
Exercise: Evolution of Small Two-Fluid Perturbations

All structure in the Universe is thought to arise by gravitational collapse from the tiny �uctuations we

see in the CMB. We will in this Exercise study how such density �uctuations grow in an expanding

Universe.

The �uid equations in an expanding universe

Eulerian perturbation theory considers itself with solving equations for perturbations around the mean

density of the Universe. This is done in a coordinate frame that is �xed in the Universe (either expanding

or co-moving with the expansion) so that the �uid of dark matter and baryons has a non-zero velocity

with which it moves. We �rst write down the standard equations for a �uid with density ρ and velocity

u in coordinates co-moving with the expansion of the universe. These are

∂ρ

∂t
+ a−1∇(ρu) = 0 (1)

∂u

∂t
+ a−1u · ∇u +Hu = −a−1∇P − a−1∇φ (2)

a−2∇2φ = 4πG (ρ− ρ̄) . (3)

While they may look rather complicated, they are actually quite simple. The �rst equation is just the

continuity equation, rewritten for an expanding universe. The second is the Euler equation including

the Hubble drag that slows down peculiar velocities (Hu), with a pressure term on the right hand

side as well as the gravitational force. The third is simply Poisson’s equation that couples the density

�uctuations to potential �uctuations. Since the mean density is accounted for already in the evolution

of the homogeneous background, which is described by the Friedmann equation(s), we have to subtract

it out for the (Newtonian) potential perturbations around the mean expanding universe.

Looking at small perturbations

The next step to make this analytically tractable is to consider �uctuations only, i.e. let’s write

ρ ≡ ρ̄ (1 + δ) , u = ū + v, (4)

where we consider both δ and v to be small. Note that in the co-moving frame, the gradients and

time derivatives of the mean quantities will vanish! Also, we are free to choose ū = 0 without loss of

generality. If we insert them into the full set of equations, we �nd

∂δ

∂t
+ a−1∇ ((1 + δ)v) = 0 (5)

∂v

∂t
+ a−1v · ∇v +Hv = −a−1∇P − a−1∇φ (6)

a−2∇2φ = 4πGρ̄δ (7)

Let’s now use that ρ̄ = Ωma
−3ρc = a−3Ωm3H2

0/8πG and let’s only keep terms that are linear in the

perturbation variables (if δ and v are small, any of their products will be much smaller). We shall also

1

make use of the fact that ∇P = ∂P
∂ρ∇ρ = c2s , where cs is the speed of sound. Then we �nd

∂δ

∂t
+ a−1∇ · v = 0 (8)

∂v

∂t
+Hv = −c

2
s

a
∇δ − 1

a
∇φ (9)

∇2φ =
3

2
H2

0 Ωma
−1δ (10)

Note that the advection term for the velocities has completely dropped out. We are left with a set of

coupled linear partial di�erential equations. This does not look so much better than the set of coupled

nonlinear partial di�erential equations that we started out with, but it is!

Linear partial di�erential equations become ordinary ones in Fourier space

The key is that the equations are now linear. For a linear partial di�erential equations, themethod of choice
for their solution is Fourier transformation! This is because Fourier transformation turns di�erential

operators into multiplications.

To see this, let’s consider the Fourier representation of a function f(x)

f(x) =
1√
2π

∫ +∞

−∞
f̂(k) exp [ikx] dk (11)

∂

∂x
f(x) =

1√
2π

∫ +∞

−∞
f̂(k)

∂

∂x
exp [ikx] dk =

1√
2π

∫ +∞

−∞
ikf̂(k) exp [ikx] dk, (12)

i.e. the pair f(x) ↔ f̂(k) becomes the pair ∂xf(x) ↔ ikf̂(k). This means that if we Fourier trans-

form our set of linear partial di�erential equations, it will become a set of linear ordinary di�erential

equations! Let’s do that:

∂δ̂

∂t
+ a−1ik · v̂ = 0 (13)

∂v̂

∂t
+Hv̂ = −c

2
s

a
ikδ̂ − 1

a
ikφ̂ (14)

−k2φ̂ =
3

2
H2

0 Ωma
−1δ̂. (15)

We see that we can express everything in terms of the velocity divergence θ = ∇ · v, θ̂ = ik · v̂ by

multiplying the second equation by ik to �nd

δ̇ = −a−1θ (16)

θ̇ +Hθ = θ̇ −Haδ̇ =
c2s
a
k2δ − 3

2
H2

0 Ωma
−2δ, (17)

where we have omitted the hat for Fourier transforms now. Taking the second time derivative of the

�rst equation yields

δ̈ = −a−1θ̇ +Ha−1θ = −a−1θ̇ −Hδ̇. (18)

2

Putting it all together

We see that we can combine our results into one single equation

δ̈ + 2Hδ̇ +

(
k2 c

2
s

a2
− 3H2

0 Ωm
2a3

)
δ = 0 (19)

Since this equation is an ordinary di�erential equation in time only, it will allow us to separate time and

spatial parts as δ(x, t) = D(t)δ(x, t0), which is a feature of such linear partial di�erential equations.

We call the functionD(t) the (linear) growth factor. Note that this equation embodies the Jeans stability

criterion! Depending on the sign of the term in brackets in the last equation, the solution will be either

growing or oscillating in time. We see that there is a critical wave number kJ which separates these

two regimes given by

kJ = a−1 3H2
0 Ωm

2c2s
. (20)

In the case of dark matter, cs = 0, so that there are no oscillating solutions. One can show that in that

case (and assuming one can neglect the radiation component Ωr), the growth factor takes the form:

D(a) ∝ H(a)

H0

∫ a

0

[
Ωma

′−1 + ΩΛa
′2 + (1− Ωm − ΩΛ)

]−3/2
da′, (21)

and one usually choosesD(t0) = 1 at the present time. In the presence of radiation, the full di�erential

equation for D has to be solved.

Exercise 1 (Simple) Integrate numerically the equation for the growth factor, eq. (21), and plot the solu-
tions for various choices of Ωm and ΩΛ. Show that D(a) = a for Ωm = 1,ΩΛ = 0.

Exercise 2 Re-derive similarly to what we did above, from the full nonlinear �uid equations, the linearised
equations for the evolution of a �uid of dark matter and baryons, coupled through gravity. The linearised
equations are

∂δc
∂t

= −a−1∇ · vc (22)

∂δb
∂t

= −a−1∇ · vb (23)

∂vc
∂t

= −a−1∇φ−Hvc (24)

∂vb
∂t

= −a−1∇φ−Hvb −
c2s
a
∇δb (25)

a−2∇2φ = 4πGρ̄(fbδb + fcδc), (26)

where fb = Ωb/Ωm and fc = 1 − fb are the baryon fraction and cold dark matter fraction. Write a
program in Python that shows the transfer function Tc(t) = δc(t)/δc(0), Tb(t) = δb(t)/δb(0) for various
times. Choose appropriate initial conditions yourself. If you want to get fully realistic, the sound speed in
the gas is

cs =

√
γkTb
µmH

, (27)

3

where γ = 5/3 for an ideal monoatomic gas, µ = 1.22 is the mean molecular weight of a neutral gas
assuming a Helium fraction of 24 per cent, mH is the mass of the hydrogen atom, and Tb is the kinetic
temperature of the baryons. The latter can be approximated from more involved calculations as roughly

Tb(a) =
2.726 K

a

[
1 +

119a

1 + (115a)−3/2

]−1

. (28)

Based on numerical experiments, investigate (1) what is the e�ect of a higher baryon fraction on δc(k) and
δb(k), (2) what is the e�ect of the sound speed after recombination, (3) what changes if you change the
redshift of recombination, (4) describe how the baryon bias δb(k)/δc(k) evolves over time before and after
recombination, and (5) can you identify features seen in the CMB spectrum from Figure ?? in the baryon
spectrum Pb = δ2

b (k)?

Note that while this exercise shows the emergence of the baryon acoustic oscillation (BAO) in the gravita-
tionally coupled �uid of dark matter and baryons, many important e�ects are not included, most notably
the relativistic e�ect of di�erent growth rates of perturbations that are larger/smaller than the horizon.

Hints for this Exercise:
The skeleton of a Python program that numerically integrates the coupled ODEs is given below. You just
have to �ll in the actual equations and get it to run.

Hints: Structure of the program

This section provides a skeleton for the time integration of the gravitationally coupled dark matter and

baryonic �uid through recombination from Exercise 2. We will use the following Python packages,

most of them as usual

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.integrate import quad

4 from scipy.integrate import odeint

5 from scipy.integrate import ode

6 from scipy.special import erf,erfc

Next we de�ne the usual constants, in addition the baryon fraction fb = Ωb/Ωm and the cold dark

matter fraction fc = 1− fb.
1 H0 = 70.0

2 Omegab = 0.045

3 Omegam = 0.3

4 Omegal = 0.7

5 Omegar = 8e-5

6 fb = Omegab/Omegam # baryon fraction

7 fc = 1.0-fb # CDM fraction

The more involved bit is that we need to model the recombination of the plasma and the evolution of

the baryon sound speed in some crude way. We assume that prior to recombination, the baryons are

tightly coupled to the photons and that the sound speed is cs = c/3. After recombination, we will use

the �tting formula given in the exercise to estimate the baryon temperature, and calculate the sound

4

speed from it (we will make this value arti�cially 20× larger in order to have the e�ect on larger scales).

Then, we can either assume instantaneous recombination at a = 10−3
, or spread it out arti�cially thus

mocking that it is not instantaneous. The two functions for slow and fast recombination are just that.

Altogether we thus have something like

1 def T_baryon(a):

2 # parameterisation of baryon temperature from Tseliakhovich & Hirata 2010

3 return 2.726/a/(1+119.*a/(1.0+(115.*a)**-1.5))

4

5 def slow_recombination(a, c1, c2):

6 f = 0.5*(1.0-erf((np.log10(a)+3)*16))

7 return f*c1 + (1.0-f)*c2

8

9 def fast_recombination(a, c1, c2):

10 if a<1e-3:

11 return c1

12 else:

13 return c2

14

15 def sound_speed(a):

16 c1 = clight/3.0

17 c0_squared = 0.0112764987

18 # for illustration, make post-recomb c_s 20 times larger!!

19 c2 = np.sqrt(c0_squared*T_baryon(a)) * 20.0

20 cs = slow_recombination(a,c1,c2)

21 return cs

We will use the scipy function odeint to integrate the ordinary di�erential equations. It will take

an array of variables u[...] describing the current state vector. We will store in it all �elds that we

want to evolve in time, i.e. we set u = (δc, δb, θc, θb). The set of coupled ordinary di�erential equations

then takes the form du/da = F (u, a) and we will also have to provide the function F taking the right

hand side of the di�erential equations, which is why we will call this function RHS. We will need only

one additional parameter (all constants we have as global variables), the wave number k that we want

to evolve. The function RHS then has the form

1 ###

2 # the RHS of the coupled equations of baryons and dark matter

3 # u[0] = delta_c

4 # u[1] = delta_b

5 # u[2] = theta_c

6 # u[3] = theta_b

7 def RHS(u,a,param):

8 k = param[0]

9 du = np.zeros_like(u) # make du the same shape as u

10 H = Hubble_a(a) # we will need H(a), so calculate it

11 cs = sound_speed(a) # we will also need the sound speed at a, so get it

12

13 du[0] = ... # RHS for d delta_c / da

14 du[1] = ... # RHS for d delta_b / da

15 du[2] = ... # RHS for d theta_c / da

16 du[3] = ... # RHS for d theta_b / da

17 return du

5

and returns the vector du containing the right-hand-sides of the ODEs. The last thing we will need is to

set up initial conditions, and write the actual loop over the range of wave numbers k for which we want

to evolve u. For the initial conditions, we will simply set δc(t0) = 1, δb(t0) = θc(t0) = θb(t0) = 0,

we choose to start at a = 10−10
and evolve to some a = astop that we can adjust as we like. For

the wave numbers, we will choose 200 values logarithmically spaced 10−3 ≤ k ·Mpc ≤ 10. We get

something like this

1 ainit=1e-10 # the starting scale factor

2 astop=1e-4 # we want to finish at astop

3

4 ## setup the initial conditions for CDM density and theta, also for baryon

5 deltac0 = 1.0

6 thetac0 = 0.0

7 deltab0 = 0.0

8 thetab0 = 0.0

9

10 ## package all initial conditions into one vector

11 uinit = np.array([deltac0, deltab0, thetac0, thetab0])

12

13 ## these will be the wave numbers k for which we compute the result:

14 kvals = np.logspace(-3,1,200)

15

16 ## setup vectors for the results deltab(k), deltac(k), ...

17 deltab = np.zeros_like(kvals)

18 deltac = np.zeros_like(kvals)

19 thetab = np.zeros_like(kvals)

20 thetac = np.zeros_like(kvals)

Finally, we need the main loop with the integration. We choose a �xed number of 1000 integration steps

in logarithmic time. If we increase to larger values of k this will not be enough. In fact, the correct time

step should be chosen based on the sound speed. For simplicity we will simply choose a �xed number

and make sure that the result is converged. The main loop then looks like this

1 ## set the number of time steps in log time in a rough way

2 nsteps = 1000 # normally this should depend on k, so check convergence!

3

4 ## these will be the times at which we evaluate

5 asteps = np.logspace(np.log10(ainit),np.log10(astop),nsteps)

6

7 ## loop over all wave numbers k and evolve them

8 for i,k in enumerate(kvals):

9 ## integrate the system for all ’a’ in ’asteps’,

10 u = odeint(RHS, uinit, asteps, args=([k],))

11

12 ## store last result (in time) in the respective results

13 deltac[i] = u[-1,0]

14 deltab[i] = u[-1,1]

15 thetac[i] = u[-1,2]

16 thetab[i] = u[-1,3]

17

18 print ’Finished integration to a=’,astop

This completes the program. We can plot the results and �nd a k-dependent amplitude for δc and δb as

6

Figure 1: The amplitude of dark matter and baryon density �uctuations prior to recombination at a =
10−4

(left) and some time after recombination at a = 10−2
calculated with a simple linear perturbation

approximation for the coupled �uid. The amplitudes are normalised so that δc = 1 for the lowest k that

we calculated.

shown in Figure 1 at a = 10−4
.

7

