
Composite Higgs

H =

“dead dogs don't bite”:   

If no elementary Higgs,  μ2 not anymore a fundamental parameter



Reason: they are composite states 
at                         ,  
defined by the scale at which the strong gauge-coupling becomes 
large:

ΛQCD << MP

Indeed, in QCD we see light scalars without
  problems of naturalness:

m�, mK , ma0 , ... << MP
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QCD Spectrum:

�
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Furthermore,  
the lightest states in QCD are the (pseudo) scalars

Because they are 
Pseudo-Goldstone bosons (PGB)

Why the lightest?

100 MeV

1 GeV

(spin=0 particles like the Higgs)



QCD, considering only two quarks in the massless limit,
(

uL

dL

) (

uR

dR

)

,

has an accidental global symmetry:

It is broken by the quark condensate:  <qq>≠0
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3 Goldtones:

SU(2)L x SU(2)R

SU(2)L x SU(2)R  ➞ SU(2)V

Massless!!
In reality, they are not massless since quark masses break 

explicitly SU(2)L x SU(2)R  giving the pions a mass:
m2

� / mq

-

Isospin

Pseudo-Goldstone bosons (PGB) in QCD



Lets try the same for the Higgs 
 ➠ Assume that there is a New Strong sector 

(QCD-like) at around the TeV-scale:

ΛQCD MP

αs ↵⇤

⇤⇤

New strong dynamics at TeV

E



�

GeV

130 MeV

TeV

125 GeV

Composite Higgs

h

QCD

The Higgs, the lightest of the new strong resonances, 
as pions in QCD: they are Pseudo-Goldstone Bosons (PGB)

SO(6) ➞ SO(4)
5 Goldstones = Higgs doublet

               + Singlet

E.g.:



Example:     Just take QCD (with two flavors)  
       replace  SU(3)c by SU(2)c 
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5 Goldstones = 
                      Higgs doublet + singlet    

 L, 
c
R

4=2L + 2RGlobal symmetry:  SU(2)L ⊗ SU(2)R

SU(3)c SU(2)c

SU(4)~SO(6) 

SU(2)V

3 Golstones = π⁰,π⁺, π⁻

SP(4)~SO(5)

<ψψ>≠0 <ψψ>≠0

since  2~2-
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Fermion masses



models with minimal flavor violation (MFV) [12]. Therefore flavor bounds are easily satisfied for
⇤
IR

⇠ TeV. Nevertheless, due to the compositeness of the right-handed quarks, 4-fermion contact
interactions, as for example,

g2⇤
⇤2

IR

(ūR�µuR)
2 , (1.4)

lead to large deviation in dijets distributions, pp ! jj, at high energies, and sizable production
cross sections for composite resonances in the multi-TeV mass range are predicted [13–15]. All these
e↵ects have not been observed at the LHC and severely constrain these models. Similar results can
be found in variations of these ideas with other composite SM fermions [16].

Wrapping up, composite Higgs models must address the SM flavor structure at low energies,
giving then unequivocal predictions for flavor observables. The models proposed so far seem to
clash with some experimental data. Although extra flavor and CP symmetries could be imposed,
for example in the mixing terms ✏fi , to avoid certain experimental bounds, it is unclear how
these symmetries could emerge in the model. One needs to specify the dynamics of the model to
understand whether flavor and CP symmetries can arise accidentally at low energies.

Here we would like to put forward a deviation from the anarchic paradigm that can avoid
these severe flavor and CP-violating constraints. The idea is to assume that the operators Ofi of
Eq. (1.1), that mediate the mixing between the SM fermions and the Higgs, get an e↵ective mass
at some energy scale ⇤fi � ⇤

IR

⇠ TeV, and then decouple from the strong sector. This implies
that Yukawa-like couplings

L
bil

⇠ f̄iOHfj , (1.5)

are generated at scales larger than ⇤
IR

, avoiding in this way sizable contributions to flavor and
CP-violating observables. The hierarchies in the fermion spectrum of the SM and the small flavor
mixing angles could be now explained by the di↵erent scales ⇤fi instead of the small ✏fi . The larger
the ⇤fi , the smaller the Yukawa coupling for fi. Without imposing any extra symmetry in the
model, we will derive by simple power-counting which are the strongest flavor and CP-violating
constraints, independently of the details of the models. We find that top-mediated processes give the
largest contribution to flavor-violating observables. These are characterized by only two operators.
One operator generates the �F = 2 processes ✏K , �MBd

and �MBs at a level close to the present
experimental constraints for ⇤

IR

⇠ few TeV. The second operator leads to flavor-violating Z-
couplings, contributing simultaneously to K ! µ+µ�, ✏0/✏, B ! (X)`` and Z ! bb̄ with a size also
close to the experimental bounds. There are also important contributions arising from the scale at
which the charm and strange masses are generated, 107 � 108 GeV, leading also to sizable e↵ects
to ✏K , and forcing dH . 2. Contributions to the neutron EDM are dominated by the top EDM,
being not far from the present experimental bound. On the other hand, in the lepton sector we find
that the dominant contribution to the electron EDM comes at the two-loop level from Barr-Zee
type diagrams [17], and is around the experimental bound, while µ ! e� is found to be very small.
Therefore these scenarios provide realistic examples where the flavor and hierarchy problem can
be dynamically solved without contradicting the present experimental data, and which near future
experiments could be able to explore. Having proposed a di↵erent origin for fermion masses, we
also analyze the expected deviations in Higgs couplings.

Our approach to the small fermion masses is a reminiscent of the old Extended-Technicolor
idea [18], in which masses from Eq. (1.5) were generated from an extended gauge sector, or from
integrating heavy fermions [19]. Earlier attempts along these lines were considered recently in

3

Ofi , which are the portals of the SM fermions to the strong sector, decouple at some scale ⇤fi ,
generating the Yukawa terms f̄LOHfR at that scale instead of at ⇤

IR

as in the anarchic case. The
decoupling of the operator Ofi can be due to the fact that some of the constituents of Ofi get a mass
⇠ ⇤fi , or that a dynamically generated mass-gap makes heavy all composite states created by Ofi

(those | i with h0|Ofi | i 6= 0). Using the AdS/CFT correspondence, we can easily visualize this
type of scenarios by warped extra-dimensional models with several branes, as the example shown
in Fig. 5 of Appendix A. In what follows we will estimate the flavor structure of these scenarios
without restricting to any specific UV realization.

The scale at which the Yukawa coupling for the SM fermion f = u, d, e, ... is generated is
determined by the scale ⇤f at which either OfR or OfL decouple from the strong sector. We choose
these scales following Fig. 1. This is our dynamical assumption. No further symmetries will be
imposed. Other options could also be possible, and we will consider later more economical models
with fewer scales ⇤f . Under the assumption of Fig. 1, the Yukawa structure will be the following.
Let us consider first the down-type quark sector. At the lowest scale ⇤b, we have only one pair of
operators OQL3 and ObR , to which only one linear combination of SM left-handed and right-handed
quarks can respectively mix with. We name these linear combinations the 3rd family left-handed
quark, QL3, and right-handed bottom, bR:

L(3)

lin

= ✏(3)bL
Q̄L3OQL3 + ✏(3)bR

b̄R ObR . (2.1)

Below ⇤b, after integrating out ObR , the following Yukawa-like operator is expected to be generated

L(3)

bil

=
1

⇤dH�1

b

(✏(3)bL
Q̄L3)OH(✏(3)bR

bR) , (2.2)

where OH corresponds to the lowest-dimensional operator that at ⇤
IR

projects into the Higgs,
h0|OH |Hi 6= 0, and dH is its energy dimension. At a larger scale ⇤s � ⇤b, we have another pair
of operators OQL2 and OsR present, coupled to a di↵erent linear combination of SM fermions. By
an SU(3) rotation that does not a↵ect Eq. (2.2) we can always go to the basis where this linear
combination contains only two quarks, QL3 and QL2 (this latter is identified with the second family
left-handed quark), and similarly for the right-handed sector, bR and sR:

L(2)

lin

= (✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2)OQL2 + (✏(2)bR
bR + ✏(2)sR

sR)OsR , (2.3)

that below ⇤s, after integrating OsR , leads to

L(2)

bil

=
1

⇤dH�1

s

(✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2)OH(✏(2)bR
bR + ✏(2)sR

sR) . (2.4)

Finally, at ⇤d, after integrating OQL1 and OdR , we expect the most general form

L(1)

bil

=
1

⇤dH�1

d

(✏(1)bL
Q̄L3 + ✏(1)sL

Q̄L2 + ✏(1)dL
Q̄L1)OH(✏(1)bR

bR + ✏(1)sR
sR + ✏(1)dR

dR) . (2.5)

Now, at ⇤
IR

we identify the matrix elements of OH with those of the SM Higgs H, which implies
the replacement 3

OH ! g⇤⇤
dH�1

IR

H , (2.6)

3For simplicity we are assuming a single coupling g⇤, but in principle the couplings at the scales ⇤f could be
di↵erent.
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e.g.

Simplest possibility

1) bilinear-mixing:

too small for the top!Y ukawa ⇠
✓

⇤IR

⇤UV

◆dH�1

1

⇤dH�1
UV

<latexit sha1_base64="NjGceA99putoRswMIJiQJB1Yd0w=">AAACC3icbVC9TsMwGHTKXyl/AUYWqxUSC1WCkGCsYOnAUCTSVmpC5DhOa9VxIttBqqLsLLwKCwMIsfICbLwNbpsBWk6ydLr7Tp+/C1JGpbKsb6Oysrq2vlHdrG1t7+zumfsHXZlkAhMHJywR/QBJwignjqKKkX4qCIoDRnrB+Hrq9x6IkDThd2qSEi9GQ04jipHSkm/W3UggnNtF7t7oVIj83BUxdLrFfR767VO7KHyzYTWtGeAysUvSACU6vvnlhgnOYsIVZkjKgW2lysuRUBQzUtTcTJIU4TEakoGmHMVEevnslgIeayWEUSL04wrO1N+JHMVSTuJAT8ZIjeSiNxX/8waZii69nPI0U4Tj+aIoY1AlcFoMDKkgWLGJJggLqv8K8QjpcpSur6ZLsBdPXibds6ZtNe3b80brqqyjCo5AHZwAG1yAFmiDDnAABo/gGbyCN+PJeDHejY/5aMUoM4fgD4zPH7eomtE=</latexit><latexit sha1_base64="NjGceA99putoRswMIJiQJB1Yd0w=">AAACC3icbVC9TsMwGHTKXyl/AUYWqxUSC1WCkGCsYOnAUCTSVmpC5DhOa9VxIttBqqLsLLwKCwMIsfICbLwNbpsBWk6ydLr7Tp+/C1JGpbKsb6Oysrq2vlHdrG1t7+zumfsHXZlkAhMHJywR/QBJwignjqKKkX4qCIoDRnrB+Hrq9x6IkDThd2qSEi9GQ04jipHSkm/W3UggnNtF7t7oVIj83BUxdLrFfR767VO7KHyzYTWtGeAysUvSACU6vvnlhgnOYsIVZkjKgW2lysuRUBQzUtTcTJIU4TEakoGmHMVEevnslgIeayWEUSL04wrO1N+JHMVSTuJAT8ZIjeSiNxX/8waZii69nPI0U4Tj+aIoY1AlcFoMDKkgWLGJJggLqv8K8QjpcpSur6ZLsBdPXibds6ZtNe3b80brqqyjCo5AHZwAG1yAFmiDDnAABo/gGbyCN+PJeDHejY/5aMUoM4fgD4zPH7eomtE=</latexit><latexit sha1_base64="NjGceA99putoRswMIJiQJB1Yd0w=">AAACC3icbVC9TsMwGHTKXyl/AUYWqxUSC1WCkGCsYOnAUCTSVmpC5DhOa9VxIttBqqLsLLwKCwMIsfICbLwNbpsBWk6ydLr7Tp+/C1JGpbKsb6Oysrq2vlHdrG1t7+zumfsHXZlkAhMHJywR/QBJwignjqKKkX4qCIoDRnrB+Hrq9x6IkDThd2qSEi9GQ04jipHSkm/W3UggnNtF7t7oVIj83BUxdLrFfR767VO7KHyzYTWtGeAysUvSACU6vvnlhgnOYsIVZkjKgW2lysuRUBQzUtTcTJIU4TEakoGmHMVEevnslgIeayWEUSL04wrO1N+JHMVSTuJAT8ZIjeSiNxX/8waZii69nPI0U4Tj+aIoY1AlcFoMDKkgWLGJJggLqv8K8QjpcpSur6ZLsBdPXibds6ZtNe3b80brqqyjCo5AHZwAG1yAFmiDDnAABo/gGbyCN+PJeDHejY/5aMUoM4fgD4zPH7eomtE=</latexit><latexit sha1_base64="NjGceA99putoRswMIJiQJB1Yd0w=">AAACC3icbVC9TsMwGHTKXyl/AUYWqxUSC1WCkGCsYOnAUCTSVmpC5DhOa9VxIttBqqLsLLwKCwMIsfICbLwNbpsBWk6ydLr7Tp+/C1JGpbKsb6Oysrq2vlHdrG1t7+zumfsHXZlkAhMHJywR/QBJwignjqKKkX4qCIoDRnrB+Hrq9x6IkDThd2qSEi9GQ04jipHSkm/W3UggnNtF7t7oVIj83BUxdLrFfR767VO7KHyzYTWtGeAysUvSACU6vvnlhgnOYsIVZkjKgW2lysuRUBQzUtTcTJIU4TEakoGmHMVEevnslgIeayWEUSL04wrO1N+JHMVSTuJAT8ZIjeSiNxX/8waZii69nPI0U4Tj+aIoY1AlcFoMDKkgWLGJJggLqv8K8QjpcpSur6ZLsBdPXibds6ZtNe3b80brqqyjCo5AHZwAG1yAFmiDDnAABo/gGbyCN+PJeDHejY/5aMUoM4fgD4zPH7eomtE=</latexit>

OH ⇠ q̄0q0
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Suggesting an alternative possibility

1) linear-mixing:

1 Introduction

An attractive solution to the hierarchy problem is to require that the Higgs is not an elementary
particle, but a composite state arising from some strongly-coupled sector at TeV energies. This
possibility has important implications for the theory of flavor. Contrary to models with an elemen-
tary Higgs in which the structure of Yukawa couplings can have its origin at very high energies, as
large as the Planck scale, in composite Higgs models the origin of flavor must be addressed at much
lower energies. This is because the Higgs is associated with a composite operator of the strong
sector OH whose dimension dH must be larger than one to avoid the hierarchy problem,1 implying
that f̄LOHfR has dimension larger than 4, that is to say that the Yukawa couplings are irrelevant
at low energies. Therefore, if f̄LOHfR are generated at very high energies, e.g. the Planck scale,
fermion masses will be too small at the electroweak scale.

Di↵erent approaches to flavor in composite Higgs models have been considered. The most
popular one is partial compositeness, in which the SM fermions fi get masses by mixing linearly
with an operator of the strong sector:

L
lin

= ✏fi f̄iOfi . (1.1)

At the strong scale ⇤
IR

⇠ TeV, which determines the mass-gap of the model, and at which the
Higgs emerges as a composite state, the fermion Yukawa couplings are generated with a pattern

Yf ⇠ g⇤✏fi✏fj , (1.2)

where 1 < g⇤ . 4⇡ characterizes the coupling in the strong sector. The appealing feature of
these scenarios, usually called “anarchic partial compositeness” [2], is the fact that the smallness of
the mixing ✏fi can simultaneously explain the smallness of the fermion masses and mixing angles.
Nevertheless, this approach also predicts flavor-violating higher-dimensional operators of order [3]

g2⇤
16⇡2

g⇤v

⇤2

IR

✏fi✏fj f̄i�µ⌫fj gF
µ⌫ ,

g2⇤
⇤2

IR

✏fi✏fj ✏fk✏fl f̄i�
µfj f̄k�µfl , (1.3)

where v ' 174 GeV. The operators in Eq. (1.3) lead for ⇤
IR

⇠ TeV to large contributions to
the electron and neutron electric dipole moment (EDM), µ ! e� and ✏K , above the experimental
bounds [4] (see also Refs. [5–8]), as shown in Table 3. Taking ⇤

IR

above the TeV is possible, but
at the price of fine-tuning the electroweak scale.2

An interesting alternative to the above approach is to consider the right-handed quarks to be
fully composite [11]. If the strong sector has an accidental SU(3) flavor symmetry and CP symmetry
(something not di�cult to envisage as it occurs in QCD), the flavor bounds can be easily satisfied.
Indeed, in this case the whole flavor structure comes only from the linear mixing of the left-handed
fermions with the strong sector that must then be proportional to the SM Yukawas Yf , as in

1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†
H is larger

than ⇠ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N expansion this implies
dH � 2, but this is not true in general. Nevertheless, bounds from conformal bootstrap [1] indicate that it is not
possible to have dH ⇠ 1 together with Dim[OHO†

H ] & 4. Being conservative, we will be considering here dH & 2.
2Alternative constructions have been recently proposed based on composite Twin Higgs in which the scale of

compositeness can be pushed up without introducing additional tuning in the Higgs potential [9]. It is also possible
to reduce some bounds by taking smaller g⇤, but this implies reducing the UV cuto↵ (see for example Ref. [10]).

2

must have a dimension close to 5/2
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dimension at weak coupling:  9/2

dimension needed at strong coupling:  5/2

II. FERRETTI’S MODEL

In Ref. [10], several requirements were put forward for a class of composite Higgs models
based on a hypercolor gauge theory as a UV completion. We begin by listing these require-
ments. The gauge group is assumed to be simple, and the dynamical symmetry breaking
pattern, G → H , to be such that

H ⊃ SU(3)color × SU(2)L × SU(2)R × U(1)X (2.1)

⊃ SU(3)color × SU(2)L × U(1)Y ,

with the SM gauge group in the last line. The group SU(2)R is the familiar custodial sym-
metry of the SM, and the hypercharge is Y = T 3

R+X . The SM Higgs doublet, with quantum
numbers (1, 2, 2)0 under SU(3)color×SU(2)L×SU(2)R×U(1)X , should be contained in the
NGB multiplet associated with the symmetry breaking G → H . In order to accommodate
a partially composite top quark [7], i.e., for the top quark to acquire its mass through lin-
ear couplings to hyperbaryons, there must exist hyperbaryons with quantum numbers that
match those of the SM quarks. This includes a set of right-handed, spin-1/2 hyperbaryons
with quantum numbers (3, 2)1/6 of the SM gauge group SU(3)color×SU(2)L×U(1)Y , which
serve as partners of the SM quark doublet qL; and left-handed, spin-1/2 hyperbaryons with
the quantum numbers (3, 1)2/3, to serve as partners of the SM quark singlet tR. Finally, the
hypercolor theory should be asymptotically free, and both the hypercolor gauge group and
the SM gauge group should be free of anomalies.

The hypercolor model with the smallest gauge group that satisfies all these require-
ments is an SU(4) gauge theory [10]. The hyperfermion content consists of five Majorana
fermions χi, i = 1, . . . , 5, transforming in the six-dimensional two-index antisymmetric irrep
of hypercolor, which is a real representation; and three Dirac fermions ψa, a = 1, 2, 3, in
the fundamental representation. The Majorana field χ can be written in terms of a Weyl
fermion Υ as

χABi =

(

ΥABi

1
2ϵABCD ϵ (ῩCD

i )T

)

, (2.2a)

χAB
i =

1

2
ϵABCDχT

CDi C =
(

−1
2ϵ

ABCD(ΥCDi)T ϵ ῩAB
i

)

. (2.2b)

We use capital letters for the SU(4) hypercolor indices, with lower indices for the fundamen-
tal irrep, and upper indices for the anti-fundamental irrep. Several lower or upper indices
will always be fully antisymmetrized. A Dirac fermion ψ in the fundamental irrep can be
written in terms of two right-handed Weyl fermions, Ψ in the fundamental irrep and Ψ̃ in
the anti-fundamental, as

ψAa =

(

ΨAa

ϵ ¯̃ΨT
Aa

)

, ψ
A
a =

(

−(Ψ̃A
a )

T ϵ Ψ̄A
a

)

. (2.3)

We suppress spinor indices. C is the charge-conjugation matrix, ϵ = iσ2 is the two-
dimensional ϵ-tensor acting on the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work in euclidean space, choosing
our Dirac matrices to be hermitian and using the chiral representation, see App. A.

The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)

4

b) five               ∈ 6 (antisym. matrix)

 L,Ra) three             ∈ 4 (fundamental) 
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II. FERRETTI’S MODEL

In Ref. [10], several requirements were put forward for a class of composite Higgs models
based on a hypercolor gauge theory as a UV completion. We begin by listing these require-
ments. The gauge group is assumed to be simple, and the dynamical symmetry breaking
pattern, G → H , to be such that

H ⊃ SU(3)color × SU(2)L × SU(2)R × U(1)X (2.1)

⊃ SU(3)color × SU(2)L × U(1)Y ,

with the SM gauge group in the last line. The group SU(2)R is the familiar custodial sym-
metry of the SM, and the hypercharge is Y = T 3

R+X . The SM Higgs doublet, with quantum
numbers (1, 2, 2)0 under SU(3)color×SU(2)L×SU(2)R×U(1)X , should be contained in the
NGB multiplet associated with the symmetry breaking G → H . In order to accommodate
a partially composite top quark [7], i.e., for the top quark to acquire its mass through lin-
ear couplings to hyperbaryons, there must exist hyperbaryons with quantum numbers that
match those of the SM quarks. This includes a set of right-handed, spin-1/2 hyperbaryons
with quantum numbers (3, 2)1/6 of the SM gauge group SU(3)color×SU(2)L×U(1)Y , which
serve as partners of the SM quark doublet qL; and left-handed, spin-1/2 hyperbaryons with
the quantum numbers (3, 1)2/3, to serve as partners of the SM quark singlet tR. Finally, the
hypercolor theory should be asymptotically free, and both the hypercolor gauge group and
the SM gauge group should be free of anomalies.

The hypercolor model with the smallest gauge group that satisfies all these require-
ments is an SU(4) gauge theory [10]. The hyperfermion content consists of five Majorana
fermions χi, i = 1, . . . , 5, transforming in the six-dimensional two-index antisymmetric irrep
of hypercolor, which is a real representation; and three Dirac fermions ψa, a = 1, 2, 3, in
the fundamental representation. The Majorana field χ can be written in terms of a Weyl
fermion Υ as

χABi =

(

ΥABi

1
2ϵABCD ϵ (ῩCD

i )T

)

, (2.2a)

χAB
i =

1

2
ϵABCDχT

CDi C =
(

−1
2ϵ

ABCD(ΥCDi)T ϵ ῩAB
i

)

. (2.2b)

We use capital letters for the SU(4) hypercolor indices, with lower indices for the fundamen-
tal irrep, and upper indices for the anti-fundamental irrep. Several lower or upper indices
will always be fully antisymmetrized. A Dirac fermion ψ in the fundamental irrep can be
written in terms of two right-handed Weyl fermions, Ψ in the fundamental irrep and Ψ̃ in
the anti-fundamental, as

ψAa =

(

ΨAa

ϵ ¯̃ΨT
Aa

)

, ψ
A
a =

(

−(Ψ̃A
a )

T ϵ Ψ̄A
a

)

. (2.3)

We suppress spinor indices. C is the charge-conjugation matrix, ϵ = iσ2 is the two-
dimensional ϵ-tensor acting on the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work in euclidean space, choosing
our Dirac matrices to be hermitian and using the chiral representation, see App. A.

The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)

4

with quantum numbers (5, 1, 1)(0,−1) for Υ; (1, 3̄, 1)(1/3,5/3) for Ψ; and (1, 1, 3)(−1/3,5/3) for
Ψ̃.4

We assume that dynamical symmetry breaking takes place, generating a condensate
⟨χiχj⟩ ∝ δij that breaks SU(5) → SO(5). Consistent with the general considerations of
Ref. [6], the Majorana bilinear χiχj is antisymmetric on its spinor indices and symmetric
on its hypercolor indices, and so it is symmetric on its flavor indices. In addition, there is
a condensate ⟨ψaψb⟩ ∝ δab that breaks SU(3)× SU(3)′ to its diagonal subgroup, which we
identify with SU(3)color. Both condensates also break U(1)′. The unbroken group is

H = SO(5)× SU(3)color × U(1)X . (2.5)

For heuristic arguments supporting this pattern of symmetry breaking, see Refs. [6, 8]. Of
course, whether this is the actual symmetry breaking pattern is something that can be
investigated on the lattice. Indeed the symmetry breaking pattern of the Dirac fermions,
with SU(3)×SU(3)′ breaking to the diagonal SU(3) subgroup, is consistent with all known
lattice results. A first study of the real-irrep symmetry breaking pattern, in a similar theory
except with four, instead of five, Majorana fermions, has recently appeared in Ref. [16].

The effective theory at energy scales much below the hypercolor scale ΛHC thus contains
NGBs parametrizing the U(1)′ group manifold, and the cosets SU(3) × SU(3)′/SU(3)color
and SU(5)/SO(5), amounting to 1, 8 and 14 NGBs for each of these factors, respectively.
These NGBs are massless when all couplings of the hypercolor theory to the SM are turned
off. A non-trivial effective potential is induced both by the SM gauge bosons, as we briefly
review in Sec. III, and by the coupling to the third-generation quarks. The latter, which is
the main subject of this paper, will be studied in Sec. IV.

The Higgs doublet is a subset of the NGBmultiplet parametrizing the coset SU(5)/SO(5).
In more detail, the 14 NGBs corresponding to the generators in this coset are described
by a non-linear field Σ ∈ SU(5) obtained by considering fluctuations around the vacuum
⟨Σ⟩ = Σ0 = 1,

Σ = uΣ0 u
T = exp(iΠ/f)Σ0 exp(iΠ/f)

T = exp(2iΠ/f) , (2.6)

with5

Σ = ΣT ⇒ Π = ΠT . (2.7)

Under g ∈ SU(5), Σ transforms as Σ → gΣgT .
At the level of the algebra, SU(2)L × SU(2)R in Eq. (2.1) is equivalent to the SO(4) ⊂

SO(5) associated with the first four rows and columns. The explicit form of the generators
is given in the appendix. With this choice, the field Π can be written as

Π = Θ+Θ† + Φ0 + Φ+ + Φ†
+ + η , (2.8)

with Θ containing the Higgs doublet H = (H+, H0)T ,

Θ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 −iH+/
√
2

0 0 0 0 H+/
√
2

0 0 0 0 iH0/
√
2

0 0 0 0 H0/
√
2

−iH+/
√
2 H+/

√
2 iH0/

√
2 H0/

√
2 0

⎞

⎟

⎟

⎟

⎟

⎠

. (2.9)

4 Compare Table 1 of Ref. [8].
5 Note that in Ref. [8], the notation Σ is used for the field u of Eq. (2.6).
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II. FERRETTI’S MODEL

In Ref. [10], several requirements were put forward for a class of composite Higgs models
based on a hypercolor gauge theory as a UV completion. We begin by listing these require-
ments. The gauge group is assumed to be simple, and the dynamical symmetry breaking
pattern, G → H , to be such that

H ⊃ SU(3)color × SU(2)L × SU(2)R × U(1)X (2.1)

⊃ SU(3)color × SU(2)L × U(1)Y ,

with the SM gauge group in the last line. The group SU(2)R is the familiar custodial sym-
metry of the SM, and the hypercharge is Y = T 3

R+X . The SM Higgs doublet, with quantum
numbers (1, 2, 2)0 under SU(3)color×SU(2)L×SU(2)R×U(1)X , should be contained in the
NGB multiplet associated with the symmetry breaking G → H . In order to accommodate
a partially composite top quark [7], i.e., for the top quark to acquire its mass through lin-
ear couplings to hyperbaryons, there must exist hyperbaryons with quantum numbers that
match those of the SM quarks. This includes a set of right-handed, spin-1/2 hyperbaryons
with quantum numbers (3, 2)1/6 of the SM gauge group SU(3)color×SU(2)L×U(1)Y , which
serve as partners of the SM quark doublet qL; and left-handed, spin-1/2 hyperbaryons with
the quantum numbers (3, 1)2/3, to serve as partners of the SM quark singlet tR. Finally, the
hypercolor theory should be asymptotically free, and both the hypercolor gauge group and
the SM gauge group should be free of anomalies.

The hypercolor model with the smallest gauge group that satisfies all these require-
ments is an SU(4) gauge theory [10]. The hyperfermion content consists of five Majorana
fermions χi, i = 1, . . . , 5, transforming in the six-dimensional two-index antisymmetric irrep
of hypercolor, which is a real representation; and three Dirac fermions ψa, a = 1, 2, 3, in
the fundamental representation. The Majorana field χ can be written in terms of a Weyl
fermion Υ as

χABi =

(

ΥABi

1
2ϵABCD ϵ (ῩCD

i )T

)

, (2.2a)

χAB
i =

1

2
ϵABCDχT

CDi C =
(

−1
2ϵ

ABCD(ΥCDi)T ϵ ῩAB
i

)

. (2.2b)

We use capital letters for the SU(4) hypercolor indices, with lower indices for the fundamen-
tal irrep, and upper indices for the anti-fundamental irrep. Several lower or upper indices
will always be fully antisymmetrized. A Dirac fermion ψ in the fundamental irrep can be
written in terms of two right-handed Weyl fermions, Ψ in the fundamental irrep and Ψ̃ in
the anti-fundamental, as

ψAa =

(

ΨAa

ϵ ¯̃ΨT
Aa

)

, ψ
A
a =

(

−(Ψ̃A
a )

T ϵ Ψ̄A
a

)

. (2.3)

We suppress spinor indices. C is the charge-conjugation matrix, ϵ = iσ2 is the two-
dimensional ϵ-tensor acting on the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work in euclidean space, choosing
our Dirac matrices to be hermitian and using the chiral representation, see App. A.

The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)
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In Ref. [10], several requirements were put forward for a class of composite Higgs models
based on a hypercolor gauge theory as a UV completion. We begin by listing these require-
ments. The gauge group is assumed to be simple, and the dynamical symmetry breaking
pattern, G → H , to be such that

H ⊃ SU(3)color × SU(2)L × SU(2)R × U(1)X (2.1)

⊃ SU(3)color × SU(2)L × U(1)Y ,

with the SM gauge group in the last line. The group SU(2)R is the familiar custodial sym-
metry of the SM, and the hypercharge is Y = T 3

R+X . The SM Higgs doublet, with quantum
numbers (1, 2, 2)0 under SU(3)color×SU(2)L×SU(2)R×U(1)X , should be contained in the
NGB multiplet associated with the symmetry breaking G → H . In order to accommodate
a partially composite top quark [7], i.e., for the top quark to acquire its mass through lin-
ear couplings to hyperbaryons, there must exist hyperbaryons with quantum numbers that
match those of the SM quarks. This includes a set of right-handed, spin-1/2 hyperbaryons
with quantum numbers (3, 2)1/6 of the SM gauge group SU(3)color×SU(2)L×U(1)Y , which
serve as partners of the SM quark doublet qL; and left-handed, spin-1/2 hyperbaryons with
the quantum numbers (3, 1)2/3, to serve as partners of the SM quark singlet tR. Finally, the
hypercolor theory should be asymptotically free, and both the hypercolor gauge group and
the SM gauge group should be free of anomalies.

The hypercolor model with the smallest gauge group that satisfies all these require-
ments is an SU(4) gauge theory [10]. The hyperfermion content consists of five Majorana
fermions χi, i = 1, . . . , 5, transforming in the six-dimensional two-index antisymmetric irrep
of hypercolor, which is a real representation; and three Dirac fermions ψa, a = 1, 2, 3, in
the fundamental representation. The Majorana field χ can be written in terms of a Weyl
fermion Υ as

χABi =

(

ΥABi

1
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)
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i =

1
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(
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)
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We use capital letters for the SU(4) hypercolor indices, with lower indices for the fundamen-
tal irrep, and upper indices for the anti-fundamental irrep. Several lower or upper indices
will always be fully antisymmetrized. A Dirac fermion ψ in the fundamental irrep can be
written in terms of two right-handed Weyl fermions, Ψ in the fundamental irrep and Ψ̃ in
the anti-fundamental, as

ψAa =

(
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Aa

)

, ψ
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a =
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−(Ψ̃A
a )
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We suppress spinor indices. C is the charge-conjugation matrix, ϵ = iσ2 is the two-
dimensional ϵ-tensor acting on the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work in euclidean space, choosing
our Dirac matrices to be hermitian and using the chiral representation, see App. A.

The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)
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with quantum numbers (5, 1, 1)(0,−1) for Υ; (1, 3̄, 1)(1/3,5/3) for Ψ; and (1, 1, 3)(−1/3,5/3) for
Ψ̃.4

We assume that dynamical symmetry breaking takes place, generating a condensate
⟨χiχj⟩ ∝ δij that breaks SU(5) → SO(5). Consistent with the general considerations of
Ref. [6], the Majorana bilinear χiχj is antisymmetric on its spinor indices and symmetric
on its hypercolor indices, and so it is symmetric on its flavor indices. In addition, there is
a condensate ⟨ψaψb⟩ ∝ δab that breaks SU(3)× SU(3)′ to its diagonal subgroup, which we
identify with SU(3)color. Both condensates also break U(1)′. The unbroken group is

H = SO(5)× SU(3)color × U(1)X . (2.5)

For heuristic arguments supporting this pattern of symmetry breaking, see Refs. [6, 8]. Of
course, whether this is the actual symmetry breaking pattern is something that can be
investigated on the lattice. Indeed the symmetry breaking pattern of the Dirac fermions,
with SU(3)×SU(3)′ breaking to the diagonal SU(3) subgroup, is consistent with all known
lattice results. A first study of the real-irrep symmetry breaking pattern, in a similar theory
except with four, instead of five, Majorana fermions, has recently appeared in Ref. [16].

The effective theory at energy scales much below the hypercolor scale ΛHC thus contains
NGBs parametrizing the U(1)′ group manifold, and the cosets SU(3) × SU(3)′/SU(3)color
and SU(5)/SO(5), amounting to 1, 8 and 14 NGBs for each of these factors, respectively.
These NGBs are massless when all couplings of the hypercolor theory to the SM are turned
off. A non-trivial effective potential is induced both by the SM gauge bosons, as we briefly
review in Sec. III, and by the coupling to the third-generation quarks. The latter, which is
the main subject of this paper, will be studied in Sec. IV.

The Higgs doublet is a subset of the NGBmultiplet parametrizing the coset SU(5)/SO(5).
In more detail, the 14 NGBs corresponding to the generators in this coset are described
by a non-linear field Σ ∈ SU(5) obtained by considering fluctuations around the vacuum
⟨Σ⟩ = Σ0 = 1,

Σ = uΣ0 u
T = exp(iΠ/f)Σ0 exp(iΠ/f)

T = exp(2iΠ/f) , (2.6)

with5

Σ = ΣT ⇒ Π = ΠT . (2.7)

Under g ∈ SU(5), Σ transforms as Σ → gΣgT .
At the level of the algebra, SU(2)L × SU(2)R in Eq. (2.1) is equivalent to the SO(4) ⊂

SO(5) associated with the first four rows and columns. The explicit form of the generators
is given in the appendix. With this choice, the field Π can be written as

Π = Θ+Θ† + Φ0 + Φ+ + Φ†
+ + η , (2.8)

with Θ containing the Higgs doublet H = (H+, H0)T ,

Θ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 −iH+/
√
2

0 0 0 0 H+/
√
2

0 0 0 0 iH0/
√
2

0 0 0 0 H0/
√
2

−iH+/
√
2 H+/

√
2 iH0/

√
2 H0/

√
2 0

⎞

⎟

⎟

⎟

⎟

⎠

. (2.9)

4 Compare Table 1 of Ref. [8].
5 Note that in Ref. [8], the notation Σ is used for the field u of Eq. (2.6).
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Simplest supersymmetric model: 
 free theory of a scalar and fermion 

3 Supersymmetric Lagrangians

In this section we will describe the construction of supersymmetric Lagrangians. The goal is a recipe
that will allow us to write down the allowed interactions and mass terms of a general supersymmetric
theory, so that later we can apply the results to the special case of the MSSM. In this section, we
will not use the superfield [48] language, which is more elegant and efficient for many purposes, but
requires a more specialized machinery and might seem rather cabalistic at first. Section 4 will pro-
vide the superfield version of the same material. We begin by considering the simplest example of a
supersymmetric theory in four dimensions.

3.1 The simplest supersymmetric model: a free chiral supermultiplet

The minimum fermion content of a field theory in four dimensions consists of a single left-handed two-
component Weyl fermion ψ. Since this is an intrinsically complex object, it seems sensible to choose as
its superpartner a complex scalar field φ. The simplest action we can write down for these fields just
consists of kinetic energy terms for each:

S =
∫

d4x (Lscalar + Lfermion) , (3.1.1)

Lscalar = −∂µφ∗∂µφ, Lfermion = iψ†σµ∂µψ. (3.1.2)

This is called the massless, non-interacting Wess-Zumino model [11], and it corresponds to a single
chiral supermultiplet as discussed in the Introduction.

A supersymmetry transformation should turn the scalar boson field φ into something involving the
fermion field ψα. The simplest possibility for the transformation of the scalar field is

δφ = ϵψ, δφ∗ = ϵ†ψ†, (3.1.3)

where ϵα is an infinitesimal, anticommuting, two-component Weyl fermion object parameterizing the
supersymmetry transformation. Until section 7.5, we will be discussing global supersymmetry, which
means that ϵα is a constant, satisfying ∂µϵα = 0. Since ψ has dimensions of [mass]3/2 and φ has
dimensions of [mass], it must be that ϵ has dimensions of [mass]−1/2. Using eq. (3.1.3), we find that
the scalar part of the Lagrangian transforms as

δLscalar = −ϵ∂µψ ∂µφ∗ − ϵ†∂µψ† ∂µφ. (3.1.4)

We would like for this to be canceled by δLfermion, at least up to a total derivative, so that the action
will be invariant under the supersymmetry transformation. Comparing eq. (3.1.4) with Lfermion, we see
that for this to have any chance of happening, δψ should be linear in ϵ† and in φ, and should contain
one spacetime derivative. Up to a multiplicative constant, there is only one possibility to try:

δψα = −i(σµϵ†)α ∂µφ, δψ†
α̇ = i(ϵσµ)α̇ ∂µφ

∗. (3.1.5)

With this guess, one immediately obtains

δLfermion = −ϵσµσν∂νψ ∂µφ∗ + ψ†σνσµϵ† ∂µ∂νφ . (3.1.6)

This can be simplified by employing the Pauli matrix identities eqs. (2.24), (2.25) and using the fact
that partial derivatives commute (∂µ∂ν = ∂ν∂µ). Equation (3.1.6) then becomes

δLfermion = ϵ∂µψ ∂µφ
∗ + ϵ†∂µψ† ∂µφ

−∂µ
(
ϵσνσµψ ∂νφ

∗ + ϵψ ∂µφ∗ + ϵ†ψ† ∂µφ
)
. (3.1.7)
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Supersymmetry Algebra

The systematic cancellation of the dangerous contributions to ∆m2
H can only be brought about by

the type of conspiracy that is better known to physicists as a symmetry. Comparing eqs. (1.2) and
(1.3) strongly suggests that the new symmetry ought to relate fermions and bosons, because of the
relative minus sign between fermion loop and boson loop contributions to ∆m2

H . (Note that λS must
be positive if the scalar potential is to be bounded from below.) If each of the quarks and leptons of the
Standard Model is accompanied by two complex scalars with λS = |λf |2, then the Λ2

UV contributions of
Figures 1.1a and 1.1b will neatly cancel [3]. Clearly, more restrictions on the theory will be necessary to
ensure that this success persists to higher orders, so that, for example, the contributions in Figure 1.2
and eq. (1.4) from a very heavy fermion are canceled by the two-loop effects of some very heavy
bosons. Fortunately, the cancellation of all such contributions to scalar masses is not only possible,
but is actually unavoidable, once we merely assume that there exists a symmetry relating fermions and
bosons, called a supersymmetry.

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa. The
operator Q that generates such transformations must be an anticommuting spinor, with

Q|Boson⟩ = |Fermion⟩, Q|Fermion⟩ = |Boson⟩. (1.5)

Spinors are intrinsically complex objects, so Q† (the hermitian conjugate of Q) is also a symmetry
generator. Because Q and Q† are fermionic operators, they carry spin angular momentum 1/2, so it is
clear that supersymmetry must be a spacetime symmetry. The possible forms for such symmetries in
an interacting quantum field theory are highly restricted by the Haag-Lopuszanski-Sohnius extension
of the Coleman-Mandula theorem [4]. For realistic theories that, like the Standard Model, have chiral
fermions (i.e., fermions whose left- and right-handed pieces transform differently under the gauge group)
and thus the possibility of parity-violating interactions, this theorem implies that the generators Q and
Q† must satisfy an algebra of anticommutation and commutation relations with the schematic form

{Q,Q†} = Pµ, (1.6)

{Q,Q} = {Q†, Q†} = 0, (1.7)

[Pµ, Q] = [Pµ, Q†] = 0, (1.8)

where Pµ is the four-momentum generator of spacetime translations. Here we have ruthlessly sup-
pressed the spinor indices on Q and Q†; after developing some notation we will, in section 3.1, derive
the precise version of eqs. (1.6)-(1.8) with indices restored. In the meantime, we simply note that the
appearance of Pµ on the right-hand side of eq. (1.6) is unsurprising, since it transforms under Lorentz
boosts and rotations as a spin-1 object while Q and Q† on the left-hand side each transform as spin-1/2
objects.

The single-particle states of a supersymmetric theory fall into irreducible representations of the
supersymmetry algebra, called supermultiplets. Each supermultiplet contains both fermion and boson
states, which are commonly known as superpartners of each other. By definition, if |Ω⟩ and |Ω′⟩ are
members of the same supermultiplet, then |Ω′⟩ is proportional to some combination of Q and Q†

operators acting on |Ω⟩, up to a spacetime translation or rotation. The squared-mass operator −P 2

commutes with the operators Q, Q†, and with all spacetime rotation and translation operators, so
it follows immediately that particles inhabiting the same irreducible supermultiplet must have equal
eigenvalues of −P 2, and therefore equal masses.

The supersymmetry generators Q,Q† also commute with the generators of gauge transformations.
Therefore particles in the same supermultiplet must also be in the same representation of the gauge
group, and so must have the same electric charges, weak isospin, and color degrees of freedom.

Each supermultiplet contains an equal number of fermion and boson degrees of freedom. To prove
this, consider the operator (−1)2s where s is the spin angular momentum. By the spin-statistics
theorem, this operator has eigenvalue +1 acting on a bosonic state and eigenvalue −1 acting on a

5
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{Q,Q†} = Pµ, (1.6)

{Q,Q} = {Q†, Q†} = 0, (1.7)

[Pµ, Q] = [Pµ, Q†] = 0, (1.8)

where Pµ is the four-momentum generator of spacetime translations. Here we have ruthlessly sup-
pressed the spinor indices on Q and Q†; after developing some notation we will, in section 3.1, derive
the precise version of eqs. (1.6)-(1.8) with indices restored. In the meantime, we simply note that the
appearance of Pµ on the right-hand side of eq. (1.6) is unsurprising, since it transforms under Lorentz
boosts and rotations as a spin-1 object while Q and Q† on the left-hand side each transform as spin-1/2
objects.

The single-particle states of a supersymmetric theory fall into irreducible representations of the
supersymmetry algebra, called supermultiplets. Each supermultiplet contains both fermion and boson
states, which are commonly known as superpartners of each other. By definition, if |Ω⟩ and |Ω′⟩ are
members of the same supermultiplet, then |Ω′⟩ is proportional to some combination of Q and Q†

operators acting on |Ω⟩, up to a spacetime translation or rotation. The squared-mass operator −P 2

commutes with the operators Q, Q†, and with all spacetime rotation and translation operators, so
it follows immediately that particles inhabiting the same irreducible supermultiplet must have equal
eigenvalues of −P 2, and therefore equal masses.

The supersymmetry generators Q,Q† also commute with the generators of gauge transformations.
Therefore particles in the same supermultiplet must also be in the same representation of the gauge
group, and so must have the same electric charges, weak isospin, and color degrees of freedom.

Each supermultiplet contains an equal number of fermion and boson degrees of freedom. To prove
this, consider the operator (−1)2s where s is the spin angular momentum. By the spin-statistics
theorem, this operator has eigenvalue +1 acting on a bosonic state and eigenvalue −1 acting on a
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Q commutes with P² and any generator of the gauge symmetries:

Minimal SUSY (N=1):  One extra generator Q

The Fermion and Boson have equal masses and charges

Schematic form: [Q, Mµ� ] = Q



Minimal Supersymmetric SM (MSSM)

Imposing supersymmetry to the SM ➡ MSSM

The spectrum is doubled:

SM fermion ➡  New scalar (s-”...”)
SM boson ➡  New majorana fermion 

                               (“ ...“-ino)



... but not yet realistic:

The model has a quantum anomaly (due to the Higgsino)
 and the down-quarks and leptons are massless 

Extra Higgs needed 
      ➡  Two Higgs doublets:

Hu : (1, 2, 1)
Hd : (1, 2,�1)

➞ give mass to the up quarks

➞ give mass to the down quarks
            and leptons

+ two Higgsino doublets:

eHu : (1, 2, 1)
eHd : (1, 2,�1)



Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗
R u†

R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

Table 1.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0 fields
are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

completely different reason: because of the structure of supersymmetric theories, only a Y = 1/2 Higgs
chiral supermultiplet can have the Yukawa couplings necessary to give masses to charge +2/3 up-type
quarks (up, charm, top), and only a Y = −1/2 Higgs can have the Yukawa couplings necessary to give
masses to charge −1/3 down-type quarks (down, strange, bottom) and to the charged leptons. We
will call the SU(2)L-doublet complex scalar fields with Y = 1/2 and Y = −1/2 by the names Hu and
Hd, respectively.† The weak isospin components of Hu with T3 = (1/2, −1/2) have electric charges
1, 0 respectively, and are denoted (H+

u , H0
u). Similarly, the SU(2)L-doublet complex scalar Hd has

T3 = (1/2, −1/2) components (H0
d , H−

d ). The neutral scalar that corresponds to the physical Standard
Model Higgs boson is in a linear combination of H0

u and H0
d ; we will discuss this further in section 7.1.

The generic nomenclature for a spin-1/2 superpartner is to append “-ino” to the name of the Standard
Model particle, so the fermionic partners of the Higgs scalars are called higgsinos. They are denoted
by H̃u, H̃d for the SU(2)L-doublet left-handed Weyl spinor fields, with weak isospin components H̃+

u ,
H̃0

u and H̃0
d , H̃−

d .
We have now found all of the chiral supermultiplets of a minimal phenomenologically viable exten-

sion of the Standard Model. They are summarized in Table 1.1, classified according to their transfor-
mation properties under the Standard Model gauge group SU(3)C ×SU(2)L ×U(1)Y , which combines
uL, dL and ν, eL degrees of freedom into SU(2)L doublets. Here we follow a standard convention, that
all chiral supermultiplets are defined in terms of left-handed Weyl spinors, so that the conjugates of
the right-handed quarks and leptons (and their superpartners) appear in Table 1.1. This protocol for
defining chiral supermultiplets turns out to be very useful for constructing supersymmetric Lagrangi-
ans, as we will see in section 3. It is also useful to have a symbol for each of the chiral supermultiplets
as a whole; these are indicated in the second column of Table 1.1. Thus, for example, Q stands for
the SU(2)L-doublet chiral supermultiplet containing ũL, uL (with weak isospin component T3 = 1/2),

and d̃L, dL (with T3 = −1/2), while u stands for the SU(2)L-singlet supermultiplet containing ũ∗
R, u†

R.
There are three families for each of the quark and lepton supermultiplets, Table 1.1 lists the first-family
representatives. A family index i = 1, 2, 3 can be affixed to the chiral supermultiplet names (Qi, ui, . . .)
when needed, for example (e1, e2, e3) = (e, µ, τ). The bar on u, d, e fields is part of the name, and does
not denote any kind of conjugation.

The Higgs chiral supermultiplet Hd (containing H0
d , H−

d , H̃0
d , H̃−

d ) has exactly the same Standard
Model gauge quantum numbers as the left-handed sleptons and leptons Li, for example (ν̃, ẽL, ν,
eL). Naively, one might therefore suppose that we could have been more economical in our assignment

†Other notations in the literature have H1, H2 or H,H instead of Hu, Hd. The notation used here has the virtue of
making it easy to remember which Higgs VEVs gives masses to which type of quarks.
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 1.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

by taking a neutrino and a Higgs scalar to be superpartners, instead of putting them in separate
supermultiplets. This would amount to the proposal that the Higgs boson and a sneutrino should be the
same particle. This attempt played a key role in some of the first attempts to connect supersymmetry to
phenomenology [5], but it is now known to not work. Even ignoring the anomaly cancellation problem
mentioned above, many insoluble phenomenological problems would result, including lepton-number
non-conservation and a mass for at least one of the neutrinos in gross violation of experimental bounds.
Therefore, all of the superpartners of Standard Model particles are really new particles, and cannot be
identified with some other Standard Model state.

The vector bosons of the Standard Model clearly must reside in gauge supermultiplets. Their
fermionic superpartners are generically referred to as gauginos. The SU(3)C color gauge interactions
of QCD are mediated by the gluon, whose spin-1/2 color-octet supersymmetric partner is the gluino. As
usual, a tilde is used to denote the supersymmetric partner of a Standard Model state, so the symbols
for the gluon and gluino are g and g̃ respectively. The electroweak gauge symmetry SU(2)L ×U(1)Y is
associated with spin-1 gauge bosons W+,W 0,W− and B0, with spin-1/2 superpartners W̃+, W̃ 0, W̃−

and B̃0, called winos and bino. After electroweak symmetry breaking, the W 0, B0 gauge eigenstates
mix to give mass eigenstates Z0 and γ. The corresponding gaugino mixtures of W̃ 0 and B̃0 are called
zino (Z̃0) and photino (γ̃); if supersymmetry were unbroken, they would be mass eigenstates with
masses mZ and 0. Table 1.2 summarizes the gauge supermultiplets of a minimal supersymmetric
extension of the Standard Model.

The chiral and gauge supermultiplets in Tables 1.1 and 1.2 make up the particle content of the
Minimal Supersymmetric Standard Model (MSSM). The most obvious and interesting feature of this
theory is that none of the superpartners of the Standard Model particles has been discovered as of
this writing. If supersymmetry were unbroken, then there would have to be selectrons ẽL and ẽR with
masses exactly equal to me = 0.511... MeV. A similar statement applies to each of the other sleptons
and squarks, and there would also have to be a massless gluino and photino. These particles would have
been extraordinarily easy to detect long ago. Clearly, therefore, supersymmetry is a broken symmetry
in the vacuum state chosen by Nature.

An important clue as to the nature of supersymmetry breaking can be obtained by returning
to the motivation provided by the hierarchy problem. Supersymmetry forced us to introduce two
complex scalar fields for each Standard Model Dirac fermion, which is just what is needed to enable a
cancellation of the quadratically divergent (Λ2

UV) pieces of eqs. (1.2) and (1.3). This sort of cancellation
also requires that the associated dimensionless couplings should be related (for example λS = |λf |2).
The necessary relationships between couplings indeed occur in unbroken supersymmetry, as we will
see in section 3. In fact, unbroken supersymmetry guarantees that the quadratic divergences in scalar
squared masses must vanish to all orders in perturbation theory.‡ Now, if broken supersymmetry is still
to provide a solution to the hierarchy problem even in the presence of supersymmetry breaking, then

‡A simple way to understand this is to recall that unbroken supersymmetry requires the degeneracy of scalar and
fermion masses. Radiative corrections to fermion masses are known to diverge at most logarithmically in any renormal-
izable field theory, so the same must be true for scalar masses in unbroken supersymmetry.
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MSSM Spectrum

Squarks

Sleptons

Higgsinos

Gauginos

particles:  R-parity = 1
superpartners: R-parity = -1

1) Superpart. interact in pairs
2) Lightest superpart. stable



Type of interactions

tL t†R

H0
u

(a)

t̃L t†R

H̃0
u

(b)

tL t̃∗R

H̃0
u

(c)

Figure 5.1: The top-quark Yukawa coupling (a) and its “supersymmetrizations” (b), (c), all of
strength yt.

space. All of the gauge [SU(3)C color and SU(2)L weak isospin] and family indices in eq. (5.1) are
suppressed. The “µ term”, as it is traditionally called, can be written out as µ(Hu)α(Hd)βϵαβ, where
ϵαβ is used to tie together SU(2)L weak isospin indices α,β = 1, 2 in a gauge-invariant way. Likewise,
the term uyuQHu can be written out as uia (yu)i

j Qjαa (Hu)βϵαβ, where i = 1, 2, 3 is a family index,
and a = 1, 2, 3 is a color index which is lowered (raised) in the 3 (3) representation of SU(3)C .

The µ term in eq. (5.1) is the supersymmetric version of the Higgs boson mass in the Standard
Model. It is unique, because terms H∗

uHu or H∗
dHd are forbidden in the superpotential, which must be

analytic in the chiral superfields (or equivalently in the scalar fields) treated as complex variables, as
shown in section 3.2. We can also see from the form of eq. (5.1) why both Hu and Hd are needed in order
to give Yukawa couplings, and thus masses, to all of the quarks and leptons. Since the superpotential
must be analytic, the uQHu Yukawa terms cannot be replaced by something like uQH∗

d . Similarly,
the dQHd and eLHd terms cannot be replaced by something like dQH∗

u and eLH∗
u. The analogous

Yukawa couplings would be allowed in a general non-supersymmetric two Higgs doublet model, but are
forbidden by the structure of supersymmetry. So we need both Hu and Hd, even without invoking the
argument based on anomaly cancellation mentioned in the Introduction.

The Yukawa matrices determine the current masses and CKM mixing angles of the ordinary quarks
and leptons, after the neutral scalar components of Hu and Hd get VEVs. Since the top quark, bottom
quark and tau lepton are the heaviest fermions in the Standard Model, it is often useful to make an
approximation that only the (3, 3) family components of each of yu, yd and ye are important:

yu ≈

⎛

⎝
0 0 0
0 0 0
0 0 yt

⎞

⎠ , yd ≈

⎛

⎝
0 0 0
0 0 0
0 0 yb

⎞

⎠ , ye ≈

⎛

⎝
0 0 0
0 0 0
0 0 yτ

⎞

⎠ . (5.2)

In this limit, only the third family and Higgs fields contribute to the MSSM superpotential. It is
instructive to write the superpotential in terms of the separate SU(2)L weak isospin components
[Q3 = (t b), L3 = (ντ τ), Hu = (H+

u H0
u), Hd = (H0

d H−
d ), u3 = t, d3 = b, e3 = τ ], so:

WMSSM ≈ yt(ttH
0
u − tbH+

u ) − yb(btH
−
d − bbH0

d) − yτ (τντH
−
d − ττH0

d)

+µ(H+
u H−

d − H0
uH0

d). (5.3)

The minus signs inside the parentheses appear because of the antisymmetry of the ϵαβ symbol used to
tie up the SU(2)L indices. The other minus signs in eq. (5.1) were chosen so that the terms ytttH0

u,
ybbbH0

d , and yτττH0
d , which will become the top, bottom and tau masses when H0

u and H0
d get VEVs,

each have overall positive signs in eq. (5.3).
Since the Yukawa interactions yijk in a general supersymmetric theory must be completely sym-

metric under interchange of i, j, k, we know that yu, yd and ye imply not only Higgs-quark-quark and
Higgs-lepton-lepton couplings as in the Standard Model, but also squark-Higgsino-quark and slepton-
Higgsino-lepton interactions. To illustrate this, Figures 5.1a,b,c show some of the interactions involving
the top-quark Yukawa coupling yt. Figure 5.1a is the Standard Model-like coupling of the top quark
to the neutral complex scalar Higgs boson, which follows from the first term in eq. (5.3). For variety,
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Figure 3.2: Supersymmetric dimensionful couplings: (a) (scalar)3 interaction vertex M∗
inyjkn and (b)

the conjugate interaction M iny∗jkn, (c) fermion mass term M ij and (d) conjugate fermion mass term

M∗
ij , and (e) scalar squared-mass term M∗

ikM
kj.
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Figure 3.3: Supersymmetric gauge interaction vertices.

tion of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences in quantum
corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
in eq. (3.57). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.59) and (3.65)-(3.67) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the
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MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
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Figure 3.3: Supersymmetric gauge interaction vertices.

tion of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences in quantum
corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
in eq. (3.57). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.59) and (3.65)-(3.67) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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Up to scalar trilinear and quartics:
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Figure 4.1: Soft supersymmetry-breaking terms: (a) Gaugino mass Ma; (b) non-analytic scalar squared
mass (m2)ij ; (c) analytic scalar squared mass bij; and (d) scalar cubic coupling aijk.

that are singlets or in the adjoint representation of a simple factor of the gauge group, then there are
also possible soft supersymmetry-breaking Dirac mass terms between the corresponding fermions ψa

and the gauginos [54]-[59]:

L = −Ma
Diracλ

aψa + c.c. (4.3)

This is not relevant for the MSSM with minimal field content, which does not have adjoint represen-
tation chiral supermultiplets. Therefore, equation (4.1) is usually taken to be the general form of the
soft supersymmetry-breaking Lagrangian. For some interesting exceptions, see refs. [54]-[65].

The terms in Lsoft clearly do break supersymmetry, because they involve only scalars and gauginos
and not their respective superpartners. In fact, the soft terms in Lsoft are capable of giving masses to all
of the scalars and gauginos in a theory, even if the gauge bosons and fermions in chiral supermultiplets
are massless (or relatively light). The gaugino masses Ma are always allowed by gauge symmetry. The
(m2)ij terms are allowed for i, j such that φi, φj∗ transform in complex conjugate representations of
each other under all gauge symmetries; in particular this is true of course when i = j, so every scalar
is eligible to get a mass in this way if supersymmetry is broken. The remaining soft terms may or may
not be allowed by the symmetries. The aijk, bij , and ti terms have the same form as the yijk, M ij ,
and Li terms in the superpotential [compare eq. (4.1) to eq. (3.47) or eq. (3.77)], so they will each be
allowed by gauge invariance if and only if a corresponding superpotential term is allowed.

The Feynman diagram interactions corresponding to the allowed soft terms in eq. (4.1) are shown
in Figure 4.1. For each of the interactions in Figures 4.1a,c,d there is another with all arrows reversed,
corresponding to the complex conjugate term in the Lagrangian. We will apply these general results
to the specific case of the MSSM in the next section.

5 The Minimal Supersymmetric Standard Model

In sections 3 and 4, we have found a general recipe for constructing Lagrangians for softly broken
supersymmetric theories. We are now ready to apply these general results to the MSSM. The particle
content for the MSSM was described in the Introduction. In this section we will complete the model
by specifying the superpotential and the soft supersymmetry-breaking terms.

5.1 The superpotential and supersymmetric interactions

The superpotential for the MSSM is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd . (5.1)

The objects Hu, Hd, Q, L, u, d, e appearing here are chiral superfields corresponding to the chiral
supermultiplets in Table 1.1. (Alternatively, they can be just thought of as the corresponding scalar
fields, as was done in section 3, but we prefer not to put the tildes on Q, L, u, d, e in order to
reduce clutter.) The dimensionless Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.
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Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [182, 183].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.

‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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Higgs sector

This implies that |M2| ≪ |M1| ≪ |M3|, so the lightest neutralino is actually mostly wino, with a
lightest chargino that is only of order 200 MeV heavier, depending on the values of µ and tan β. The
decay C̃±

1 → Ñ1π± produces a very soft pion, implying unique and difficult signatures in colliders
[173]-[177].

Another large general class of models breaks supersymmetry using the geometric or topological
properties of the extra dimensions. In the Scherk-Schwarz mechanism [178], the symmetry is broken
by assuming different boundary conditions for the fermion and boson fields on the compactified space.
In supersymmetric models where the size of the extra dimension is parameterized by a modulus (a
massless or nearly massless excitation) called a radion, the F -term component of the radion chiral
supermultiplet can obtain a VEV, which becomes a source for supersymmetry breaking in the MSSM.
These two ideas turn out to be often related. Some of the variety of models proposed along these lines
can be found in [179]. These mechanisms can also be combined with gaugino-mediation and AMSB. It
seems likely that the possibilities are not yet fully explored.

7 The mass spectrum of the MSSM

7.1 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by the fact
that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H−
d ) rather than just one

in the ordinary Standard Model. The classical scalar potential for the Higgs scalar fields in the MSSM
is given by

V = (|µ|2 + m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 + m2
Hd

)(|H0
d |2 + |H−

d |2)
+ [b (H+

u H−
d − H0

uH0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 +

1

2
g2|H+

u H0∗
d + H0

uH−∗
d |2. (7.1)

The terms proportional to |µ|2 come from F -terms [see eq. (5.5)]. The terms proportional to g2 and
g′2 are the D-term contributions, obtained from the general formula eq. (3.75) after some rearranging.
Finally, the terms proportional to m2

Hu
, m2

Hd
and b are just a rewriting of the last three terms of

eq. (5.12). The full scalar potential of the theory also includes many terms involving the squark and
slepton fields that we can ignore here, since they do not get VEVs because they have large positive
squared masses.

We now have to demand that the minimum of this potential should break electroweak symmetry
down to electromagnetism SU(2)L × U(1)Y → U(1)EM, in accord with experiment. We can use the
freedom to make gauge transformations to simplify this analysis. First, the freedom to make SU(2)L
gauge transformations allows us to rotate away a possible VEV for one of the weak isospin components
of one of the scalar fields, so without loss of generality we can take H+

u = 0 at the minimum of the
potential. Then one can check that a minimum of the potential satisfying ∂V/∂H+

u = 0 must also
have H−

d = 0. This is good, because it means that at the minimum of the potential electromagnetism
is necessarily unbroken, since the charged components of the Higgs scalars cannot get VEVs. After
setting H+

u = H−
d = 0, we are left to consider the scalar potential

V = (|µ|2 + m2
Hu

)|H0
u|2 + (|µ|2 + m2

Hd
)|H0

d |2 − (bH0
uH0

d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (7.2)

The only term in this potential that depends on the phases of the fields is the b-term. Therefore, a
redefinition of the phase of Hu or Hd can absorb any phase in b, so we can take b to be real and positive.
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Recently, the ATLAS and CMS collaborations have announced exciting hints for a Standard
Model-like Higgs boson at a mass of ⇡ 125 GeV. In this paper, we explore the potential consequences
for the MSSM and low scale SUSY-breaking. As is well-known, a 125 GeV Higgs implies either
extremely heavy stops (& 10 TeV), or near-maximal stop mixing. We review and quantify these
statements, and investigate the implications for models of low-scale SUSY breaking such as gauge
mediation where the A-terms are small at the messenger scale. For such models, we find that either
a gaugino must be superheavy or the NLSP is long-lived. Furthermore, stops will be tachyonic
at high scales. These are very strong restrictions on the mediation of supersymmetry breaking in
the MSSM, and suggest that if the Higgs truly is at 125 GeV, viable models of gauge-mediated
supersymmetry breaking are reduced to small corners of parameter space or must incorporate new
Higgs-sector physics.

I. INTRODUCTION

Recently, intriguing hints of the Standard Model (SM)-
like Higgs boson have been reported by the LHC. The
ATLAS collaboration has presented results in the dipho-
ton [1] and ZZ⇤ ! 4` [2] channels, showing a combined
⇠ 3� excess at mh ⇡ 126 GeV. The CMS collaboration
has also presented results with a weaker ⇠ 2� excess in
the �� channel at mh ⇡ 123 GeV [3] and two events in
the ZZ⇤ channel near the same mass [4]. It is too early
to say whether these preliminary results will grow in sig-
nificance to become a Higgs discovery, but it is not too
early to consider some of the consequences if they do.

The potential discovery of a light Higgs renews the
urgency of the gauge hierarchy problem. Supersymme-
try remains the best-motivated solution to the hierar-
chy problem. Although it has not yet been found at
the LHC, considerable discovery potential still remains
in the parameter space relevant for naturalness [5]. How-
ever, a 125 GeV Higgs places stringent constraints on
supersymmetry, especially in the context of the minimal
supersymmetric standard model (MSSM). In this paper
we will examine these constraints in detail and use this
to study the implications for low-scale SUSY breaking.

In the MSSM, for values of the CP -odd Higgs mass
mA & 200 GeV, there exists a light CP -even Higgs
state in the spectrum with SM-like couplings to the elec-
troweak gauge bosons. The SM-Higgs mass and proper-
ties are dominantly controlled by just a few weak-scale
MSSM parameters: at tree level, mA and tan�, joined at
higher order by the stop masses mt̃1,2 and the stop mix-
ing parameter Xt ⌘ At�µ cot�. At tree-level, the Higgs
mass is bounded above by mZ cos 2�. One-loop correc-
tions from stops are responsible for lifting this bound
to ⇠ 130 GeV [6–10, 12], for a general review, see [13].
Other parameters of the MSSM contribute radiative cor-
rections to the Higgs mass, but in general are highly sub-
dominant to the stop sector. Even with large loop e↵ects,

it is noteworthy that 125 GeV is a relatively large Higgs
mass for the MSSM—this fact allows us to constrain the
stop masses and mixing.
In this paper, we will focus on stop masses mt̃ . 5 TeV

which includes the collider relevant region. (We briefly
consider heavier stops in the appendix.) Here fixed-order
Higgs spectrum calculators such as FeynHiggs [14–17],
which implements a broad set of one and two-loop cor-
rections to the physical Higgs mass, should be fairly ac-
curate. Imposing an upper bound on the stop masses
implies stringent bounds on tan� and At, and in partic-
ular requires large mixings among the stops.
FormA . 500 GeV, the SM-like Higgs has an enhanced

coupling to the down-type fermions, leading to an in-
crease in the h ! bb̄ partial width and suppressing the
branching fractions into the main low-mass LHC search
modes, h ! ��,WW [18–20]. Since the LHC sees a rate
consistent with SM expectations (albeit with a sizeable
error bar), in this work we take mA = 1 TeV, where all
the Higgs couplings are SM-like. This limit also avoids
constraints from direct searches for H/A ! ⌧⌧ [21–23].
For tan� we will set a benchmark value of 30 and con-
sider a range of values in some cases.

II. IMPLICATIONS FOR WEAK-SCALE MSSM
PARAMETERS

For mt̃ . 5 TeV, a Higgs mass of mh ⇡ 125 GeV
places strong constraints on tan� and the stop parame-
ters. Although we will use FeynHiggs for all the plots in
this section, it is useful to keep in mind the approximate
one-loop formula for the Higgs mass,
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as it captures many of the qualitative features that we
will see. We have characterized the scale of superpart-

ner masses with MS ⌘
�
mt̃1mt̃2

�1/2
. First, we see that

decreasing tan� always decreases the Higgs mass, inde-
pendent of all the other parameters (keeping in mind that
tan� & 1.5 for perturbativity). So we expect to find a
lower bound on tan� coming from the Higgs mass. Sec-
ond, we see that the Higgs mass depends on Xt/MS as
a quartic polynomial, and in general it has two peaks at
Xt/MS ⇡ ±

p
6, the “maximal mixing scenario” [10]. So

we expect that mh = 125 GeV intersects this quartic in
up to four places, leading to up to four preferred values
for Xt/MS . Finally, we see that for fixed Xt/MS , the
Higgs mass only increases logarithmically with MS itself.
So we expect a mild lower bound on MS from mh = 125
GeV.

Now let’s demonstrate these general points with de-
tailed calculations using FeynHiggs. Shown in fig. 1 are
contours of constant Higgs mass in the tan�, Xt/MS

plane, for mQ = mU = 2 TeV (where mQ and mU

are the soft masses of the third-generation left-handed
quark and right-handed up-type quark scalar fields). The
shaded band corresponds to mh = 123 � 127 GeV, and
the dashed lines indicate the same range of Higgs masses
but with mt = 172 � 174 GeV. (The central value in all
our plots will always be mh = 125 GeV at mt = 173.2
GeV.) From all this, we conclude that to be able to get
mh ⇡ 125 GeV, we must have

tan� & 3.5 (2)

So this is an absolute lower bound on tan� just from the
Higgs mass measurement. We also find that the Higgs
mass basically ceases to depend on tan� for tan� beyond
⇠ 20. So for the rest of the paper we will take tan� = 30
for simplicity.

Fixing tan�, the Higgs mass is then a function of Xt

and MS . Shown in fig. 2 are contours of constant mh vs
MS and Xt. We see that for large MS , we want

Xt

MS
⇡ �3, �1.7, 1.5, or 3.5 (3)

We also see that the smallest the A-terms and the SUSY-
scale can absolutely be are

|Xt| & 1000 GeV, MS & 500 GeV. (4)

It is also interesting to examine the limits in the plane
of physical stop masses. Shown in fig. 3 are plots of the
contours of constant Xt in the mt̃2 vs. mt̃1 plane. Here
the values of Xt < 0 and Xt > 0 were chosen to satisfy
mh = 125 GeV, and the solution with smaller absolute
value was chosen. In the dark gray shaded region, no
solution to mh = 125 GeV was found. Here we see that
the t̃1 can be as light as 200 GeV, provided we take t̃2 to
be heavy enough. We also see that the heavy stop has to
be much heavier in general in the Xt < 0 case.
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III. IMPLICATIONS FOR THE SUSY
BREAKING SCALE

Having understood what mh ⇡ 125 GeV implies for
the weak-scale MSSM parameters, we now turn to the
implications for the underlying model of SUSY-breaking
and mediation. In RG running down from a high scale,
for positive gluino mass M3, the A-term At decreases.
The gluino mass also drives squark mass-squareds larger
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Recently, the ATLAS and CMS collaborations have announced exciting hints for a Standard
Model-like Higgs boson at a mass of ⇡ 125 GeV. In this paper, we explore the potential consequences
for the MSSM and low scale SUSY-breaking. As is well-known, a 125 GeV Higgs implies either
extremely heavy stops (& 10 TeV), or near-maximal stop mixing. We review and quantify these
statements, and investigate the implications for models of low-scale SUSY breaking such as gauge
mediation where the A-terms are small at the messenger scale. For such models, we find that either
a gaugino must be superheavy or the NLSP is long-lived. Furthermore, stops will be tachyonic
at high scales. These are very strong restrictions on the mediation of supersymmetry breaking in
the MSSM, and suggest that if the Higgs truly is at 125 GeV, viable models of gauge-mediated
supersymmetry breaking are reduced to small corners of parameter space or must incorporate new
Higgs-sector physics.

I. INTRODUCTION

Recently, intriguing hints of the Standard Model (SM)-
like Higgs boson have been reported by the LHC. The
ATLAS collaboration has presented results in the dipho-
ton [1] and ZZ⇤ ! 4` [2] channels, showing a combined
⇠ 3� excess at mh ⇡ 126 GeV. The CMS collaboration
has also presented results with a weaker ⇠ 2� excess in
the �� channel at mh ⇡ 123 GeV [3] and two events in
the ZZ⇤ channel near the same mass [4]. It is too early
to say whether these preliminary results will grow in sig-
nificance to become a Higgs discovery, but it is not too
early to consider some of the consequences if they do.

The potential discovery of a light Higgs renews the
urgency of the gauge hierarchy problem. Supersymme-
try remains the best-motivated solution to the hierar-
chy problem. Although it has not yet been found at
the LHC, considerable discovery potential still remains
in the parameter space relevant for naturalness [5]. How-
ever, a 125 GeV Higgs places stringent constraints on
supersymmetry, especially in the context of the minimal
supersymmetric standard model (MSSM). In this paper
we will examine these constraints in detail and use this
to study the implications for low-scale SUSY breaking.

In the MSSM, for values of the CP -odd Higgs mass
mA & 200 GeV, there exists a light CP -even Higgs
state in the spectrum with SM-like couplings to the elec-
troweak gauge bosons. The SM-Higgs mass and proper-
ties are dominantly controlled by just a few weak-scale
MSSM parameters: at tree level, mA and tan�, joined at
higher order by the stop masses mt̃1,2

and the stop mix-
ing parameter Xt ⌘ At �µ cot�. At tree-level, the Higgs
mass is bounded above by mZ cos 2�. One-loop correc-
tions from stops are responsible for lifting this bound
to ⇠ 130 GeV [6–10, 12], for a general review, see [13].
Other parameters of the MSSM contribute radiative cor-
rections to the Higgs mass, but in general are highly sub-
dominant to the stop sector. Even with large loop e↵ects,

it is noteworthy that 125 GeV is a relatively large Higgs
mass for the MSSM—this fact allows us to constrain the
stop masses and mixing.
In this paper, we will focus on stop masses mt̃ . 5 TeV

which includes the collider relevant region. (We briefly
consider heavier stops in the appendix.) Here fixed-order
Higgs spectrum calculators such as FeynHiggs [14–17],
which implements a broad set of one and two-loop cor-
rections to the physical Higgs mass, should be fairly ac-
curate. Imposing an upper bound on the stop masses
implies stringent bounds on tan� and At, and in partic-
ular requires large mixings among the stops.
For mA . 500 GeV, the SM-like Higgs has an enhanced

coupling to the down-type fermions, leading to an in-
crease in the h ! bb̄ partial width and suppressing the
branching fractions into the main low-mass LHC search
modes, h ! ��, W W [18–20]. Since the LHC sees a rate
consistent with SM expectations (albeit with a sizeable
error bar), in this work we take mA = 1 TeV, where all
the Higgs couplings are SM-like. This limit also avoids
constraints from direct searches for H/A ! ⌧⌧ [21–23].
For tan� we will set a benchmark value of 30 and con-
sider a range of values in some cases.

II. IMPLICATIONS FOR WEAK-SCALE MSSM
PARAMETERS

For mt̃ . 5 TeV, a Higgs mass of mh ⇡ 125 GeV
places strong constraints on tan� and the stop parame-
ters. Although we will use FeynHiggs for all the plots in
this section, it is useful to keep in mind the approximate
one-loop formula for the Higgs mass,
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, m
˜t1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 124 (126) GeV Higgs mass
for m

˜t1 in the range of 350–600 (500–800) GeV, while the two lower lines are for zero top squark
mixing and do not yield a 124 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken
tan � = 20. The shaded regions highlight the di↵erence between the Suspect and FeynHiggs
results, and may be taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � . 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m2

h = M2

Z cos2 2� + �2v2 sin2 2� + �2t , (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t & 28 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

125 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1–2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 125 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but only for .6 . � . .7, near the

boundary of perturbativity at the GUT scale.
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Figure 3: Comparison between the EFT computation (lower blue band) and two existing codes: FeynHiggs [41]
and Suspect [39]. We used a degenerate SUSY spectrum with mass m

SUSY

in the DR-scheme with tan� = 20.
The plot on the left is mh vs m

SUSY

for vanishing stop mixing. The plot on the right is mh vs Xt/mSUSY

for
m

SUSY

= 2 TeV. On the left plot the instability of the non-EFT codes at large m
SUSY

is visible.

due to the missing 2-loop corrections in the top mass7. Note that, as discussed in the previous
section, the uncertainty in the EFT approach is dominated by the 3-loop top matching conditions,
the 2-loop ones are thus mandatory in any precision computation of the Higgs mass. We checked
that after their inclusion, the FeynHiggs code would perfectly agree with the EFT computation
at zero squark mixing. At maximal mixing the disagreement would be reduced to 4 GeV, which
should be within the expected theoretical uncertainties of the diagrammatic computation.

For comparison, in fig. 3 we also show the results obtained with a di↵erent code (Suspect [39])
which uses a diagrammatic approach but unlike FeynHiggs, does not perform RGE improvement
and its applicability becomes questionable for mSUSY in the multi TeV region.

3 Results

After having seen that the EFT computation is reliable for most of the relevant parameter space
we present here some of the implications for the supersymmetric spectrum. Given the generic
agreement with previous computations using the same approach, we tried to be as complemen-
tary as possible in the presentation of our results, putting emphasis on the improvements of our
computation and novel analysis in the EFT approach.

3.1 Where is SUSY?

Fig. 4 represents the parameter space compatible with the experimental value of the Higgs mass in
the plane of (m1/2,m0) for zero (blue) and increasing values (red) of the stop mixing. For simplicity
we took degenerate scalar masses m0 as well as degenerate fermion masses m1/2 = M1,2,3 = µ. All

7It was brought to our attention that a similar observation was also made in [42].
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I. INTRODUCTION

Recently, intriguing hints of the Standard Model (SM)-
like Higgs boson have been reported by the LHC. The
ATLAS collaboration has presented results in the dipho-
ton [1] and ZZ⇤ ! 4` [2] channels, showing a combined
⇠ 3� excess at mh ⇡ 126 GeV. The CMS collaboration
has also presented results with a weaker ⇠ 2� excess in
the �� channel at mh ⇡ 123 GeV [3] and two events in
the ZZ⇤ channel near the same mass [4]. It is too early
to say whether these preliminary results will grow in sig-
nificance to become a Higgs discovery, but it is not too
early to consider some of the consequences if they do.

The potential discovery of a light Higgs renews the
urgency of the gauge hierarchy problem. Supersymme-
try remains the best-motivated solution to the hierar-
chy problem. Although it has not yet been found at
the LHC, considerable discovery potential still remains
in the parameter space relevant for naturalness [5]. How-
ever, a 125 GeV Higgs places stringent constraints on
supersymmetry, especially in the context of the minimal
supersymmetric standard model (MSSM). In this paper
we will examine these constraints in detail and use this
to study the implications for low-scale SUSY breaking.

In the MSSM, for values of the CP -odd Higgs mass
mA & 200 GeV, there exists a light CP -even Higgs
state in the spectrum with SM-like couplings to the elec-
troweak gauge bosons. The SM-Higgs mass and proper-
ties are dominantly controlled by just a few weak-scale
MSSM parameters: at tree level, mA and tan�, joined at
higher order by the stop masses mt̃1,2 and the stop mix-
ing parameter Xt ⌘ At�µ cot�. At tree-level, the Higgs
mass is bounded above by mZ cos 2�. One-loop correc-
tions from stops are responsible for lifting this bound
to ⇠ 130 GeV [6–10, 12], for a general review, see [13].
Other parameters of the MSSM contribute radiative cor-
rections to the Higgs mass, but in general are highly sub-
dominant to the stop sector. Even with large loop e↵ects,

it is noteworthy that 125 GeV is a relatively large Higgs
mass for the MSSM—this fact allows us to constrain the
stop masses and mixing.
In this paper, we will focus on stop masses mt̃ . 5 TeV

which includes the collider relevant region. (We briefly
consider heavier stops in the appendix.) Here fixed-order
Higgs spectrum calculators such as FeynHiggs [14–17],
which implements a broad set of one and two-loop cor-
rections to the physical Higgs mass, should be fairly ac-
curate. Imposing an upper bound on the stop masses
implies stringent bounds on tan� and At, and in partic-
ular requires large mixings among the stops.
FormA . 500 GeV, the SM-like Higgs has an enhanced

coupling to the down-type fermions, leading to an in-
crease in the h ! bb̄ partial width and suppressing the
branching fractions into the main low-mass LHC search
modes, h ! ��,WW [18–20]. Since the LHC sees a rate
consistent with SM expectations (albeit with a sizeable
error bar), in this work we take mA = 1 TeV, where all
the Higgs couplings are SM-like. This limit also avoids
constraints from direct searches for H/A ! ⌧⌧ [21–23].
For tan� we will set a benchmark value of 30 and con-
sider a range of values in some cases.

II. IMPLICATIONS FOR WEAK-SCALE MSSM
PARAMETERS

For mt̃ . 5 TeV, a Higgs mass of mh ⇡ 125 GeV
places strong constraints on tan� and the stop parame-
ters. Although we will use FeynHiggs for all the plots in
this section, it is useful to keep in mind the approximate
one-loop formula for the Higgs mass,
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due to the missing 2-loop corrections in the top mass7. Note that, as discussed in the previous
section, the uncertainty in the EFT approach is dominated by the 3-loop top matching conditions,
the 2-loop ones are thus mandatory in any precision computation of the Higgs mass. We checked
that after their inclusion, the FeynHiggs code would perfectly agree with the EFT computation
at zero squark mixing. At maximal mixing the disagreement would be reduced to 4 GeV, which
should be within the expected theoretical uncertainties of the diagrammatic computation.

For comparison, in fig. 3 we also show the results obtained with a di↵erent code (Suspect [39])
which uses a diagrammatic approach but unlike FeynHiggs, does not perform RGE improvement
and its applicability becomes questionable for mSUSY in the multi TeV region.

3 Results

After having seen that the EFT computation is reliable for most of the relevant parameter space
we present here some of the implications for the supersymmetric spectrum. Given the generic
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tary as possible in the presentation of our results, putting emphasis on the improvements of our
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of susy-breaking



from arXiv:1207.1348

Higgs mass in particular models of susy breaking:

This implies that most superpartners are
beyond present LHC searches!

Figure 5: Maximal Higgs mass (in GeV) in CMSSM in function of the scale MS = p
m

˜t1
m

˜t2
(in

GeV) for di↵erent top mass values.

Figure 6: Parameter space for the various regimes of the MSSM Higgs sector as defined in the
text and in eq. (8) in the tan�–MA plane, in the maximal mixing scenario with MS = 2 TeV. The
constraints from A ! ⌧⌧ (continuous green line) and t ! H+b (dashed green line) searches at the
LHC are shown together with the LEP2 constraint (continuous black line).

4.4 Higgs signal and MSSM parameters in the SUSY regime

In the SUSY regime the Higgs decay rate can be a↵ected by the contributions of SUSY particles
in the loops. This makes a detailed study of the MSSM parameter space in relation to the first
results reported by ATLAS and CMS particularly interesting for estimating its sensitivity to
specific regions of parameters. In particular, the decay branching fraction into �� are modified
by both mixing e↵ects and light sparticle contributions [10]. We study these e↵ects on the
points of our pMSSM scan. In the following, we use the notation RXX to indicate the Higgs
decay branching fraction to the final state XX, BR(h0 ! XX), normalised to its SM value.
We also use the notation µXX to indicate the ratio of product of the inclusive production and
the decay branching ratio for the final state XX to its SM value, µXX = �⇥BR(h!XX)

�⇥BR(H!XX)|SM
. A

major source of deviations from unity for the R values is due to a reduction of the h total
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Figure 8: Prediction for the spectrum of MGM after imposing the constraint from the Higgs mass (or better from
the top mass). For each superpartner we plot the allowed range of masses (in TeV) for four di↵erent combinations of
N = 1(3) and M = 104(1011) TeV. For each mass the lowest (highest) value corresponds to increasing (decreasing)
the value of the top mass by 2� with respect to its experimental central value. The values of tan� at the bottom
(top) side of each of the four bands, from left to right, are 58 (42), 49 (45), 56 (29) and 44 (46) respectively. The
three di↵erently shaded areas represent “pictorially” the existing LHC8 bounds and the expected reach at LHC14
and at a future 100 TeV collider, respectively from the bottom.

In MGM all soft masses are generated with the same order of magnitude by the gauge mediated
contribution, one gauge loop below the scale ⇤ = F/M (the ratio between the e↵ective scale of
SUSY breaking F and the mass of the messengers). Besides ⇤, the spectrum also depends, in a
milder way, on the actual mass of the messengers M , which determines the amount of running
of the soft parameters, and the number of messengers N (typically N = 1 or 3 for a vector like
messenger in the 5 or 10 of SU(5) respectively).

As mentioned before, the µ-term, being supersymmetric, would be an independent parameter,
but its value is fixed by requiring (tuning) the correct EWSB. Finally the A-terms and Bµ are
generated radiatively from RGE e↵ects. This fact has very interesting consequences [67,68]. First,
being A and Bµ terms generated at the quantum level from gaugino masses and µ-term implies
that the corresponding CP phases vanish, avoiding potentially dangerous bounds from EDMs.
Second, small suppressed A-terms imply that the stop mixing will never be large, while small Bµ

implies large values of tan �. These two predictions combined with the measured value of the Higgs
mass allows to fix also the overall scale ⇤, which must then lie at around the PeV scale to produce
the O(10) TeV SUSY scale required by the Higgs mass. The only remaining free parameters are
the messenger mass scale M and their number N , which a↵ect the properties of the spectrum in
a milder way.
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