps: A Glimpse into the Geometrical Architecture of the Cell

#### Jair Koiller (JK)

A gentle introduction to the mathematics of microswimming