Exploring the Minimal Composite Higgs Model in the Higgs Sector at the LHC using the ttH and ttHH production channels.

Leônidas A. Fernandes do Prado Supported by FAPESP (2015/26624-6) June 2018

IFT - UNESP INSTITUTO DE FÍSICA TEÓRICA Based on a collaborative work with Ricardo D'Elia Matheus, Eduardo Pontón, Leonardo de Lima, Aurore Savoy-Navarro and Carlos Bautista

Joint ICTP-Trieste/ICTP-SAIFR School on Particle Physics

Different Scales of CH Models

- Compositeness around the TeV scale:
 Hierarchy Problem solved (main motivation).
- Focus on models valid around the TeV scale, not beyond it.

MCHM5

- $f \sim 1$ TeV scale: $SO(5) \rightarrow SO(4)$ breaking. >pNGB Higgs.
- Custodial Symmetry.
- Gauge sector is universal.
- Partial Compositeness hypothesis (Kaplan, Nucl. Phys., B365:259–278, 1991)
- Fermions depend on the representation of *SO*(5) they belong to.
- Here I will focus on the **5** (MCHM₅):
 - >Top partners transform as a fiveplet of SO(5).
 - Vector-like fermionic resonances

MCHM5

• Ψ_4 and Ψ_1 mix linearly with the top through couplings y_L , y_R

Masses get corrections from mixing and EW breaking $\sim \frac{y_{L,R}^2 f^2}{M_{1,4}^2} (1 \pm \frac{v_{EW}^2}{f^2})$

Going to the Experiment

• The model: MCHM5

⇒Modifications in the top and Higgs sector (next slide)

- Measurements at the LHC can:
 - Constrain the model
 - Disentangle the model from other models

 What new insights can HL-LHC and future colliders (HE-LHC, FCC) give us?

The ttH and ttHH Processes

- The tth production was measured by CMS $\mu_{tth} = 1.26^{+0.31}_{-0.26}$ (CMS Collaboration Phys.Rev. Lett. (2018) no.120, 231801), and ATLAS $\mu_{tth} = 1.32^{+0.28}_{-0.26}$ (ATLAS Collaboration CERN-EP-2018-138)
- In MCHMs, The tth coupling is modified in a way that depends on the partners representation (Liu et al. Phys.Rev. D96 (2017) no.3, 035013):

Higgs sector non-linearities generate new vertices such as tthh

Correlation in tth vs NR-tthh

Three main effects contribute to tthh:

Non-resonant $\sigma(tthh)$ (normalized) vs $\sigma(tth)$ (normalized) at 13 TeV and 27 TeV.

 $\sigma(tthh)$ normalized to SM vs $M_{T^{(1)}}$ at 13 TeV (left) and 27 TeV (right)

 At 27 TeV, there can be a large increase, driven mainly by pair production, but there is also a contribution that is non-resonant, more important at larger T⁽¹⁾ mass (see later slides).

Sample Point at 13 TeV cm: Invariant Mass (ht)

- Non-resonant part (93% at 13 TeV). This is due to the larger resonance masses, 2 TeV and above.
- The non-resonant part contains important information about coupling modifications, and even this small relative effect may be seen at high luminosity.

Conclusions

- The MCHM5 predicts deviations of observables with respect to the SM.
- ttH and NR-ttHH are correlated in the MCHM5.
- Discovery of MCHM5 means finding resonances (5 of them!) and observing NR contributions (form factors).
- If resonances are heavy we need high luminosity to see the NR part.
- If resonances are discovered, additional information can come from ttH and ttHH-NR.

>ttH: y_t .

>ttHH-NR: y_t + 20% from other vertices.

 At HL-LHC and HE-LHC or FCC, it might be possible to better understand the MCHM and/or help in disentangling it from other theoretical interpretations (SUSY etc.)

Thank You

Additional Slides

Contours for $T^{(1)}$ mass (red), normalized top yukawa (colors) and width (black)

- Negative M_4 region. Supression for MCHM₅, varying from 80% to 87% times the SM value.
- The top width is very close to the SM value, since the partner masses are relatively high.
- Also shown is the 1.2 TeV exclusion limit, valid for $BR(T^{(1)} \rightarrow t h) \sim 50 \%$. (CMS: CMS-B2G-17-011, CERN-EP-2018-069; ATLAS: CERN-EP-2018-088, CERN-EP-2018-031, CERN-EP-2017-094, CERN-EP-2017-075)

 $\sigma(tthh)$ (normalized) vs $\sigma(tth)$ (normalized) at 13 TeV (left) and 27 TeV (right). Colors show $M_{T^{(1)}}$.

- While tth is insensitive to the T⁽¹⁾ mass, tthh is dominated at low masses by T⁽¹⁾ pair production.
- Also shown the 2σ limits for measured th by ATLAS and CMS

 $\sigma(tth)$ normalized to SM vs $M_{T^{(1)}}$ at 13 TeV (left) and 27 TeV (right)

- The cross section is insensitive to the T⁽¹⁾ mass.
- Although there is an increase at 27 TeV, it mantains the ratio with respect to the SM.
- Also shown the 2σ limits for measured tth by ATLAS and CMS

 $\sigma(tthh)$ (normalized) vs $\sigma(tth)$ (normalized) at 13 TeV (left) and 27 TeV (right). Colors show the ratio of resonant to non-resonant tthh cross section.

- At higher masses, the tthh cross section can be dominated by the nonresonant part.
- Also shown the 2σ limits for measured tth by ATLAS and CMS

Sample Points

		Point 1	Point 2	Point 3	Point 4	Point 5
N	1 ₁ (GeV)	-808.6	-1317.3	-1830.7	-852.3	-3000
N ters	l₄ (GeV)	1670.1	1579.8	2043.0	1409.1	3000
ame	(GeV)	887	969	1084	1186	800
^I A Para	L	0.74	1.66	1.98	0.88	1.00
y	R	1.53	0.62	0.61	0.86	1.98
М	(TeV)	1.49	1.44	1.94	1.28	3.00
М	(TeV)	1.71	1.59	2.05	1.44	3.08
М	(TeV)	1.86	2.25	2.96	1.76	3.41
М	(TeV)	1.79	2.25	2.96	1.75	3.11
M	_{X_{5/3}} (TeV)	1.67	1.58	2.04	1.41	3.00
BR(T ⁽¹⁾ →t H)		0.88	0.32	0.29	0.68	0.36
BR(T ⁽¹⁾ →W ⁺ b)		0	0.46	0.48	0.11	0.02
BR	R(T ⁽¹⁾ →t Z)	0.05	0.23	0.24	0.21	0.24
		Cross Sections, normalized by the SM prediction				
ttHI	H (13 TeV)	2.73	0.99	0.56	4.40	0.41
ttHH (27 TeV)		10.38	2.95	0.92	14.19	0.54
t	tH (Both	0.87	0.83	0.86	0.93	0.73
E	inergies)					

Point 1 has BR($T^{(1)} \rightarrow W^+ W^- t$)=0.07 and Point 5 has BR($T^{(1)} \rightarrow W^+ W^- t$)=0.35

Sample Point at 27 TeV cm: Invariant Mass (ht)

• Even at 27 TeV, the non-resonant part is still 62%. If the mass bounds are pushed even further, it will become even more important. Furthermore, even in the case of discovery, it provides complementary information about the SM coupling modifications.