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I. LECTURES 1-2

1. Problem: study the ground-state properties of a system of N electrons in a static

external potential V (r). Hamiltonian:

Ĥ =
N∑
i=1

|p̂i|2

2m
+

1

2

∑
i 6=j

e2

|r̂i − r̂j|
+

N∑
i=1

V (r̂i)

= T̂ + Û + V̂ (1)

2. Introduce the density operator

n̂(r) =
N∑
i=1

δ(r− r̂i) , (2)

and its ground state expectation value

n(r) = 〈ψ0|n̂(r)|ψ0〉 (3)

where |ψ0〉 is the ground state. Then define the universal functional

F [n] ≡ min
ψ→n
〈ψ|T̂ + Û |ψ〉 , (4)

where the minimum is searched among the antisymmetric N -electron wave functions ψ

that yield density n(r). For any reasonable density there are such wave functions and

the search returns at least one ψ[n] and a single value of F [n]. A slight generalization

of this functional (extending the search to ensembles that yield the same density) can

be shown to be continuous and convex. Noting that

V̂ =

∫
drV (r)n̂(r) , (5)
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we see that the ground-state energy and density of Ĥ are obtained by minimizing the

functional

EV [n] = F [n] +

∫
drV (r)n(r) (6)

with respect to n(r) for a given V (r).

3. Hohenberg-Kohn theorem: If a density n(r) is the ground-state density of the hamilto-

nian Ĥ with some local potential V (r) then V (r) is uniquely defined, up to an additive

constant. Notes: (1) The theorem does not say that every density can be realized

in the ground-state of a local potential, although it is believed that the set of V-

representable densities is dense enough to approximate every reasonable density. (2)

The ground-state associated with a given density can be one of a degenerate set. (3)

Some densities are representable only in ensembles of degenerate ground-states.

4. Kohn-Sham equation: Define the non-interacting F functional, denoted by Ts[n] as

follows:

Ts[n] ≡ min
ψ→n
〈ψ|T̂ |ψ〉 , (7)

where T̂ is the kinetic energy operator. Then define the exchange-correlation (xc)

energy functional Exc[n] from the relation

F [n] = Ts[n] + EH [n] + Exc[n] , (8)

where

EH [n] =
e2

2

∫
drdr′

n(r)n(r′)

|r− r′|
, (9)

is the Hartree energy functional. Then, minimization of the energy EV [n] leads to the

variational condition

δTs[n]

δn(r)
= −V (r)− UH(r)− Vxc(r) ≡ −Vs(r) , (10)

where

Vxc(r) ≡
δExc[n]

δn(r)
(11)

is the exchange-correlation potential and

UH(r) ≡ δEH [n]

δn(r)
= e2

∫
dr′

n(r′)

|r− r′|
, (12)
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is the Hartree potential. The potential Vs(r) = V (r) + UH(r) + Vxc(r) is known as

Kohn-Sham potential and is a unique functional of the density, up to an additive

constant. Observe that the variational condition

δTs[n]

δn(r)
= −Vs(r) , (13)

is equivalent to the solution of the non-interacting Schrödinger equation

−∇
2
r

2m
ψα(r) + Vs(r)ψα(r) = εαψα(r) (14)

with density self-consistently determined by occupying the N lowest-lying orbitals

ψα(r) (aufbau principle):

n(r) =
N∑
i=1

|ψα(r)|2 . (15)

The solution of these equations determines the ground-state density n(r) and the

ground-state energy E via the relation

E =
N∑
i=1

εα − EH [n]−
∫
drn(r)Vxc(r) + Exc[n] , (16)

provided Exc[n] and Vxc[n] are known exactly. In practice the xc potential and energy

functionals must be approximated, but for a given ground state density they can be

obtained from the exact ground-state wave function.

5. Physical significance of Kohn-Sham eigenvalues and eigenfunctions: none in general,

but the highest occupied eigenvalue is the negative of the ionization energy when the

Kohn-Sham potential vanishes at infinity.

6. Spin density functional theory. Replace∫
drV (r)n̂(r)→

∫
drV↑(r)n̂↑(r) +

∫
drV↓(r)n̂↓(r) , (17)

where n̂↑(r) and n̂↓(r) are the density operators of spin up and spin down respectively,

and V↑(r) and V↓(r) are their conjugate fields. The formalism goes through as before,

e.g. one has

F [n↑, n↓] = min
ψ→n↑,n↓

〈ψ|T̂ + Û |ψ〉 , (18)

etc...However, there are some subtle differences, related to the possibility of chang-

ing V↑(r) and V↓(r) by two different additive constants (the so-called non-uniqueness
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problem). In practice, spin density functional theory is needed to treat situations in

which a spin density exists in the absence of a magnetic field, and more generally it

allows for a more accurate description of many-body effects when approximations are

made (without approximations, it would in principle equivalent to basic DFT).

7. Adiabatic continuation formula for Exc[n]. Introduce the hamiltonian

Ĥ(λ) = T̂ + λÛ + V̂λ , 0 ≤ λ ≤ 1 (19)

where the local potentials Vλ,σ(r) (σ =↑ or ↓) are chosen so that the ground-state den-

sities nσ(r) are independent of λ. This hamiltonian interpolates between the “Kohn-

Sham hamiltonian” Ĥ(0) and the physical hamiltonian of the system Ĥ(1). Making

use of the Hellman-Feynman theorem we arrive at

Exc[n↑, n↓] =

∫ 1

0

dλU(λ)− EH [n] , (20)

where U(λ) is the expectation value of the interaction energy in the ground state |ψλ〉

of the Hamiltonian Ĥ(λ). Define the pair-correlation function

gλ,σσ′(r, r′) ≡ 〈ψλ|ψ̂
†
σ(r)ψ̂†σ′(r′)ψ̂σ′(r′)ψ̂σ(r)|ψλ〉

nσ(r)nσ′(r′)
, (21)

which is a functional of the densities nσ(r). Then we have

Exc[n↑, n↓] =
e2

2

∫ 1

0

dλ

∫
dr

∫
dr′

nσ(r)nσ′(r′)

|r− r′|
[gλ,σσ′(r, r′)− 1]

=

∫ 1

0

dλExc,λ[n↑, n↓] . (22)

The central problem is to approximate Exc,λ[n↑, n↓].

8. Exchange-correlation hole and sum rule. We define the exchange-correlation hole of

spin σ as

nxcσ,λ(r, r
′) =

∑
σ′

nσ′(r′)[gλ,σσ′(r, r′)− 1] . (23)

The Exc,λ functional is then given by

Exc,λ[n↑, n↓] =
∑
σ

∫
dr

∫
dr′

nσ(r)nxcσ,λ(r, r
′)

|r− r′|
. (24)

It is straightforward to verify that∫
dr′nxcσ(r, r′) = −1 . (25)
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In the non-interacting Kohn-Sham system (λ = 0) one has

nxcσ,0(r, r
′) = −

∑
σ′

|
∑N

α=1 ψ
∗
α(r, σ)ψα(r′, σ′)|2

nσ(r)
≤ 0 . (26)

9. Exchange-only approximation. In this approximation one replaces nxcσ,λ(r, r
′) by

nxcσ,0(r, r
′) ≡ nxσ,0(r, r

′). The resulting functional is called Ex[n↑, n↓] and it is equal

to Exc,0[n↑, n↓]. It can be shown that the exact Exc[n↑, n↓] ≤ Ex[n↑, n↓]. The difference

Ec[n↑, n↓] = Exc[n↑, n↓]− Ex[n↑, n↓]

= 〈ψ1|T̂ + Û |ψ1〉 − 〈ψ0|T̂ + Û |ψ0〉 ≤ 0 , (27)

is called correlation energy. Notice that the correlation energy is always negative.

10. Local density approximation. In this approximation one replaces nxcσ,λ(r, r
′) by

nhxcσ,λ(r − r′) of the homogeneous electron gas of densities nσ(r). This approxima-

tion automatically preserves the sum rule and is nearly exact for the “on-top hole”

nxcσ,λ(r, r). The expression for Exc takes the form

ELDA
xc [n↑, n↓] =

∫
drn(r)εhxc(n↑(r), n↓(r)) , (28)

where εhxc(n↑(r), n↓(r)) is the xc energy per electron in the homogeneous electron gas

of densities nσ(r). This is the most widely used approximation for Exc.

II. LECTURES 3-4

1. Behavior of Exc,λ as a function of λ.

(i) Small λ. At λ = 0 we have Exc,0 = Ex, the exact exchange functional. The initial

slope of Exc,λ vs λ at λ = 0 is negative (why?) and has a finite value, which can be

calculated by doing second order perturbation theory on the hamiltonian H(λ) (This

type of perturbation theory at constant density is known as Görling-Levy perturbation

theory). So we have

Exc,λ[n]
λ→0→ Ex[n] + 2λE(2)

c [n] , (29)

where

E(2)
c [n] =

∑
k

|〈Φk,s|Ĥ1|Φ0,s〉|2

E0,s − Ek,s
, (30)
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where the sum runs over the excited states (k, with eigenvalue Ek,s) of the Kohn-

Sham system and the first-order correction to the Kohn-Sham Hamiltonian is Ĥ1 =

Û − V̂H −ˆ̂Vx.

(ii) Large λ. Potential energy dominates and electrons get locked in strictly correlated

positions determined by the “co-motion function” {f1(r), f2(r), ...fN(r)} (f1(r) = r).

The i-th function determines the position of the i-th electron in terms of r, which is

conventionally taken to be the position of the first electron. The comotion functions

are determined by the density via the invariance relation n(r)dr = n(fi(r))dfi(r) (See

Seidl, Gori-Giorgi and Savin, PRA 75, 042511 (2007) and PRA 59, 51 (1999)). This

in turn implies that the potential energy grows as λ for large λ and Exc,λ tends to

a constant. The leading correction to the strictly correlated energy arises from zero-

point oscillations about the rigid relative arrangements. This contribution scales as

1/λ1/2. Further corrections can be shown to vanish faster that 1/λ. Thus we have

Exc,λ[n]
λ→∞→ USCE[n] + 2

TZP [n]

λ1/2
, (31)

where

USCE[n] =
e2

2

∫
dr

∑
i 6=j

n(r)

N |fi(r)− fj(r)|
(32)

and

TZP [n] =

∫
dr
n(r)

N

Nd−d∑
n=1

ωn(r)

2
, (33)

where ωn(r) are theNd−d zero-point frequencies around the degenerate SCE minimum

(see our JCTC 5, 743 (2009).)

An interpolation formula between these two limits can be found in our JCTC paper

(reference above), in Eqs. 85–89.

2. Critique of the LDA. Major problem of the LDA: the exchange energy is approximated

in such a way that the self-interaction contained in the Hartree functional is not

cancelled. This is known as the self-interaction (SI) error. For example, if you consider

a single electron, it is evident that there is no correlation, and the exchange potential

must cancel the Hartree potential to leave us with the bare external potential. A

similar problem arises in the external region of every atom. Here the electron must feel

the potential −e2/r. Since the Hartree potential exactly screens the nuclear potential
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The self-interaction error in the H atom (in Hartrees)

LSD PBE exact

Ex -0.264 -0.302 -0.307

Ec -0.22 -0.06 0

Exc -0.286 -0.308 -0.307

it follows that the exact Vxc(r) → −e2/r for r → ∞. By contrast, V LDA
xc (r) tends to

zero exponentially.

3. Exchange and correlation in LDA. Because of the SI error, the dExc,λ[n]/dλ vs λ curve

in LDA starts at higher values at λ = 0 than the exact curve. Its behavior generally

improves with increasing λ. This explains why it is not such a good idea to use the LDA

for the correlation energy alone, reserving the exact treatment for the exchange. This

approach is equivalent to a rigid down-shift of the dExc,λ[n]/dλ vs λ curve. This fixes

the λ = 0 limit, but introduces even larger errors at large λ. Several ad-hoc methods

have been introduced to reduce the self-interaction error. Hybrid functionals, in which

only a fraction of the exchange is treated exactly have also been introduced. The form

of these approximations is

Ehybrid
xc = w(Ex − EDFA

x ) + EFDA
xc , (34)

where EFDA
xc stands for one of the standard density functional approximations, i.e.

LDA or GGA, and w, with 0 ≤ w ≤ 1 is a weight factor. The most recent generation

of meta-GGA functionals are free of SI error, in the sense that they become exact for

one and two-electron densities.

4. Proof of concavity of Exc,λ: d
2Exc,λ/dλ

2 < 0.

It is sufficient to show that

Q(λ) ≡ minψ→n〈ψ|T + λU |ψ〉 (35)

is concave:

d2Q(λ)/dλ2 < 0 (36)
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[here U is the interaction energy] This is obvious because, given λ1 and λ2, with

λ1 < λ2, and a value of λ intermediate between λ1 and λ2, λ = (1− x)λ1 + xλ2, with

0 < x < 1, we have

Q(λ) = minψ→n〈ψ|(1− x)(T + λ1U) + x(T + λ2U)|ψ〉 . (37)

Evidently, the minimum of the sum is larger than or equal to the sum of the minima,

therefore we have

Q(λ) > (1− x)Q(λ1) + xQ(λ2) . (38)

Since λ1 and λ2 are arbitrary, this shows that the function is concave.

5. Beyond the LDA: GGA and meta-GGA. Naive attempts to improve the LDA by

including “gradient corrections” to the xc hole run into difficulties, because the ap-

proximate xc hole develops a spurious long-range tail and therefore ends up violating

the sum rule on the integrated strength. This problem is avoided in the GGA. By

ensuring that the xc hole satisfies the known physical constraints

nx,σ(r, r′) ≤ 0∫
nx,σ(r, r′)dr′ = −1∫
nc,σ(r, r′)dr′ = 0 , (39)

this approximation achieves considerable improvements, particularly in the calculation

of dissociation energies. The general form of this approximation is

EGGA
xc [n↑, n↓] =

∫
drf(n↑, n↓,∇n↑,∇n↓) . (40)

and simple parametrizations for the function f have been introduced. Finally, the

meta-GGA removes the self-interaction error for one- and two-particle densities by

including the new variable τσ − |∇nσ|2/8nσ (curvature of the exchange hole), which is

known to vanish for such densities. The form of this approximation is

Emeta−GGA
xc [n↑, n↓] =

∫
drg(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓) . (41)
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6. Addition and removal energies: the band gap problem. We now consider systems with

variable particle number. A quantity of great interest in physics and chemistry is the

addition energy

µ+(N) ≡ E(N + 1)− E(N) (42)

defined as the difference between the ground-state energies of the same hamiltonian

with N + 1 and N electrons. Notice that chemists prefer to talk instead of affinity

energy

A(N) = E(N)− E(N + 1) = −µ+(N) (43)

and ionization energy

I(N) = E(N − 1)− E(N) = −µ+(N − 1) = A(N − 1) . (44)

A particularly important quantity is the so-called “gap”:

Eg = I(N)− A(N) = µ+(N)− µ+(N − 1) (45)

To see why it is called “gap” consider the Hamiltonian for open systems

K̂ = Ĥ − µN̂ , (46)

where N̂ is the number operator. Denote by K(N) the minimum eigenvalue of K̂ for

given N . Then µ+(N) is the value of µ for which K(N + 1) = K(N), and µ−(N) is

the value of µ for which K(N − 1) = K(N). Then we see that µ−(N) ≤ µ ≤ µ+(N) is

the range of values of the chemical potential for which the system has N electrons as

the stable state. As long as µ is “in the gap” the number of particle does not change.

This is why we call Eg ≡ µ+ − µ− the gap.

Because it is a difference of ground-state energies, the gap appears to be within the

realm of applicability of ground-state DFT. However, the fact that the particle number

changes, opens a new class of problems. We have already seen that the ionization

energy I(N) can be obtained exactly from the negative of the highest occupied Kohn-

Sham eigenvalue for a system of N electrons (when the Kohn-Sham potential vanishes

at infinity). From this we can say that the gap should be exactly given by the difference

of Kohn-Sham eigenvalues calculated for different numbers of particles

Eg = εN+1(N + 1)− εN(N) (47)
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Band gaps (in eV) of selected semiconductors and insulators

Diamond Si Ge LiCl GaAs

LDA 3.9 0.52 0.07 6.0 0.12

Expt. 5.48 1.17 0.744 9.4 1.52

This is different from the naive Kohn-Sham gap

Eg,s = εN+1(N)− εN(N) (48)

However, in the limit of large N , for periodic systems, the difference between N + 1

and N disappears in the density and one would expect Eg = Eg,s. Indeed, this is what

happens, but the problem is that the calculated Eg does not agree with experiment,

it is systematically too small in semiconductors and insulators. Detailed calculations

show that this is not a problem that can be easily solved by going beyond the LDA:

using the exact xc potential from the exact ground-state density of Si improves things

somewhat, but not enough (see papers by Sham and Schluter, 1980s). On the other

hand, Hartree-Fock calculations systematically overestimate the gap in semiconductors

and insulators.

7. Derivative discontinuity.

The resolution of the paradox lies in the fact that, although the density changes in-

finitesimally when the electron number changes from N to N + 1, the xc potential

changes by a finite and constant amount. The reason for this is the discontinuous

jump in the chemical potential, which in turn results in a (constant) discontinuity of

the functional derivative of F and Ts at integer particle numbers. Since these discon-

tinuities are different for an in interacting and non-interacting systems we conclude

that the exchange-correlation functional must also have a derivative discontinuity ∆xc.

The true gap is then given by

Eg = Eg,s + ∆xc . (49)

What happens in LDA is that the cusps in the xc energy functional as a function of

N are smoothened into convex curves. Thus, one misses the ∆xc contribution and
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the gap comes out underestimated. In Hartree-Fock, on the other hand, the straight-

line segments of the exact functional are replaced by concave curves. The derivative

discontinuities are accentuated and the gap comes out too large.

8. DFT for strongly correlated systems.

For systems close to the strong correlation limit (e.g. weakly confined quantum dots)

an approach complementary to the Kohn-Sham approach has been recently proposed

by us. [PRL 103 166402 (2009)]. In this approach we write

F [n] = USCE[n] + Ekd[n] (50)

where USCE[n] is the Coulomb potential energy of strictly correlated electrons [PRA

75, 042511 (2007) and PRA 59, 51 (1999)], and Ekd is a remainder, which, in this

formulation, plays a role analogous to the xc energy of the Kohn-Sham approach. We

call it kinetic-decorrelation functional. In the presence of an external potential V (r)

minimization of the energy entails

δUSCE[n]

δn(r)
= −δEkd[n]

δn(r)
− V (r) (51)

Compare this with the solution of a strictly correlated electron system (no kinetic

energy) in an effective potential VSCE(r):

δUSCE[n]

δn(r)
= −VSCE(r) . (52)

In order for these two problems - the true one and the strictly correlated one - to yield

the same ground-state density we must choose

VSCE(r) = V (r) +
δEkd[n]

δn(r)
. (53)

VSCE is the analogue of the Kohn-Sham potential. The functional derivative of Ekd[n]

with respect to density defines the ıkinetic-decorrelation potential. Thus, the solution

of the many-body problem with kinetic energy has been mapped to the solution of a

stricly correlated electron system in the presence of an effective potential that yields the

same density. A formal expression for Ekd[n] can be constructed from the Hamiltonian

Ĥ(α) = αT̂ + Û + V̂α , 0 ≤ α ≤ 1 (54)
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where the potential V̂α ensures the constancy of the density as α is varied. This

hamiltonian interpolates between the strictly correlated hamiltonian of our effective

problem (α = 0) and the physical Hamiltonian (α = 1). Making use of the Hellman-

Feynman theorem it is easy to see that

Ekd[n] =

∫ 1

0

dα〈ψα|T̂ |ψα〉 ≡
∫ 1

0

dαEkd,α , (55)

where ψα is the ground-state of Ĥ(α). In the limit α→ 0 we have

Ekd,α[n]
α→0→ TZP [n]

α1/2
, (56)

where TZP [n] is the zero-point kinetic energy disucssed above (reference). From which

we deduce

Ekd[n]
α→0→ 2TZP [n]α1/2 . (57)

We can also introduce the “LDA”:

ELDA
kd [n] =

∫
drn(r)εhkd(n(r)) , (58)

where

εhkd(n) = εh(n)− aM
rs(n)

, (59)

εh(n) is the total energy (kinetic plus potential) per electron of the homogeneous

interacting electron gas and aM/rs (aM = 1.8 is the Madelung constant) is the classical

energy of the Wigner crystal at that density. These and other approximations have

recently been used to study the ground-state energy of a two-electron quantum dot in

the strongly correlated regime, with encouraging results (see table).
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ω KS-LDA SCE SCE-ZP SCE-LDA SCE-ZP-LDA

1.000× 100 2.0 40.4 17.7 3.4 14.3

1.667× 10−1 2.4 32.7 11.2 4.8 14.9

5.393× 10−2 1.6 27.1 8.0 5.5 14.1

2.368× 10−2 0.1 23.0 6.1 5.8 13.1

7.285× 10−3 4.2 17.6 4.2 5.6 10.9

2.211× 10−3 11.6 13.0 2.8 4.8 8.1

1.221× 10−3 16.5 11.0 2.3 4.3 6.8

5.973× 10−4 23.4 9.0 1.8 3.6 5.3

3.353× 10−4 29.7 7.6 1.5 3.1 4.2

2.408× 10−4 33.6 6.9 1.4 2.8 3.6

TABLE I: Fractional % errors on the total energy of a model 2D quantum dot consisting of two

electrons confined in an harmonic potential vext(r) = 1
2ω

2r2. Columns as follows: KS-LDA are

the results for standard Kohn-Sham LDA, SCE are the results obtained by setting Ekd[ρ] = 0,

SCE-LDA, SCE-ZP and SCE-ZP-LDA are the results of different approximations for Ekd.

A. Review questionnaire

1. Which of the following quantities can be calculated exactly from the Kohn-Sham

equation (assuming the exact exchange-correlation potential and exchange-correlation

functional are known)?

(i) Ground-state density

(ii) Ground-state wave function

(iii) Ground-state energy

(iv) Pair correlation function

(v) Ionization energy

2. Define the exchange-correlation functional, the exact exchange functional, and the

correlation functional in terms of an energy minimization over wave functions that

give density n.

3. Why is the correlation functional always negative?
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4. What is the exact exchange-correlation potential for a hydrogen atom?

5. What is the exact exchange-correlation potential for an atom, in the limit of large

distance from the nucleus (r →∞)?

6. What is the origin of self-interaction error? Which of the following approximations

suffers from self-interaction error?

(i) Local density approximation

(ii) Exact exchange

(iii) Hartree-Fock

(iv) Generalized gradient approximation.

7. What is the origin of the “band gap problem”?

8. In a strictly correlated electron system the Kohn-Sham orbitals are replaced by the

so-called “co-motion functions”. What are the co-motion functions?
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