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Lecture 0 – Review

0.1 Spontaneous Symmetry breaking, Nambu-Goldstone,
Higgs Mechanism

Exercises
Exercise 1-1: For a single complex scalar field, |φ(x)| = v is not sufficient to charac-
terize the minimum. Why? (Hint: Compute E[eiα(x)v]).

Exercise 1-2: If χ(x) is a real scalar field, invent an action integral with SSB and
explain which symmetry(ies) is(are) broken.

Exercise 1-3: In lecture we considered a model of two complex scalars, φ and χ with

L = |∂µφ|2 + |∂µχ|2 − V1(|φ|)−m2|χ|2 + 1
2λ[(φ∗χ)2 + (χ∗φ)2],

and assumed that V1 is minimized at |φ| = v. We found that due to SSB the complex
field χ breaks into two real fields, A and B, of mass-squared m2

A = m2 + λv2 and
m2
B = m2 − λv2. Discuss the case m2 < λv2.

Exercise 1-4: Show that the spectrum of the model of a single complex scalar φ(x)
symmetric under global U(1) transformations (that is, under φ(x)→ eiαφ(x)) consists
of two degenerate states when the symmetry is not spontaneously broken.

Exercise 1-5: Determine the Energy functional for a U(1)-gauge invariant single com-
plex field with Lagrangian density L = Dµφ

∗Dµφ.

Exercise 1-6: Consider scalar-QED: a theory of a single complex scalar with a gauged
U(1) symmetry:

L = − 1
4FµνF

µν + |Dµφ|2 − V (|φ|)

Determine the equations of motion of the gauge fields A0 and ~A. What’s peculiar
about the equation of motion for A0?
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iv LECTURE 0 – REVIEW

0.2 Group theory

Exercises
Exercise 2-1: Give explicitly a 4-dimensional irreducible representation of SU(2) (more
specifically, the three matrices that form a basis for the Lie Algebra of SU(2)).
Follow-up: Find explicitly the 1-dimensional (“trivial”) representation.

Exercise 2-2: Find all inequivalent 4-dimensional representations of the Lie algebra
of SU(2)

Exercise 2-3: Suppose the Lie algebra is spanned by n hermitian, traceless matrices,
T a, a = 1, . . . , n. Show that (ta)bc = κfabc, where fabc are the structure constants,
constitute an n-dimensional representation, for some constant κ, and determine the
value of this constant.

Exercise 2-4: For SU(N) show that the adjoint representation Adj (defined in the
previous problem) had dim(Adj) = N2 − 1.

Exercise 2-5: For SU(3), why are triplets necessarily complex but octets can be real?



0.3. NON-ABELIAN (YANG-MILLS) GAUGE THEORIES v

0.3 Non-abelian (yang-Mills) gauge theories

Exercises
Exercise 3-1: Under Aµ → A′µ = U(Aµ + 1

ig∂µ)U−1, show that Fµν → F ′µν =

UFµνU
−1.

Exercise 3-2: Show that Tr(Fµν) = 0.

Exercise 3-3: Write − 1
4Tr(FµνF

µν) in terms of the component fields Aaµ(x) (where
Aµ(x) = Aaµ(x)T a).

Exercise 3-4: (i) Let φ(x) be an N -component complex scalar, transforming as a
fundamental of SU(N). Assume φ has a vacuum expectation value (VEV) that
breaks this symmetry spontaneously,

〈φ(x)〉 =


0
...
0
v


(ii) Display explicitly the 2N − 1 broken generators of SU(N).

(iii) The mass-square matrix, (M2)ab for the vector bosons of gauged SU(N) gen-
erated by this VEV is

1
2g

2v2(T aT b)NN

Show that all non-zero eigenvalues of (M2)ab are common (ie, all equal).

(iv) Write out the Feynman rules for this model.



Chapter 1

Lecture 1

1.1 The Standard Model

Exercises
Exercise 1.1-1: In the Standard Model (SM) take the fields to have quantum numbers
as in lecture. In particular H, a doublet, has Y = 1

2 . Assume

〈H〉 =
v√
2

(
1
0

)
.

Describe what must be changed with respect to the calculations done in class, where
we took instead

〈H〉 =
v√
2

(
0
1

)
.

Exercise 1.1-2: Write explicitly the interaction terms of quarks and leptons with the
weak vector bosons and the photons, that is, the gauge fields of SU(2)×U(1), in the
SM.

Exercise 1.1-3: This is a longer exercise, more like a small project. The aim is to
compute some decay properties of the Z boson. We could have just as well done this
for the W±, but the Z is a good example and there is some interesting physics that
goes along with this.

(i) Compute, at tree level, the partial decay width of the Z boson into the following
final states: e+e−, νν̄, uū, dd̄.

(ii) The µ and τ leptons have the same quantum numbers as the electron. Look
up their masses in the PDG (not in google), and the mass of the Z boson, and
argue that to good approximation the partial decay widths are equal, Γ(Z →
τ+τ−) ≈ Γ(Z → µ+µ−) ≈ Γ(Z → e+e−). How good is this approximation?

(iii) Similarly, find out the masses of the quarks and argue that for decays to the
down, strange and bottom quarks Γ(Z → dd̄) ≈ Γ(Z → ss̄)Γ(Z → bb̄) and that
for decays to the up and charm quarks Γ(Z → uū) ≈ Γ(Z → cc̄).
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2 CHAPTER 1. LECTURE 1

(iv) However, for decays to the top quark show that Γ(Z → tt̄) = 0.

(v) Argue that at lowest order in perturbation theory the total decay width (that
is, the inverse lifetime) of the Z boson is given by

Γ(Z) = 3Γ(Z → e+e−) + 3Γ(Z → νν̄) + 3Γ(Z → dd̄) + 2Γ(Z → uū)

(vi) Compute the branching fractions for all these decays. The branching fraction
for the decay of Z into a final state f is defined by

Br(Z → f) =
Γ(Z → f)

Γ(Z)

(vii) Evaluate your answers numerically. Check against the PDG.

(viii) The PDG gives that the branching fraction into four leptons (“`+`−`+`−”) is
four orders of magnitude than the one into a lepton pair (“`+`−”). How does
the SM account for this?

The PDG also gives a lot of interesting information. Notably, Br(Z− → e±µ∓ <
7.5 × 10−7. As we will see, Z interactions are “diagonal in flavor space”, that is Z
couples to, eg, ēe and to µ̄µ but not to ēµ or µ̄e.



Chapter 2

Lecture 2

2.1 Charged & neutral currents and the ρ parameter

Exercise 2.1-1: Using Fermi theory, that is, an effective interaction hamilto-
nian given by

H′ = GF√
2
J†λJ

λ

where the charged current is given by

Jλ(x) = ν̄e(x)γλ(1− γ5)e(x) + ν̄µ(x)γλ(1− γ5)µ(x),

determine the partial width for µ → eνµν̄e decay. Neglect the masses of
electron an neutrinos. You should obtain

Γ(µ→ eνµν̄e) =
1

192π3
G2
Fm

5
µ

The lifetime is the inverse total width. First argue that this is the dominant
decay mode of the muon (question: what else can it decay into?), and then
compute the lifetime using the PDG values of GF and mµ, and compare with
the PDG value of the lifetime.
Suggestion: Save a little time by using the PDG expressions for 3-body phase
space integrals.

Exercise 2.1-2: (i) Compute ∆ρ/ρ for a model with two doublet fields, that
is, H1 and H2 both in the 2 1

2
representation of SU(2)× U(1), both with

non-zero VEVs, 〈Hi〉 6= 0 and both preserving charge, Q〈Hi〉 = 0 (where
Q = T 3 + Y ).

(ii) Generalize the result to the case of an arbitrary number n of higgs dou-
blets, Hi.
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4 CHAPTER 2. LECTURE 2

2.2 Custodial symmetry

Exercise 2.2-1: In lecture we introduced the 2× 2 matrix field

φ(x) =

((
H̃(x)

)(
H(x)

))

and explained how, in the absence of hypercharge interactions, the Lagrangian
L = 1

2Tr(Dµφ
†Dµφ) is invariant under an SU(2)L × SU(2)R group of trans-

formations, with action

φ→ LφR†, with L ∈ SU(2)L and R ∈ SU(2)R

(i) Show that hypercharge is a U(1) subgroup of SU(2)R, with R ∈ U(1)
generated by 1

2σ
3, that is, R = exp(iωσ3/2).

(ii) Write an expression of the covariant derivative Dµφ in matrix notation,
that includes both the W and B fields.

(iii) Give the generators of the custodial symmetry, SU(2)C , in terms of the
generators T aL and T aR of SU(2)L and SU(2)R, respectively.

(iv) Show that hypercharge breaks custodial symmetry. Argue that this con-
tributes to ∆ρ only at 1-loop order.

Exercise 2.2-2: If yU = yD ≡ yQ combine the right handed fields uR and
dR into a doublet qR of SU(2)R (see previous exercise). Rewrite the Yukawa
couplings of quarks of the SM in terms of the matrix φ and the doublets qL
and qR in a manner that makes explicit that these terms are symmetric under
SU(2)L × SU(2)R and that they are symmetric under the SU(2)C custodial
symmetry. Argue that ∆ρ ∝ md −mu

Exercise 2.2-3: Harder Let the self-energy of the W± and W 3bosons be
Πµν
W (p) and Πµν

3 (p), respectively. They give a contribution to ∆ρ by shift-
ing the denominators in propagators of vector bosons at small momentum, so
that

∆ρ

ρ
=

ΠW (0)−Π3(0)

M2
W

,

where Π(0) stands for the coefficient of ηµν in Πµν .
Calculate the 1-loop contribution of the u and d quarks to ∆ρ/ρ.
Note: The diagrams that need to be computed and the result of the computation
are given in the lecture notes, at the bottom of page 9, in “Lecture 1-2”.



Chapter 3

Lecture 3 – Flavor Theory

3.1 Introduction: What/Why/How?

3.2 Flavor in the Standard Model

3.3 The CKM matrix and the KM model of CP-violation

Exercise 3.3-1: In lecture we saud: Now, choose to make a redefinition by
matrices that diagonalize the mass terms,

V †uLy
UVuR = yU ′, V †dLy

DVdR = yD′ . (3.1)

Here the matrices with a prime, yU ′ and yD′, are diagonal, real and positive.
Show that this can always be done. That is, that an arbitrary matrix M can
be transformed into a real, positive diagonal matrix M ′ = P †MQ by a pair of
unitary matrices, P and Q.

Exercise 3.3-2: Warning: This problem is difficult, deceptively so; do not
spend too much timem on it.
In QED, charge conjugation is eγµe → −eγµe and Aµ → −Aµ. So e /Ae is
invariant under C.
So what about QCD? Under charge conjugation qT aγµq → q(−T a)Tγµq, but
(−T a)T = (−T a)∗ does not equal −T a (nor T a). So what does charge conju-
gation mean in QCD? How does the gluon field, Aaµ, transform?

Exercise 3.3-3: If two entries in mU (or in mD) are equal show that V can
be brought into a real matrix and hence is an orthogonal transformation (an
element of O(3)).

Exercise 3.3-4: Show that

(i) β = arg

(
−
VcdV

∗
cb

VtdV
∗
tb

)
, α = arg

(
−
VtdV

∗
tb

VudV
∗
ub

)
and γ = arg

(
−
VudV

∗
ub

VcdV
∗
cb

)
.
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6 CHAPTER 3. LECTURE 3 – FLAVOR THEORY

(ii) These are invariant under phase redefinitions of quark fields (that is, un-
der the remaining arbitrariness, often called “re-phasing of quark fields”).
Hence these are candidates for observable quantities.

(iii) The area of the triangle is −1
2 Im

VudV
∗
ub

VcdV
∗
cb

= −1
2

1
|VcdV

∗
cb|2

Im (VudV
∗
cdVcbV

∗
ub).

(iv) The product J = Im (VudV
∗
cdVcbV

∗
ub) (a “Jarlskog invariant”) is invariant

under re-phasing of quark fields.

Note that Im
(
VijVklV

∗
ilV
∗
kj

)
= J(δijδkl − δilδkj) is the common area of all the

un-normalized triangles. The area of a normalized triangle is J divided by the
square of the magnitude of the side that is normalized to unity.

Exercise 3.3-5: (i) Show that

ρ+ iη = −
VudV

∗
ub

VcdV
∗
cb

,

hence ρ and η are indeed the coordinates of the apex of the unitarity
triangle and are invariant under quark phase redefinitions.

(ii) Expand in λ� 1 to show

V =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)



Chapter 4

Lecture 4

4.1 Flavor Symmetry and MFV

Exercise 4.1-1: Had we considered an operator likeO1 = GaµνHuRT
aσµνyUqL,

but with H̃dR instead of HuR the flavor off-diagonal terms would have been
governed by yD,diagV †. Show this is generally true, that is, that flavor change
in any operator is governed by V and powers of ydiag.

Exercise 4.1-2: Exhibit examples of operators of dimension 6 that produce
flavor change without involving yU,D. Can these be such that only quarks
of charge +2/3 are involved? (These would correspond to Flavor Changing
Neutral Currents; see Sec. ?? below).

4.2 2HDM

Exercise 4.2-1: Write explicitly the most general potential, V (H1, H2), for
the 2HDM, up to quartic terms (so that it is renormalizable). Which terms
depend on the alignment of 〈H2〉 relative to that of 〈H1〉? How would you
arrange coefficients so that 〈H1〉 and 〈H2〉 are aligned?

Exercise 4.2-2: In the 2HDM, show that the cubic couplings of h0 and H0 to
vector bosons are given by

2
M2
W

v
sin(α+ β)h0W+

µ W
−
µ + 2

M2
Z

v
sin(α+ β)h0Z0

µZ
0
µ

and

2
M2
W

v
cos(α+ β)H0W+

µ W
−
µ + 2

M2
Z

v
cos(α+ β)H0Z0

µZ
0
µ

Exercise 4.2-3: In the 2HDM the cubic couplings h±W∓Z0, and A0W+W−

and A0Z0Z0 vanish.
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8 CHAPTER 4. LECTURE 4

Exercise 4.2-4: In the 2HDM compute the H0A0Z0
µ coupling.

Exercise 4.2-5: How do the 5 scalars of the 2HDM transform under custodial
S(2)C symmetry?

4.3 Georgi-Machacek model

Exercise 4.3-1: If

〈H〉 =
vH√

2

(
0
1

)
, 〈χ〉 = vχ

0
0
1

 , and 〈ξ〉 = vχ

0
1
0

 ,

show that M2
W = 1

4g
2
2v

2 where v2 = v2H + 8v2χ

Exercise 4.3-2: Project This model has 13 real scalars – 3 eaten scalars =
10 physical scalars.

(i) Work it out: find the physical fields in terms of the components of

H =

(
φ+

φ0

)
, χ =

χ++

χ+

χ0

 , and ξ =

ξ+ξ0
ξ−

 .

(ii) Find their couplings to two vector bosons.

(iii) Can a singly charged scalar decay to WZ? Can a doubly charged scalar
decay to W+W+? If so compute the decay rates.

(iv) Can a doubly charged higgs decay to a W+ and a singly charged higgs,
and if so what is the decay rate?

(v) Neglecting the decay of a doubly charged higgs to a pair of singly charged
higgsses, and the decays into more than two bodies, compute the branch-
ing fractions for decays of doubly and singly charged higgses as a function
of their masses.

(vi) Come up with one more question about the properties of higgses in the
Georgi-Machacek model and solve it. Particularly intersting questions
highlight differences between this model and the 2HDM or the SM.

Exercise 4.3-3: Show that under SU(2)C the 10 states transform as 5⊕3⊕1⊕1
(and as always the eaten fields transform as 3). It is slightly more difficult
(and more work) to give explicitly the components of these representations in
terms of the components of H, χ and ξ.



Chapter 5

Lecture 5

5.1 Flavor in the 2HDM

Exercise 5.1-1: If V µ(x) = ū(x)γµd(x) (a vector current), show that parity
(P) invariance of the strong and electromagnetic interactions implies 〈0|V µ(0)|π−(~p)〉 =
0.

Exercise 5.1-2: IfAµ(x) = ū(x)γµγ5d(x) (a vector current), show that 〈0|Aµ(x)|π−(~p)〉 =
e−ip·xfπp

µ.

Exercise 5.1-3: By taking the divergence (a derivative) of the axial current,
show that

〈0|ū(0)γ5d(0)|π−(~p)〉 =
fπm

2
π

mu +md

Exercise 5.1-4: Add to the SM a charged scalar h± of mass M with LY uk =
κqh

−d̄γ5u + κ`h
−ē(1 − γ5)ν + h.c.. Compute the contribution, ∆Γ, to the

partial width for π− → e−ν̄. Compare with SM. If κq ∼ κ` ∼ 1 give a rough
lower bound on M so that ∆Γ is not in conflict with Γexp(π− → e−ν̄)

Exercise 5.1-5: Compute charged higgs couplings to quarks. Express your
answer in terms of V (CKM matrix), the diagonal mass matrices, v (the SM
VEV) and β = v2/v.

5.2 More flavor

Exercise 5.2-1: When we presented in class the equation for the SUSY-SM,

∆LSUSY-bkg = φ∗qM2
qφq + φ∗uM2

uφu + φ∗dM2
dφd

+ (φh1φugUφq + φh2φdgDφq + h.c.) (5.1)
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10 CHAPTER 5. LECTURE 5

we said, “This breaks the flavor symmetry unlessM2
q,u,d ∝ 1 and gU,D ∝ yU,D.”

This is not strictly correct (or, more bluntly, it is a lie). While not correct
it is the simplest choice. Why? Exhibit alternatives, that is, other forms for
M2

q,u,d and gU,D that respect the symmetry.

Exercise 5.2-2: Classify all possible dim-4 interactions of Yukawa form made
out of SM fermions and possibly new scalar fields. To this end list all possible
Lorentz scalar combinations you can form out of pairs of SM quark fields.
Then give explicitly the transformation properties of the scalar field, under the
gauge and flavor symmetry groups, required to make the Yukawa interaction
invariant. Do this first without including the SM Yukawa couplings as spurions
and then including also one power of the SM Yukawa couplings.

5.3 FCNC

Exercise 5.3-1: Compute the amplitude for Z → bs in the SM to lowest order
in perturbation theory (in the strong and electroweak couplings). Don’t bother
to compute integrals explicitly, just make sure they are finite (so you could
evaluate them numerically if need be). Of course, if you can express the result
in closed analytic form, you should. See Flavor Changing Decays of the Z0,
by M. Clements, et al, in Phys. Rev. D 27, 570 (1983).

5.4 GIM-mechanism: more suppression of FCNC in
SM

5.4.1 Old GIM

5.4.2 Modern GIM

Exercise 5.4.2-1: Consider s → dγ. Show that the above type of analysis
suggests that virtual top quark exchange no longer dominates, but that in
fact the charm and top contributions are roughly equally important. Note:
For this you need to know the mass of charm relative to MW . If you don’t,
look it up!

5.4.3 Bounds on New Physics, GIM and MFV

Exercise 5.4.3-1: Determine how much each of the bounds in Fig. ?? is weak-
ened if you assume MFV. You may not be able to complete this problem if
you do not have some idea of what the symbols ∆MK , εK , etc, mean or what
type of operators contribute to each process; in that case you should postpone
this exercise until that material has been covered later in these lectures.
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Flavor Structure in the SM and Beyond

�
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Generic bounds without a flavor symmetry
Figure 5.1: Bounds on the scale of NP scale from various processes. The NP is
modeled as dimension 6 operators. No accidental suppression of the coefficient (as
in MFV) is included. The b→ s case is consistent with the explicit b→ sγ example
worked out in these notes. The figure is taken from M. Neubert’s talk at EPS 2011.
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5.5 Determination of CKM Elements

Exercise 5.5-1: Show that q · (V −A) ∼ m` for the leptonic charged current.
Be more precise than “∼.”


