Bogoliubov-Majorana Gun: An On-demand Single Bogoliubov Quasiparticle Source

Jimmy Hutasoit

Fellow gunsmiths: B. Tarasinski, D. Chevallier, B. Baxevanis and C.W. J. Beenakker theoretical

Phys. Rev. B 92, 144306 (2015)

Electronic quantum "optics"

- applying ideas from quantum optics in mesoscopic systems
- o potential applications in quantum information/communication

The analog of photon gun:

ø electron/hole gun

Bogoliubov-Majorana gun)

Abelian anyon gun

@ ???

non-Abelian anyon gun

in progress

realized

Current status:

in progress

science fiction

Electron gun

Difficulty: the ground state is a many-body ground state

so, instead of

in general, you have

Mesoscopic capacitor

Couple a localized state to the lead and drive it periodically

Feve, et. al., Science (2007) Parmentier, et. al., PRB (2012) Keeling, Shytov and Levitov, PRL (2008)

Linear drive (1)

Couple a localized state to the lead and drive it linearly

3 Rapidity 2.5 **Current Pulse Profile** 2 1.5 1 0.5 () -3 -5 -2 -4 0 -6 2 3 1 $x - v_F t$

Keeling, Shytov and Levitov, PRL (2008)

particle current = charge current

Linear drive (2)

electron gun = hole gun electron + hole gun? Majorana gun?

Particle-hole symmetric version

e

h

Couple an Andreev quasi bound state to the lead and drive it linearly

superconducting quantum dot

Lee, et. al, Nat. Nanotech. (2014); Wan et al; Goswami et al; Kumaradivel and Du; Amet et al (2015)

Josephson junction

Chang, et. al, PRL (2013)

Particle-hole symmetric version

Couple an Andreev quasi bound state to the lead and drive it linearly

$$\lambda = i\sqrt{\gamma} \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

 θ : asymmetry of the coupling between electron/hole and the Andreev states

Adiabatic limit in the dot

Pikulin and Nazarov, PRB (2013) Mi, et. al., JETP (2014)

Local density of states

Poles of the Green's function

Emitted state (1)

 $|\Psi\rangle = c_0|0\rangle + c_1|1-\text{particle}\rangle + \cdots$

Any other states will involve

 $S(\epsilon > 0, \epsilon' < 0) = \psi(\epsilon) \psi^{\dagger}(\epsilon')$

Emitted state (2)

 $|\Psi\rangle = c_0|0\rangle + c_1|1-\text{particle}\rangle$ but $1 = \langle \Psi | N | \Psi \rangle = |c_1|^2$ $\Rightarrow c_0 = 0$ Anderson orthogonality catastrophe PRL (1967)

One quasiparticle emitted independent of the sweep rate

Emitted current

particle current \geq charge current

$$\lambda = i\sqrt{\gamma} \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

 θ : asymmetry of the coupling between electron/hole and the Andreev states

Charge of the emitted quasiparticle

Quench limit:

 $\overline{q} = \cos 2\theta$

Adiabatic limit:

 $q = \operatorname{sign}(\cos 2\theta)$

Electron (hole) gun is pretty robust!

To have Majorana (neutral quasiparticle),
 must zoom in to $\theta = \pi/4$

Towards Majorana gun

topologically non-trivial nanowire or 'dark' state set-up of San Jose et. al. (arXiv:1409.7306)

Summary

Bogoliubov gun: an Andreev quasi-bound state driven through the Fermi sea of the lead. For linear drive:

one quasiparticle emitted independent of the sweep rate
 quasiparticle charge depends on the sweep rate

Majorana gun: filtrative coupling

Scattering problem

 $i\partial_t \varphi(t) = E(t)\tau_z \varphi(t) + \lambda \psi(0,t)$ $i\partial_t \psi(x,t) = \lambda^{\dagger} \delta(x)\varphi(t) - iv_F \partial_x \psi(x,t)$ $\lambda = i\sqrt{v_F \gamma} \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$ E(t) = ct

$$\psi_{+}(t) = \int dt' S(t, t') \psi_{-}(t')$$

$$S = \delta(t - t') - \frac{2i}{v_{F}} \lambda^{\dagger} G(t, t') \lambda$$

$$\left(i\partial_{t} - E(t)\tau_{z} - \frac{i}{v_{F}} \lambda \lambda^{\dagger}\right) G(t, t') = \delta(t - t')$$

Solution (c.f. Landau-Zener and Majorana!) $(ic\tau_z \,\partial_\varepsilon + \varepsilon + i\gamma + i\delta\tau_x) \,G(\varepsilon,\varepsilon') = 2\pi \delta(\varepsilon - \varepsilon')$ E(t) = ct $\delta = \gamma \cos(2\theta)$ $G(\varepsilon, \varepsilon') = X(\varepsilon)\Theta(\varepsilon, \varepsilon') X^{-1}(\varepsilon')$ $\Theta = 2\pi i \begin{pmatrix} \theta(\varepsilon - \varepsilon') & 0\\ 0 & \theta(\varepsilon' - \varepsilon) \end{pmatrix}$ $X = \begin{pmatrix} u(\varepsilon) & v^*(-\varepsilon) \\ v(\varepsilon) & u^*(-\varepsilon) \end{pmatrix}$ $u(\varepsilon) = e^{\frac{i(\varepsilon+i\gamma)^2}{2c}} U\left(-\frac{i\delta^2}{4c}, \frac{1}{2}; -\frac{i(\varepsilon+i\gamma)^2}{2c}\right)$ $v(\varepsilon) = -\sqrt{i\delta e^{\frac{i(\varepsilon+i\gamma)^2}{2c}}} U\left(-\frac{i\delta^2}{4c} + \frac{1}{2}, \frac{1}{2}; -\frac{i(\varepsilon+i\gamma)^2}{2c}\right)$ $q = \cos 2\theta \int \frac{2\gamma d\varepsilon}{\det X} \left(|u|^2 - |v|^2 \right)$