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The method The extension Results
. .
Motivation

Some probes of physics beyond the Standard Model (SM) are:
@ Low-energy physics.

@ Rare semileptonic decays: Flavor-changing neutral currents (FCNCs)
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Some models can explain this excess by adding new particles with masses
near the TeV scale.

1B. Bhattacharya, et al., Phys. Rev 742, (2015) 370.
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Leptoquarks

Properties

@ Electric and color charges. !
@ Baryonic and leptonic numbers. &

@ Scalar Leptoquark and vector Leptoquark.

Figure: Leptoquark
(B. Diaz et al., 2017)
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V.

This difference of scales lead us to work with Effective Field Theories.



There are two techniques to obtain the Wilson coeficients of an EFT:

@ Feynman diagrams — Green
Functions

@ Functional integration
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Results

@ Extracting the local contributions
that are relevant for the dynamic
description.
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Treatment of EFTs

There are two techniques to obtain the Wilson coeficients of an EFT:

Results

@ Extracting the local contributions
that are relevant for the dynamic
description.

@ Feynman diagrams — Green
Functions

@ Functional integration

We don’t need:

* Feynman diagrams
* Symmetry factors

* Green Functions

This method uses the technique Expansion by Regions in which we
obtain the contribution of each region of the integrand.
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How does this method work??

© Split the fields n of the Lagrangian in: 7 = (ny 7.) and make the change:
n — 7+ n. The Lagrangian is equal to:

[ = Etree(ﬁ) +£(n2) + 0(773): (1)
where £(7) = %nTOn

2], Fuentes-Martin, 2016
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where you must expand in Neuman series
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© Finally, the effective action is calculated as
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Extension with a scalar Leptoquark

The general Lagrangian with a Leptoquark that transforms (3, 1)

-

wi

under the SM gauge group is 3
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3Bauer et al., 2016.
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Tree level

Integrating out the heavy fields, we obtain the Low-energy Lagrangian as
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Figure: Tree level diagrams contributing to rare decays (Bauer, 2016)
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The extension

Motivation The method
1-loop (Some results)
Dgey X
@ Heavy fluctuations: Ay = ¢ré .I‘P¢
Xpo A¢*¢
@ Light fluctuations
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1-loop (Some results)

Dyry X
@ Heavy fluctuations: Ay = ¢re ¢
Xoo  Bgeg

@ Light fluctuations .. .
' uctuatt @ Mixing fluctuations
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1-loop (Some results)

Dyry X
@ Heavy fluctuations: Ay = ¢re ¢
Xpe

@ Light fluctuations
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Example for one fluctuation:
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@ Mixing fluctuations

Y _XT
i( ve Xgo- Xog Xoxgp
-_— — T * *
&w* Xoo (Xwﬁs) (X4>; ¢>)*
Xa —(XZ )T Xew=| Xas  (Xag)
A 0 X 0
Py w1
. o -xI
0 —AL Vv
P

o Deriving the cuadratic term for the interaction Higgs-Higgs:

Boro = —D? — M3 — gny (376) — 26T — 1 (876). (8)
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Example for one fluctuation:
o Deriving the cuadratic term for the interaction Higgs-Higgs:

Boro = —D? — M3 — gny (376) — 26T — 1 (876). (8)
o Expanding the operator, i.e, replacing 0 — 9x + ip:
Agwo(x,0x + ip) = p? — m3 — 2ipD — D — A (&Tcﬁ) — 26T, (9)
o Obtaining the inverse, expanding p, M ~ ¢
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Finally...

We obtain relevant terms like:

1

where we can induce the FCNCs at the processes:
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Figure: Loop contributions to b — su™ ™ (Bauer, 2016).
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Conclusions

@ The functional integration offers us a great simplification to calculate the
EFTs couplings. Furthermore, this systematic procedure can help us to
obtain contributions easier than the conventional methods.

© The Leptoquarks can explain the observed desviations by the BaBaR,
Belle and LHCb collaborations.
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